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Abstract—The paper has two objectives. The first is to study
rigorously the transient behavior of some peer-to-peer (P2P) net-
works whenever information is replicated and disseminated ac-
cording to epidemic-like dynamics. The second is to use the insight
gained from the previous analysis in order to predict how efficient
are measures taken against P2P networks. We first introduce a sto-
chastic model that extends a classical epidemic model and char-
acterize the P2P swarm behavior in presence of free-riding peers.
We then study a second model in which a peer initiates a contact
with another peer chosen randomly. In both cases, the network
is shown to exhibit phase transitions: A small change in the pa-
rameters causes a large change in the behavior of the network. We
show, in particular, how phase transitions affect measures of con-
tent providers against P2P networks that distribute nonauthorized
music, books, or articles and what is the efficiency of countermea-
sures. In addition, our analytical framework can be generalized to
characterize the heterogeneity of cooperative peers.

Index Terms—Branching process, epidemics, mean field,
peer-to-peer (P2P), phase transition.

I. INTRODUCTION

I N RECENT years, the global Internet along with peer-to-
peer (P2P) networks have created huge opportunities for

free and open access to popular culture such as music, films,
and e-books. The networking research community has been in-
volved in creating new P2P protocols that give incentives to file
sharing. However, these developments that brought a huge in-
crease in Internet traffic turned out to involve more than tech-
nological aspects. This technology found itself in the heart of
a harsh debate on copyright and on ethical issues. The main
problem with the P2P technology has been the fact that a large
part of P2P traffic consisted of copyrighted content. Two main
approaches emerged in the conflict over access to copyrighted
materials. The first tries to fight such access and proposes legal
actions against it.We call this approach the confrontation one, as
it fights demand and sharing of unauthorized copyrighted con-
tent. The second is a cooperative approach that seeks to profit
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from such demand in a way that would benefit all actors, in-
cluding the creators of the content. The conflict between both
approaches involves three fronts: the legislation, the ethical, and
the economic front.
On the legislation front, the confrontation approach has been

gaining ground. In several countries, inspection mechanisms
and laws including sanctions against infringements have been
introduced (see [1]–[5]). Those in favor of the cooperative ap-
proach have proposed to introduce a volunteer-based tax to be
paid by those internauts that wish to continue to have access
to copyrighted content. This is called the “global license” ap-
proach. The revenues of the tax would be distributed among
copyright holders and disseminators. This approach is already
widely used for handling private copies of copyrighted mate-
rial from the radio and television. It is directly included in the
price of video cassettes or other storage devices. This approach,
while widely supported by authors and performers (see, e.g.,
[3]), did not gain the support of the music and film industry.
Though gaining ground, the confrontation policy faces the huge
monitoring cost to provide credible evidence for unauthorized
downloads [10].
The economic impact of nonauthorized downloads of copy-

righted material is not clear. On one hand, some measure the
impact on content owners by the loss of revenue that is com-
puted by multiplying the number of nonauthorized downloads
by the average price of the downloaded file. Others measure
the economic impact of nonauthorized downloads in terms
of the amount of money spent by a file sharer in consuming
music. These come with contrasting conclusions. Indeed, a
recent study [6] commissioned by the Dutch government ar-
gues that there is no direct relationship between downloading
files protected by copyright and purchasing music in physical
format. One of the findings points out that file sharers are not
more or less willing to buy music than other people, and those
file sharers that buy music do not buy more or less music than
non-file sharers, but they acquire more value added products.
This confirms the empirical finding of [7].
On the ethical side, those in favor of the confrontation ap-

proach have launched publicity campaigns trying to associate
to unauthorized downloads of copyrighted content the image of
stealing CDs from the shelf of a shop. A radically different ap-
proach had been expressed already two centuries ago by Victor
Hugo, who wrote the following:

A book, as a book, belongs to the author, but as a
thought, it belongs, without exaggerating, to the human
mind. All minds are entitled. If one of the two rights, the
right of the writer and the right of the human mind, were to
be sacrificed, it would certainly be the right of the writer,
because the public interest is our concern [8].
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Our goal in this paper is not to judge which approach is better,
nor is it to examine the methods used today to detect infringe-
ment, whose reliability has been shown to be quite question-
able [9]. Instead, we aim to study the efficiency of steps to re-
duce piracy as a function of measures related to the popularity
of the contents and the cooperation of P2P users. There have
been a couple of works addressing a similar issue. Authors of
[1] and [4] have analyzed the impact of the effort, the authori-
ties, or content owners, invested in: 1) reducing file uploading in
P2P networks, and 2) reducing the demand for files, on the avail-
ability of files, and, more generally, on the operation of the P2P
networks. The stationary analysis there is based on an M/G/
queuing model.
In this paper, we are interested in predicting the impact of

measures as described in the previous paragraph, on the tran-
sient behavior of torrents. By how much should the request or
departure rate in a P2P network be reduced in order to have a
significant change in file availability? To achieve that, we con-
sider abstract models of a torrent in simplified P2P networks,
where a large number of peers are interested in a file that is ini-
tially available at a small fraction of the population.
Our models are formulated as epidemic-type processes of file

dissemination. We consider both cooperative peers, which are
those that make a file available to other peers as soon as they ob-
tain the file, and free-riders, who leave the system immediately
after obtaining the file. To understand the impact of measures
against the cooperative sharing behavior, we parameterize the
degree of free-riding in the system as well as the degree of co-
operation.
The P2P dynamics is modeled by a Markov chain (Section II)

that is approximated in two specific regimes. The first
(Section III) is the early stage when a large fraction of the
population does not yet have the file. The system is then
well approximated by a branching process. In the case that
there is a positive probability of not getting extinct in the first
regime, the system is shown in Section IV to move with some
nonzero probability to a second regime in which, for the case
of a sufficiently large population size, its dynamics is close to
the solution of a differential equation. A similar fluid limit is
studied in Section VII for the case of limitation on uplink or
downlink speed. We briefly state our contributions.
Modeling and Approximating the Transient Behavior: Our

