Elsevier Science Publishers B.V, (North-Holland) 4y
© IFIP, 1986

ANALYSIS OF A TWO-NODE ALOHA-NETWORK
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Considered 1is a two-node ALOHA-network with infinite
capacity buffers. Time is slotted and at the beginning of
each time-slot a station sends a packet, if any, to a
central station with a constant probability. When two
transmissions occur in the same time-slot both messages
have to be vretransmitted in a later time-slot. For
geometric arrivals we obtain the generating function in
closed form of the stationary Jjoint queue length
distribution with the aid of the theory of boundary value
problems for regular functions. Ergodicity conditions are
. derived and exact numerical results are provided for the
, mean response time of each station.

INTRODUCTION

; We consider a radio packet-switching model of the ALOHA-type [1,2] consisting of
two stations each with an infinite capacity buffer and a single server. Packets
have equal length and the time is divided into slots corresponding to the
transmission time of a packet.

At the beginning of each slot, station j, (j=1,2) if it is non-empty, transmits a :
packet with probability r. to a central station. If both stations send a packet

during the same awsmlmwowm there is a collision;, and the two packets have to be
retransmitted in a later time-slot, following the above procedure.

OQur model differs from the numerous related works because the packets may enter
; the system whatever the station state may P=. Indeed, the common assumption in
i this area 1is that a station cannot store more than one packet at a time
P ([8,14,15]) among others).

Although the classicai model allows detailed analyses for an arbitrary number of
stations and also for more sophisticated transmission protocols [22,23], it
cannot provide the real response time of the system, namely the time which
elapses between the arrival of a packet to the station until its successful
transmission (including the waiting time before the first transmission); however
this quantity is of main interest for the user.

The model we consider in this paper has also been investigated by SIDI and SEGALL
[20] (see also [21] for a related model) in the symmetrical case, namely rq = 'z
and identical distributions for the arrival processes. By taking advantage of the
symmetry of the model they were able to derive the mean response times without
explicitely computing the generating function for the stationary joint
queue-length distribution.
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This paper is devoted to the resolution of the non-symmetrical case, (at least
for particular arrival processes). The key point 1is the resolution of a
functional equation of the following type : (cf.[20,eq.4]) K(x,y)F(x,y) =
a(x,y)F(0,y) + blx,y)F(x,0) + c(x,y)F(0,0) for |x] <1, |y| £ 1, where the
functions a,b,c,K are known and where F(x,y) is the generating function for the
stationary Jjoint queue-length distribution. Indeed, it turns out that in the

1
non-symmetrical case the knowledge of mw VAA_AV and mAWVAA,AV -which allows for

instance the computation of the mean .response time of each station using Little's
formula- is equivalent to the knowledge of F(x,y) for _x _M 1, _< _m 1 (here

va
y e

It is now well known that, for particular a,b,c,K (or equivalently for particular
arrival process distributions), this type of functional equation can be solved by
formulating a boundary value problem. This has been first shown by FAYOLLE and
TASNOGORODSKI [9] and their method has been extended (to more general random
walks) by COHEN and BOXMA [6]. Up to now several queueing systems have been
successfully investigated wusing this machinery [3,4,7,10,16,18), all these
studies leading to a fair methodology in this field.

The paper is organized as follows : the model is precisely defined in Section 1
and the related functional equation for the gemerating function of the stationary
joint queue-length distribution is established. Then some basic properties of the
kernel of this equation are derived in Section 2, leading to the formulation
(Section 3) and to the resolution (Section 4) of two boundary value problems
(Dirichlet and Riemann-Hilbert problems). The sought generating function can then
be obtained in closed form as well as the ergodicity conditions. Exact numerical
results are given for the mean response time of each station (Section 5).
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1 - The model and the related functional equation.
We now defined more precisely the queueing model under consideration.
Let ~>uﬁﬁvwﬁm n* be a sequence of i.i.d. random variables where >uA¢V represents

the number of packets which arrive to station j (j=1,2) in the time interval
(t,t+1]. We first assume that >JAnv and >mAmv are independent random variables
whenever t # s and possibly correlated “when t = s. We define H(x,y) the
generating function for the joint distribution of the number of arrivals in any
slot, that is >AAnv >mAﬁV

(1.1) H(x,y) = E{x y T_i‘_imfdmz*.

Let ZHAnV be the number of packets in station j at the beginning of the t-th
slot.

From the description of the model it is readily seen that
*AzaAnv.zmAnvv.wua.mu...w is a homogeneous Markov chain with irreducible state

*
space Nx N and that the following relation is satisfied for t€ N Jx )Ly | st
N (6r1) N (t41)
(1.2)  E{x y b= oo [POv (8) = N (2) = 0)
r N_(t)
1
s (L) E{x o (6) > 0, szuo:
wN N, (1)
v (—Srter) Ely (N, (£)=0, N,(£) > 0)}
y
r(l-r ) (1-r)r N, (6) Ny ()
. (] 2 1772 4p p +(1- _
(1 - J ror,+(1 JE ry)) E{x y

Azdﬁﬁv >0, Ny(t) > 0)}] where
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(A) denotes the indicator function of the event A.
By assuming that the system is stable and by introducing
N () N, ()

(1.3) Flx,y) = lim E{x y b ofor |x |, |ylsn,

torm

we obtain from (1.2) the following functional equation :