first important contribution is to show in what sense each of
the above two models approximates the original Markov chain,
and how to use both in order to get the whole transient be-
havior of the P2P network. This is in contrast with all other
models of P2P networks that we know of, which either use
only a branching process approach [25] or use only an epidemic
mean-field approximation [22]. The latter approach (of using
only the mean-field limit) is shown to provide a tight approxi-
mation when the initial number of peers with the file scales lin-
early with the total size of the population of peers. With a
fixed initial number of nodes that does not scale with , there
is a positive probability of early extinction (see Section VIII
for detail) for any set of system parameters, and this probability
cannot be predicted by the mean-field limit alone.
Analysis and Identifying Phase Transitions: We first

study a P2P model that corresponds to the epidemic-like
file dissemination (Sections II–IV). We then study a second
model (Section VII) in which, at random times, each peer

contacts another peer randomly chosen within the set of ex-
isting peers. In both cases, we show the existence of phase
transitions: A small change in the parameters causes a large
change in the network behavior.
A phase transition occurs both in the branching model for

the extinction time and in the epidemic model for the file
availability. In the branching process, the existence of two
phases was not known to Galton and Watson (considered as the
founders of branching processes) and was only discovered and
proved later in [11]. In the epidemiology community, the phase
transition was already known in [12] for a model equivalent
to our first model without the free-riders. We generalize our
analytical results to the swarm composed of heterogeneous
cooperative peers (Section VI). For the second model [13], we
show the existence of two phase transitions, one for the file
availability and the other one for the maximum torrent size.
Application: In Section V, we present a counteraction against

unauthorized file sharing in the presence of illegal publishers.
We evaluate the impact of measures against Internet piracy on
the performance of P2P systems in Section VIII (see Fig. 13).
The accuracy of the various approximations is investigated

in Section VIII, related studies are discussed in Section IX, and
concluding remarks are given in Section X.

II. MODEL

A. Assumptions

Assume there is a population of peers interested in a single
file. Let be the number of peers that possess the file at
time . A peer acquires the file when it encounters another peer
that has the file. We will consider two types of peers: cooper-
ative and noncooperative peers. Once a cooperative peer has
acquired the file, it stays in the network for a random time dis-
tributed according to an exponential random variable (rv) with
parameter and then leaves the network. During the
lingering time of a cooperative peer with the file, it participates
in the file dissemination. A noncooperative peer, also called a
free-rider, leaves the network at once when it receives the file.
Note that “free-riders” in our context is an abstract description
of noncooperative behaviors, which is different from that in the
current BitTorrent system.
Let and denote the number of coopera-

tive peers without the file and the number of free-riders
(necessarily without the file) at time , respectively. De-
fine the process . Let

denote the initial state of that has
. Let the ratio of various types

of peers be . For

simplicity, we introduce new variables and
. For clarity, the notations are listed in Table I.

We consider an abstract P2P network in which the file ac-
quisition is via random contact between pairwise peers. When
two such peers meet, the cooperative peer transmits the file to
the other peer. It is assumed that it takes an exponential time
with rate for a peer without a file to encounter a coop-
erative peer with the file. The transmission of the file is always
supposed to be successful. This model describes a general P2P
swarm without a tracker, and even the spreading of a file in cur-
rent Internet. It is inspired by the contact process in [13] and
[28]. One of the main differences lies in that a peer contacts all
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TABLE I
GLOSSARY OF MAIN NOTATION

other connected peers in the system instead of only one random
peer periodically. The file transmission time is assumed to be
negligible compared to the time it takes for two peers to meet,
and therefore this time is taken to be zero. The “meeting time”
has various interpretations in practical systems. We hereby give
two examples. First, the time for a peer to get a file from an-
other peer is composed of two parts, the duration of contacting
this peer and the duration of downloading the content. When a
small file (e.g., MP3 music or e-book) is released, the down-
loading time through P2P networks is less than several minutes.
However, the time that a peer is interested in this content can be
much longer. Second, in mobile or online P2P swarms, the dis-
seminated items are usually small messages, or links of contents
cached in some temporary file servers. Each peer stays idle for
an exponentially distributed time, and then contacts other peers.
It can obtain the content immediately. The same assumption can
also be found in [34].
All the rvs introduced so far are assumed to be mutually inde-

pendent. As a consequence, if , then any peer without
the file will meet a cooperative peer with the file after a time
that is distributed according to the minimum of independent
and exponential rvs with rate , that is after a time distributed
according to an exponential rv with rate .
Measures of the authorities or of content provider companies

against file-sharing systems may have an impact on the decrease
in the population interested in the file and an increase in the

fraction of free-riders among the population interested in the
file. It can, however, have an impact also on the behavior of
cooperative peers that would leave the system sooner (i.e., is
expected to increase). Our model combines an epidemic type
propagation of the file together with a description of the free-
riding behavior.
We first consider (Section II-B) the case where all peers are

fully cooperative in the sense that and (no
free-riders). implies that cooperative peers do not leave
the network after receiving the file. We then move to the general
case where and (Section II-C).

B. Fully Cooperative Network

When all peers are fully cooperative (i.e., and
) , the population of peers remains constant and equal to , that
is, at any time . The network dynamics can
be represented by the process .
This is a finite-state continuous-time Markov process with

nonzero transitions given by

with rate (1)

In other words, the process is a pure birth
Markov process on the state space , where state
is an absorbing state that is reached when all peers have the file.
Define , the expected number of peers with

the file at time . Standard algebra shows that

(2)

The right-hand side of (2) cannot be expressed as a function
of , thereby ruling out the possibility of finding
in closed-form as the solution of an ordinary differential
equation (ODE).
Let be written as and that

. Then, for large , is well approximated by
, where is obtained as the unique solution of the ODE

[14, Theorem 3.1]

(3)

where and (condi-
tions (3.2)–(3-4) in [14, Theorem 3.1] are clearly satisfied). It is
found that

(4)

This is a well-known instance (see, e.g., [23]) of what is
known as mean-field approximation, a theory that focuses on
the solution of ODEs obtained as limits of jump Markov pro-
cesses [14]. The ODE (3) has been extensively used in epidemi-
ology studies, where represents the fraction of infected pa-
tients at time when the population is of size .
Proposition 1, whose proof appears in the Appendix, states

that the mean-field approximation is an upper bound for
.

Proposition 1: .

C. General Network

We consider the general network defined in Section II-A. De-
fine the vector , where we recall that is
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the number of cooperative nodes in the system who do not have
the file at time and is the number of free-riders in the
system at time (by definition, none of these have the file at
time ). Let and . Under the statistical
assumptions made in Section II-A, it is seen that the process

is a finite-state Markov process
whose nonzero transitions are given by

with rate (5)

with rate (6)

with rate (7)

Throughout this paper, we will assume that and .
The process takes its values in the set

Furthermore, all states in of the form are absorbing
states since there are no more transitions when the file has dis-
appeared.
An explicit characterization of the transient behavior of the

absorbing Markov process is a difficult task due both to the
presence of nonlinear and nonhomogeneous transition rates in
the state variables and to the dimension of . In this paper, we
will instead develop two approximations of the Markov process
. The first one, in Section III, will consist in replacing

by in the transition rate (5), which will introduce
a birth and death Markov branching process. As expected, this
(so-called) branching approximation will lose its accuracy as the
ratio decreases.
The second approximation, in Section IV, will use an asymp-

totic argument as based on a mean-field approximation
of . This approximation is justified if the initial state of is
of the order of . Both the branching and the mean-field ap-
proximation approaches will allow us to approximate key char-
acteristics of such as the probability of disappearance of the
file, the time before all files disappear, the maximum number of
cooperative peers in the network, and the fraction of peers that
eventually receive the file.

III. BRANCHING APPROXIMATION

Let be a Markov process on
(the subscript refers to “branching”) with nonzero

transition rates given by

with rate (8)

with rate (9)

where we recall that is the number of cooperative peers
without the file at time .
Since , the number of cooperative peers without the file

at time , is nonincreasing in , a quick comparison between
(5)–(7) and (8) and (9) indicates that the process should
dominate the process . This bounding result is formalized and
proved in Proposition 2.

A word on the notation: A real-valued rv is stochastically
smaller than another real-valued rv , denoted as ,
if for all .
Proposition 2: If , then for

any .
The Markov process is an absorbing continuous-time

birth and death process on with absorbing state 0. Because
its transition rates are linear functions of the system state, this
is also a continuous-time Markov branching process [18],
namely, a process in which at any time each member of

evolves independently of each other. The next section
specializes known results of the theory of branching processes
to the process .

A. Extinction Probability

As previously observed, the process is a birth and death
branching process [18, Ch. V]. Each peer of this process has a
probability of change in the interval given by
with ; with probability , an infected
peer dies (a peer leaves) and with probability , an
infected peer with the file is replaced by two infected peers (a
peer receives the file). With certain abuse of notation, we let

be the probability generating function (p.g.f.)
of the birth–death process.
Given , the extinction time is defined by

Let be the cumulative distribution
function (CDF) of . Given , the extinction prob-
ability, , is given by . The CDF of is
obtained from the differential equation

implied by [18, Eq. (7.3), p. 104]. Thus, we have

(10)

where defined as is not 1. From (10), we find

(11)

In other words, the extinction will be certain iff . Since all
peers behave independently of each other, we have

and

(12)

When is a critical branching process (i.e., ), the ex-
tinction probability is given by

(13)

B. Expected Time to Extinction

Assume that (extinction is certain). The expected ex-
tinction time is equal to . In
particular

(14)
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Let us now come back to the original process . Define
, the first time when the file has

disappeared from the network given that . When
, Proposition 2 implies that

In particular , so that
from (14) for .

When there are more than one seeds at time 0, we can com-
pute the expected extinction time in a similar way. Using some
transformations in the integral [19], we obtain

(15)

IV. MEAN-FIELD APPROXIMATION

In this section, we investigate the behavior of the process
defined in Section II-C as , the number of peers, gets large.
We first show that this behavior (to be made more precise) is
well approximated by a deterministic limit solution of an ODE,
an approach known as mean-field approximation. See [14] for
the theory and [21], [23], and [28] for recent applications in the
area of file-sharing systems.
Like in Section II-B, we assume that the pairwise contact rate,
, is of the form with . We recall that the initial
state of is given by

(16)

with . (The analysis below holds under
the weaker condition

.)
Let , and .

Denote by , , the nonzero transition rates
of the process Markov process out of state .
We have [cf. (5)–(7)]

which can be rewritten as

(17)

where , , and
for .

We may therefore use [14, Theorem 3.1] (it is easily seen that
conditions (3.2)–(3.4) in [14] are satisfied) to obtain that the
rescaled process converges in probability as ,
uniformly on all finite intervals , to the solution ,

, , of the system of ODEs

(18)

with initial condition .
In particular, for any finite , the solution , , of (18) will

approximate the fraction of peers with the file, the fraction of

cooperative peers without the file and the fraction of free-riders,
respectively, at time . The accuracy of this approximation will
increase with , the total number of peers.

A. Peers That Never Receive the File: A Phase Transition

The fraction of cooperative peers and the fraction of free-
riders that do not have the file monotonically decrease (this
is true also for the original system) to some limit values. They
can continue decreasing until there are no copies of the file in
the system, namely until .
The first question we wish to address is whether these limits

are close to 0 or are large. In other words, we wish to know
whether all (or almost all) peers interested in the file are able to
obtain it or not. If the answer is no, then we shall be interested
in computing the fraction of peers that never receive the file.
Let . From the first two equations in (18) we obtain
as

(19)

The solution of this differential equation is

(20)

where . Let be the max-
imum ratio of cooperative peers with the file. According to the
first equation in (18), is reached when if
and is expressed as

(21)

When , is reached when (i.e., at time
). On the other hand, as is approaching 0 (since

we have assumed that ) so that, from (20), satisfies
the equation

(22)

It is easily seen that this equation has a unique solution in
[note that for any since is nonin-

creasing from the second equation in (18)]. From (18), we find
that for all .
As recalled earlier, the mean-field approximation only

holds for finite , and there is therefore no guarantee that it
will hold when , namely, that will converge
in probability to as .
However, due to the particular structure of the infinitesimal
generator of , this convergence takes place as shown in
[24, Sec. 5.2]. We consider an alternative rescaled Markov
process with generator

and same state space as , so that starting
from the same initial condition, the terminal values of and

(resp. and ) will have the same distribution.
The mean-field approximation for shows that the solution
of the associated ODEs is given by
for any , with the unique solution in of

, from which the result follows.
In summary, as is large, the fraction of cooperative (resp.

free-riders) peers that will never receive the file is approx-
imated by (resp. ),
where can be (numerically) calculated from (22).
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Fig. 1. Ratio of cooperative peers (as is large) that never receive the file as
a function of .

We are interested in whether there is an abrupt change in con-
tent availability (i.e., ) with the parameter . Obviously,
if is 0, all the cooperative peers that do not have the file at
time 0 will never receive it. To find a phase transition, we ap-
proximate in (22) by using its Taylor extension at

and obtain

Since the expression is bounded, the phase

transition happens at .
Despite the similarity in the definitions of in Section III and

of in the present section, the phase transition at is
different in nature from that at . The former indicates
whether or not the file will be extinct, while the latter will dras-
tically impact the final size of the torrent.
Fig. 1 displays the mapping for

and . The curves for are
monotonically decreasing in (the curve that intersects the
vertical axis close to 1 is the one corresponding to ,
and so on.). For each curve, we note the existence of a phase
transition at , which is more pronounced as the ratio
of cooperative peers increases.

B. Combining the Branching and the Epidemic Model

The mean-field approximation is accurate for large if
the initial state scales with linearly. In the case that is
very large but the initial condition does not scale with (e.g.,

, ), we can do the following.
Fix some much smaller than but larger than 1. Use the
branching process approximation until the number of peers
with the file is . Then, switch to the epidemic model. (For
the branching process, we recall that given that there is no
extinction, the population size grows exponentially fast.)

V. CONTROL ACTIONS AGAINST P2P NETWORKS

In this section, we first investigate the major findings in the
analysis of content availability. A set of control actions are pro-
posed to protect copyrighted files against P2P file sharing.

A. Observations on File Availability and Countermeasures

Before proposing the counteractions against illegal P2P
swarms, we investigate the impact of measures on file
availability. The main question is how does a decrease or
increase in one of the system parameters affect measures such
as the following:
• the size of the torrent: the fraction of those who are inter-
ested in the file and are able to get a copy of it. This can be
seen as a global availability measure;

• the extinction probability or the expected extinction time;
• the maximum availability: the maximum number of copies
that can be found simultaneously in the system. This can
be viewed as an instantaneous availability measure.

According the analysis in Sections III and IV, all above mea-
sures depend on the ratio (or equivalently). A small ratio
means a poor availability of the file.
By introducing countermeasures, the peers without the file

might have difficulties (i.e., taking a longer period) in finding
other peers with the file, or the peers with the file may provide
downloading service for a short period (increasing ).
To enforce the countermeasures, we need new policies or new

strategies. For example, if the content owners use pollution at-
tack, the peers without the file observe a large amount of useless
“copies.” Hence, the rate of contacting other peers, , may de-
crease. Similarly, a P2P community might allow comments on a
file. If the content owner places a lot of adverse comments (e.g.,
low quality or resolution of an MP3/Video file), the number of
interested users and the contact rate may decrease. Mean-
while, if new threatening policies are enforced either by the law-
maker or by the content owners, the peers with the file may pro-
vide downloading for a shorter period. An extreme case is that
a peer leaves the system immediately after obtaining the file.
As mentioned above, countermeasures are various in forms.

In what follows, we consider one particular scenario in which
a small number of persistent illegal publishers resides in the
swarm. They aim to spread the copyright protected file as fast
as possible in the P2P swarm. To combat with undesirable file
sharing, the content owner presents one simple method, namely
cooperation control. The basic idea is to discourage the degree
of cooperation of peers with the file. Here, the contact rate is
deemed as an intrinsic parameter of P2P swarms that can hardly
be changed technically.

B. Control of Cooperation

We introduce the cooperation control to prevent the dissemi-
nation of copyrighted files.We aim to reduce the degree of coop-
eration (i.e., increasing ) so that the delay of obtaining the file
is increased. To achieve this goal, the content owner can invest
a certain amount of money in the very beginning to discourage
the cooperation of peers. The cooperation control is a case of
confrontation strategy. In other words, we are focusing on this
unilateral action of the content owner against unauthorized file
dissemination.
We consider the same model as in Section II-C, but we

now assume that all peers are cooperative and that there is
a number of permanent publishers, where the sub-
script refers to the total number of peers in the system at
time . The pairwise contact rate is . Denote
by the investment level of the content owner against P2P
networks. The departure rate is an increasing function of ,
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denoted by . We denote by the number of nonper-
manent publishers, and by the number of peers without
the file at time . Observe that .
If and ,
which implies that , then,
by Kurtz’s result [14], the rescaled process
converges in probability as , uniformly on all finite
intervals , to the solution of the ODEs

(23)

with initial state . From now on, we will assume that
.

Consider an arbitrary peer without the file at time ,
and denote by the time that elapses before it receives it. Let

. Similarly to [23, p. 6], we find

(24)

Solving for gives

(25)

Hence

From the above, we know that
as for every , so that from (25)

(26)

for every . On the other hand,
implies that for there exists such that

for all . Therefore, from (25)

(27)

for , . Since the right-hand side (r.h.s.) of (27) is
integrable in , (26) and (27) allow us to apply the bounded
convergence theorem to conclude that

The objective of the content owner is to choose an investment
level which will maximize its utility

(28)

To understand the impact of cooperation control on the delay,
we present numerical studies in Section VIII.

VI. TAKING HETEROGENEITY INTO CONSIDERATION

In the preceding analysis, we assume that peers are either
free-riding or cooperative with the same effort. A natural ques-
tion is whether our methodologies can handle the swarm with
heterogeneous types of cooperative peers. In this section, we
classify the cooperative peers into two groups, the long-term (or

class-1) and the short-term (or class-2) cooperative peers. The
former group has a small departure rate , while the latter has a
large departure rate , (i.e., ). Here, we only consider
the random contact model without free-riders. Later on, we will
show that our analytical framework can be easily generalized
to incorporate the case with more classes and with the random
contact model in Section VII.
Let and be the numbers of class-1 and class-2

peers without the file in the beginning (the term “cooper-
ative” is removed since all the peers are cooperative). We
denote by (resp. ) the number of class- peers
without (resp. with) the file, for . Define the sto-
chastic process .
Let be the initial state of the
process . Let be the total number of peers in the swarm
that has . Given
the assumptions in Section II, a state transition of is in-
dependent of all the past states, which is Markovian. With
certain abuse of notations, we define two vectors of states
as and . Define a set of

constant vectors , ,
and . The state transi-

tion of the process is described as follows:

with rate

(29)

with rate (30)

To investigate the transient behaviors of the process , we still
resort to the branching process and the mean-field approxima-
tions. However, the single-type Markov branching process is no
longer applicable. This is because a class- peer with the file may
give birth to an offspring of either class- or class- in each con-
tact. We propose to study the early extinction of the file using
multitype Markov branching process.

A. Two-Type Markov Branching Approximation

We approximate the process by the corresponding 2-type
Markov branching process . Assuming that the number of
peers without the file does not change over time (i.e.,

and ), we obtain the process with linear
state transition rates

with rate (31)

with rate (32)

Different from Section III, the offspring of a peer in the 2-type
branching process is expressed as a vector. For example, a
class- peer with the file produces either one class- (i.e., itself)
and one class- infected peer, or two class- infected peers
(including itself) in a birth event. When this peer leaves the
swarm, a death event happens in a particular type of peer.
Obviously, a class- infected peer cannot give birth to two
class- offsprings. Here, we define four constant vectors to de-
scribe the offspring vectors of the process : ,
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, , and . The th el-
ement of vector represents the number of class- offspring,

and . The offspring of a class-1
infected peer is in the set , and that of a class-2
infected peer is in the set . Denote by the
probability of a class- infected peer to have an offspring ,

, when an event happens on the class-1 peers.
Define . We obtain

Similarly

The generating functions of an infected peer in class 1 and 2 can
be written as

(33)

(34)

where is a set of variables. Denote by (compli-
mentary to ) the survival probability of the file at time when
a single class- peer obtains the file initially. Denote by the
rate of an event happening in class ( ). According to
the method in [20], the survival probabilities are the solutions
of the following ODEs:

(35)

for . The constant is the Poisson
rate of an event happening among the peers of class- . The (35)
can be rewritten as

(36)

The inequality holds componentwise since the variables
and are nonnegative. Define to be the above 2 2 con-
stant matrix. One can see that is irreducible. Let be an eigen-
value of the matrix . The extinction of the file in the 2-type
branching process depends on the sign of the eigenvalues (see
[20, Theorem 2.1]). The determinant of is expressed as

When both eigenvalues are negative, the file will disappear
in the approximated branching process definitely. Given the

determinant , the process is subcritical (extinct for sure)
if the parameters satisfy

(37)

We next compute the asymptotic survival probability of a
super-critical P2P swarm. Denote by the survival probability
of file extinction as if the single seed belongs to class-
initially.When the process is super-critical, can be solved
numerically by letting the left side of (35) be 0, that is

(38)

for . Define to be
the corresponding extinction probability at time , and to be
that as . We can easily obtain and

, .
Next, we compute the extinction probability of the process
with multiple seeds initially. Suppose that there are peers

with the file at time 0 in class- . Define to be the CDF
of file extinction at time . Because all the ancestors (infected
peers at time 0) behave independently, the file extinction prob-
ability is given by

(39)

B. Mean-Field Analysis

When the number of peers gets large, the Markov
process can be approximated by the solutions of
mean-field ODEs. Let (resp. ) be the ratio of
class- peers without (resp. with) the file at time . The
initial state of the scaled process is given by

. We
apply Kurtz theorem [14] and obtain the rescaled process

that converges to the solution of the following ODEs
on all finite time intervals as :

(40)

The last two equations in (40) give rise to .
In the P2P swarm with two types of cooperative peers, the
rescaling method in [24, Sec. 5.2] does not work. Hence, there
is no guarantee that this mean-field approximation holds as
approaches infinity.

VII. P2P WITH A FIXED REQUEST RATE PER NODE

A. Model

In this section, we will consider a slight variation of the
model in [13]: There are peers at time , at least
one of them having a file. Each peer without the file sends a
request for the file to another peer selected at random. These
requests are initiated at Poisson rate . It is assumed that
a peer with the file leaves the system after an exponentially
distributed random duration with rate . All these rvs are
mutually independent. Let (resp. ) be the number
of peers with the file (resp. without the file) at time . We
have with . Under the above
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assumptions, is a Markov process
on the set .
Let , , denote its generator.
Nonzero transition rates are given by

with rate (41)

with rate (42)

This model differs from our previous model in that the rate of in-
crease is normalized by the total number of peers in the system.
More precisely, the rate in (41) follows from the fact that with
probability , a peer without the file will con-
tact a peer with a file at time (the latter implicitly assumes that
a peer may contact itself, as otherwise this probability would be

; the reason for doing this will next
become apparent. Note that this assumption will have no ef-
fect when gets large), so that the total rate of increase of the
number of peers with the file is at
time .
The same model is considered in [13] with the difference that

in [13] there is one permanent publisher, thereby implying that
all peers will receive the file. These authors show that the mean
broadcast time is if , and is if .
Thus, there is a phase transition at .
In this section, we will instead focus on: 1) the file extinc-

tion probability and expected extinction time; 2) the fraction of
peers that will receive the file (in the absence of a permanent
publisher, this fraction is not always equal to 1); and 3) the max-
imum torrent size (maximum number of copies of the file at one
time) as is large. In all cases, we will show the existence of
phase transitions.

B. Branching Approximation

With certain abuse of notations, we denote by a Markov
process on that has

with rate (43)

with rate (44)

Here, the subscript denotes the branching process with a fixed
request rate per node. Compared to , the Markov process
assumes . Because the continuous birth–death
process has linear rates of state transition, it is also a con-
tinuous-time Markov branching process.
To find the extinction probability and the expected time until

extinction, one can resort to the analysis in Section III. Define
. All the analytic results in Section IV can be tailored

for the process if is replaced by .

C. Mean-Field Approximation

Our analysis will use Kurtz’s theorem [14, Theorem 3.1] like
in Section IV. Note, however, that both metrics 1) and 2) above
require to use the mean-field limit as , something that
Kurtz’s result does not cover.
To overcome this difficulty, we will use the same argument as

in [24] (see also Section IV, where this argument was already

used), taking advantage of the particular structure of the infini-
tesimal generator of the process . More specifically, it is seen
that the generator of writes in the form
for , where nonzero transition rates
are given in (41) and (42).
Let be a Markov process with

generator and state space (same state space as ).
Since has been obtained by changing the timescale of ,

the final values of and of will have the same distri-
bution (note that the final state of and is always zero
since states are all absorbing states), and so will have the
maximum torrent size.
Since the generator can be written as

(this is where the assumption that a peer
may contact itself is useful) and since conditions (3.2)–(3.4)
in [14, Theorem 3.1] are clearly satisfied, we may apply
[14, Theorem 3.1] to obtain that, at any finite time ,

converges in probability as to
the solution , , , of the ODEs

(45)

given that . Let
. We will assume that and

[the case (resp. ) has no interest
since it corresponds to a P2P network with no file at any time
(resp. where all peers have the file at time )].

D. Phase Transitions

Adding both ODEs in (45) yields .
Plugging this value back into (45) gives
for and, by continuity, for

with .
In order to approximate the fraction of peers that will never

receive the file as is large, one needs to find the first time
where either or . This time is easy

to find, as shown below.
We already know that for and

, so that we only need to focus on the zeros of
in . By writing as
, we conclude that the smallest zero of in is

if , and is if . Therefore,
if and if .

Introducing this value of in yields if
and if . In other words, as is large, all

peers will get the file if , and a fraction of them
will not if . In other words, we observe a phase transition
at : All peers will get the file if , and a fraction

will not if .
Let us now turn to the maximum torrent size. As is large,

it will be approximated by the maximum of over the interval
. A straightforward analysis of the mapping in
shows the following.

• It is decreasing if or if and —these
conditions can be merged into the single condition

—so that its maximum, , is given by
,
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Fig. 2. Maximum torrent size over (as is large) as a function of for
(left figure) and (right figure).

• It is unimodular (first increasing then decreasing)
if , with its maximum reached at

and given by

(46)

In summary, as is large, the maximum torrent size is approx-
imated by with given in (46) if , and

if . This shows another phase transi-
tion (see Fig. 2) at (i.e., at ) in the sense that
the torrent is maximum at if and is maximum
at a later time if .

VIII. NUMERICAL RESULTS

This section has two goals: to investigate the accuracy of
the approximations developed in the previous sections (to be
made more precise) and to study the impact of measures against
nonauthorized uploading or downloading on the file availability
in P2P swarming systems. Due to lack of space, we will not
report any numerical result for the P2P model considered in
Section VII; we will instead focus on the P2P model introduced
in Section II-C and on its branching and mean-field approxima-
tions developed in Sections III and IV, respectively (Figs. 3–12),
as well as on the optimization problem set in Section V (Fig. 13).
For each set of parameters, between 200 and 1000 discrete-

event simulations of the Markov model in Section II-C have
been run. In each figure (except in Figs. 7 and 8, where only
simulation results are displayed, and in Fig. 13, where only
mean-field results are shown), both simulation and approxima-
tion results are reported for the sake of comparison. Let

be the ratio of cooperative peers at time
, and recall that (see Section II). The total

number of peers, , at time is equal to 400 in Figs. 3–8,
300 in Figs. 9 and 10, and 500 in Fig. 13.
This paper introduces two epidemic models that differ in their

random contact behaviors. If a peer makes contacts with all
other peers randomly instead of one other peer, it is called epi-
demic model I in brief. Otherwise, it is called epidemic model II
For the sake of clarity, we organize this section as follows.
Sections VIII-A–VIII-C illustrate the extinction time and the file
availability of epidemic model I. In Section VIII-D, we demon-
strate the results of epidemic model I with two types of cooper-
ative peers. Lastly, Section VIII-E shows the numerical results
of epidemic model II.

Fig. 3. CDF of extinction time for , , .

Fig. 4. CDF of extinction time for , , .

A. Epidemic Model I: File Extinction Time and the Branching
Approximation

In this section, we focus on Figs. 3–10. Fig. 3 (resp. Fig. 4)
compares the CDF of the extinction time obtained by simulation
and by the branching approximation in (12) when
(resp. ), , , and for two values
of ( implies that and ,

implies that there are no free-riders ( ) and
). Note that is close to 2.4 when

and is close to 1.43 when . In all cases, the simulation
and the branching approximation are in close agreement up to
a certain time (time in Fig. 3), which, interestingly, corre-
sponds to the extinction time in the branching model. After this
time, the extinction of the file in the Markov model increases
sharply (the larger , the larger the increase). In other words,
the extinction of the file in the original Markov model has two
modes, an early extinctionmode and a late extinctionmode. The
former occurs when the file disappears before the dissemination
has reached its peak value (i.e., most peers do not get the file),
and the latter when most peers leave the network with the file.
One may also check that the branching approximation provides
an upper bound for the CDF of the extinction time, as predicted
by Proposition 2. Lastly, we note that when there are less co-
operative peers ( ), the file lifetime is prolonged (see,
e.g., point in Fig. 3, where simulation curves for and

cross each other); this can be explained by the fact that
there are less contact opportunities between cooperative peers
when . The main difference between Figs. 3 and 4 lies
in the increase of the probability of the late extinction that is
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Fig. 5. CDF of extinction time for , , .

Fig. 6. CDF of extinction time for , , .

Fig. 7. CDF of extinction time for and different .

steeper with three initial seeds ( ) than with one initial
seed ( ).
Figs. 5 and 6 show the CDF of extinction time when
. In this experiment, if , and

if . Thus, the approximated branching process is sub-
critical, resulting in a quick extinction of the file. The CDF of
extinction time obtained from numerical examples is very close
to that obtained from the branching process model. This is to
say, when , all the peers with the file die out at the early
stage, and hence the branching process provides a very accurate
approximation of extinction probability.
Simulation results in Figs. 7 and 8 exhibit the same early-late

extinction pattern as in Figs. 3 and 4; they have been obtained
for and for two different values of , and .
Figs. 9 and 10 show the expected time to extinction as a

function of the pairwise contact rate , in the case of an early

Fig. 8. CDF of extinction time for and different .

Fig. 9. Early extinction time as a function of with .

Fig. 10. Early extinction time as a function of with .

extinction (i.e., for small values of ), for and for two
values of . The curves ”Model” display the mapping

, with the expected extinction time in the
branching process given (see Section III).We observe
an excellent match between the simulation and the branching
approximation, thereby showing that the latter works well for
early file extinction. Also note that having three seeds instead
of one greatly extends the expected extinction time.

B. Epidemic Model I: File Availability and the Mean-Field
Approximation

We now look at the fraction of peers that will not acquire
the file. We assume that , and we recall that
. Fig. 11 (resp. Fig. 12) displays this fraction as a func-

tion of (resp. ) for two different values of ( cor-
responding to and corresponding to
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Fig. 11. Fraction of peers without the file as a function of .

Fig. 12. Fraction of peers without the file as a function of .

and ). In each figure, both simu-
lation and mean-field approximation results are reported. The
fraction of peers without the file is a decreasing function of the
pairwise contact rate and an increasing function of the coop-
eration degree . The mean-field approximation is obtained as
the unique solution in of (22) where the ini-
tial condition of the ODEs (18) is given by

. In both figures, we observe a
remarkable agreement between the simulation and the mean-
field results [relative errors never exceed 2% when all peers are
cooperative ( ) and never exceed 7%when half of the peers
are free-riders ( )]. We also note that the fraction of peers
without the file considered as a function of (resp. ) is larger
(resp. smaller) when than when ; this is of course
not surprising since, unlike cooperative peers, free-riders do not
contribute to the file dissemination.

C. Epidemic Model I: Action Against Unauthorized File
Downloading

We now evaluate the impact of actions against unauthorized
file downloading. For that, we use the framework developed
in Section V. Since the above simulations show that, for large
, in Section V is a good approximation of the expected

time, , needed for an arbitrary peer to get the file, we only
consider the utility function [see (28)]. We assume that
the cooperation degree is given by . There
are 500 peers ( ) at time including two per-
sistent publishers ( ). We assume that so that

. The initial condition of the ODE (23) is
with . Fig. 13 displays the

mapping for two different values of and . We ob-
serve that a small investment cannot obviously postpone the ex-
pected delivery delay of the file, resulting in a decreased utility.

Fig. 13. Investment versus utility of content owner.

Fig. 14. Early extinction time with 80% class-1 and 20% class-2 peers.

As the investment grows, the utility of the content owner in-
creases significantly. The curves in Fig. 13 also show how large
an investment has to be to counteract P2P illegal downloading.
Note the content owner can still have an increased utility when
the ratio is greater than one, as the utility is maximized
across all curves when the ratio lies between two and
three.

D. Epidemic Model I: Numerical Analysis of Two Types of
Peers

In this section, we evaluate the transient behaviors of a P2P
swarm where the peers have different degrees of cooperation.
Fig. 14 compares the CDF of extinction obtained through mul-
titype branching process model and the simulation. In this set of
experiments, we consider a swarm of 500 peers. They are clas-
sified into two groups, class-1 with 400 peers and class-2 with
100 peers. The pairwise contact rate of the peers without the file
is set to . The class-1 and the class-2 peers differ
in the departure rate and after obtaining the file.
We perform three simulations: 1) one infected peer of class-1 at

; 2) one infected peer of class-2 at ; and 3) one in-
fected peer of class-1 and one infected peer of class-2 at .
In the branching approximation, the extinction probabilities of
above cases are 0.35, 0.52, and 0.18, respectively. Fig. 14 shows
that the branching model presents an upper bound of extinction
time. The CDFs obtained from the branching approximation are
very close to the numerical results at the early stage of file dis-
semination. Especially, for the case ,
the extinction probability is well approximated by the product
of the probabilities in the cases and

.
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Fig. 15. Fraction of peers without the file as a function of (as time is large
enough).

Fig. 16. CDF of extinction time of the model with fixed request rate per node:
and .

We evaluate the number of peers that do not receive
the file after a long period (e.g., in the mean
field model, while the file has disappeared in the experi-
ments). The number of class-1 peers is 340, and that of
class-2 peers is 160. In each class, 25 peers (or equivalently

) obtain
the file at time 0. The departure rates and are 1 and 2,
respectively. The contact rate increases from to

. Fig. 15 shows the ratio of all peers without the
file and the ratios of peers in each class without the file. We
observe that the mean-field ODEs can predict the file avail-
ability accurately. The percentage of peers without the file in
class-1 is proportional to that in class-2. Fig. 15 also exhibits a
similar phase transition of file availability, though without an
analytical expression.

E. Epidemic Model II: Extinction Time and Availability

We evaluate the transient behaviors of the epidemic model
where a node contacts only one randomly selected peer in each
time. There are 500 cooperative peers with the departure rate

in this set of experiments. Fig. 16 compares the CDF of
extinction time with and that with when

. Note that Fig. 16 exhibits similar transient behaviors as
Fig. 3. The branching process model provides a good approx-
imation at the early stage, and deviates from the numerical re-
sults as becomes large. We next show the phase transition of
file availability. Two scenarios are considered: (i.e.,

) and (i.e., ). The departure

Fig. 17. Rate of peers without the file as a function of and .

rate is set to 1, and the contact rate increases from 0 to 1.2.
Fig. 17 exhibits the phase transition of file availability in both
experiments. In general, the mean-field approximation matches
the numerical study well. However, when changes
from 0.9 to 1.1, this model overestimates the file availability by
up to 0.11 when , and up to 0.025 when .

IX. RELATED WORK

There has been a number of works on the mathematical
studies of structured and unstructured P2P-based content
distribution. A seminal work can be found in [25]. The au-
thors propose a continuous-time branching process to analyze
service capacity (i.e., maximum rate of downloading) and a
coarse-grain Markov model to characterize the steady state
of downloading rate. In [22], Qiu and Srikant propose a fluid
model composed of ordinary differential equations to de-
scribe the dynamics of BitTorrent systems. Authors in [27]
further propose a novel fluid model based on stochastic dif-
ferential equations. This new model also extends [22] to a
multiclasses system and is able to describe chunk availability.
Mundinger et al. [29] propose a deterministic scheduling
algorithm to achieve the optimal makespan for a structured
system that requires global knowledge. A coupon model is put
forward in [28] to investigate the effectiveness of a generic P2P
file-sharing system. Authors in [30] present an improved model
with tighter bounds subsequently.
Recently, the process of file dissemination has attracted a

lot of attention. Clévenot et al. adopt a hybrid approach (fluid
and stochastic) to analyze Squirrel, a P2P cooperative Web
cache in [31]. In [13], Queija et al. study the scaling law of
mean broadcasting time in a closed P2P swarm with constant
request rate. Authors in [33] formulate a ball-and-urn model to
characterize the “flash crowd” effect in a closed P2P networks.
The content provided by P2P networks such as music, movies,
and software are usually unauthorized. Content provided are
therefore inclined to combat illegal downloading/uploading via
technical solutions. Authors of [1] and [2] propose an M/G/
queueing model to access the efficiency of noncooperative
measures against unauthorized downloading. Authors in [32]
also model the P2P service as an M/G/ queue. They inves-
tigate the impact of file-bundling strategy on the efficiency of
file downloading as well as the file availability. Our general
model is inspired by the one in [13]. However, it differs from
[2], [13], [22], and [25] in four ways.
1) We are studying the transient behavior.
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2) A peer can initiate a number of random contacts, instead
of one, with other peers.

3) We observe several phase transitions in response to system
parameters.

4) We adopt Markov branching process and mean-field ap-
proaches to characterize the file dissemination model com-
prehensively.

X. CONCLUSION

In this paper, we have proposed to use the theory of con-
tinuous-time branching process as well as of the dynamics of
epidemics in order to study the transient behavior of torrents
that occur in P2P systems. The use of these tools allowed us
to compute the probability of early extinction of the torrent as
well as the expected time until that extinction, the availability
of a file in the system, the maximum availability and when it
occurs, and the size of the torrent. This is used for analyzing the
impact of measures to decrease nonauthorized Internet access
to copyrighted files. We identify regimes in which the perfor-
mance measures are quite sensitive to such measures and others
in which the measures have very limited impact. In particular,
we present two counteractions against unauthorized file sharing
in the presence of illegal publishers. Our methodology can be
extended to analyze file bundling that serves as a positive ac-
tion of file dissemination.

APPENDIX

A. Proof of Proposition 1

Proof: Throughout the proof, is fixed. By Jensen’s
inequality, , so
that from (2)

(47)

where . According to the
Gronwall’s lemma, the solution of (47) is upper-bounded by the
ODE when the equality holds. By using (4) and the definition
of , we obtain .

B. Proof of Proposition 2

Proof: The proof relies on a classical coupling argument.
On a common probability space we recursively construct two
Markov processes
and , , by gener-
ating transitions as follows. Assume that a transition has occured
in at least one system at time , and let (resp. )
be the state of (resp. ) just after this transition. Let be
an exponentially distributed rv with rate

so that, conditioned on , it is independent of the
history of processes and up to time . If ,
no more transition will occur in both systems after time .
If , the next transition will occur at time :
with probability , ,

, and ; with probability
, , and ; with

probability , , and
; and with probability

, , and . This con-
struction holds as long as for all .
Assume that . We readily deduce from the

above construction that for all , from which
we conclude from the coupling theorem [17] that

. The proof is concluded by noting that the process (resp.
) is statistically identical to the process (resp. ).
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