(1.8) K(x,y)F(x,y) = alx,y)F(0,y) + b(x,y)F(x,0) + e(x,y)F(0,0) for |x |,

[v |1t wnere
-1
(1.5) K(x,y) = H ' (,y)=1+r, (1=r_) (1-_1_)e(1=r r_(1-—_)
1 2 X 1772 y
_ 1 _ T
(1.6) alx,y) = r,[O-r)0 — ) - Q1 lﬂ: .
! 1
(.7) blxy) = rLO-r0-—1) - r (1= )
2 1 " 1 < ’
(1.8) clx,y) = 1_wmﬁw - IHA-
x
Some interesting relations can be immediately derived from (1.4). Taking y = 1,

dividing by (x-1) and then taking x = 1 in (1.4) and vice versa yields the
following "conservation of flow" relations :

(.9 ay =r G-r)) [1-F(0,1)] + P, [F(1,0) - F(o,00] ,

(1.10) 2, = (erdry [1-FOL0) ]+ rir, [F(0,1) - Fl0,00]
A

where ) ; = m*>uﬁﬁv* for j=1,2. We assume A, > 0, j=1,2.
.

— 1.
y

For i) %w = 1 the above relations give
A A
(1.11) F(0,0) = 1 - 1 - _2,
TP

From this we immediately deduce that

»# >m
(1.12) * <

r, Ty
is a necessary condition for the stability of the system if p,+r, = 1.

¢ ) 17T = From now
on we will assume that this condition is satisfied if 1A+1m 1.

In the case r,_* I # 1 we get from Addmv and AQJJOV :
A, (1=
ey - dA ddv

1T "}, F0,0)
(1.13a) F(0,1) = !

(1.13b) F(1,0) =

d|14oaw
zwm: %ons Jﬁm:mm are non-empty the successful transmission rate for station 1 is
clearly r, 1mv. while this transmission rate for station 2 is A4s1¢v1m.

Consequently it is seen from classical results on the single server queue mmu
that under the following condition

v 1 |
(1.4) g 2r,(-ry) and y, 2 (4 ror,
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both queues remain unbounded with probability 1.
Therefore it turns out that the following conditions

(1.15) Ay < r(hory) or 2, < r(1-r)

are necessary conditions for the system to be stable. (In particular the system
is always unstable if 1An1 =1 which is obvious since in that case a collision
will be infinitely 1mcmmﬁmamm

From now on, we will assume twn:o:a loss of generality that
(1.16) A < 1QAA|1NV.
We now turn to our objective of resolving the functional equation (1.4) under the

condition A, < 1_A_|wmv. It is easily seen that the "kernel" K(x,y) of eq.(1.4)
can be rewritten as

xy - ¥(x,y) .
xyH(x,y)

where V¥(x,y) is a generating function of a proper probability distribution of two
N-valued random variables x and y, with

(1.17) Kix,y) = for x|, |y|s1,

E{x} = 1eh, = r,(I=r ), Ely} = 1+x, - (i-r,dry, ef.L191.

2
Multiplying both sides of eq.(1.4) by xy H(x,y), it is then seen that the
resulting functional equation 'is” of the same type as the one considered in
[6,p.81]. However the method developed by COHEN and BOXMA for solving this type
of functional equation requires that E{x} < 1 and E{y} < 1 or equivalently that

(1.18) A < 16A4|1Nv and ym < A_nwdew. This is a rather strong restriction for

our model, since clearly condition (1.18) is not a necessary condition for the
ergodicity of the considered Markov chain, as we will show in a particular case.

We solve the functional equation (1.4) only for a particular distribution of the
arrival processes at both stations, namely the geometric distribution. We also
assume that both arrival processes are independent.

More precisely, it will be assumed from now on that
-1
(1.19) HOx,y)=[(ea, (170) (oa, =y ] gor [x |, [y ] s 1.

We have chosen the geometric distribution for sake of convenience. A similar
analysis to the one developed in the forthcoming sections could also be carried
out for other arrival distributions (e.g. Bernoulli distribution,...).

More generally, the Kkey property for solving eq.(1.4) is the following : the
right-hand side of (1.4) must vanish whenever the "kernel” K(x,y) vanishes for
Ix <1, |y]|<1, since F(x,y) is sought analytic in |x| < 1, |y| < 1 and
continuous in | x| <1, |y ]| s 1.

Consequently, the equation K(x,y) = O has to be carefully studied.

In connection with this, it therefore turns out that the geometric (or Bernoulli)
distribution is of main interest, since they are first, a natural one in radio

. A .
packet-switching area, and also because in this case T(x,y) = xyK(x,y) is a

polynomial of second degree w.r.t. each variable x and y, which therefore allows
an explicit analysis of the kernel.

(For a study dealing with a polynomial T(x,y) of third degree w.r.t. each
variable x and y, the interested reader is referred to f161).
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The next sections are devoted to the resolution of eq.{(1.4) when the arrival
processes in both stations are independent with geometric distributions.

2 - Analysis of the kernel

In this séction we obtain some preparatory results in view of the resolution of

the functional equation (1.4). We first focus our attention on the kernel K(x,y)
of equation (1.4).

This kernel is given by cf.(1.5), (1.19),

. - 1~ - _ _ _ _1 _ 2
(2.1) K(x,y) = A, (1=x)+3, (1 VI, =) (-y) e, (1 r,) (1 IxITS J:,m: dlv.
Solving for x the equation K(x,y) = 0, we get

L (0, (1y))er (e )eay) T | a(y)] V2t [aresn ]z

(2.2) x(y)

myaAA+»mA41<vv
where

(2.3) A(y) = »mAan<v+A4|1_v1mA4|1HI ), (-7 < arg Aly) £ w)
y
(2.4) aly) = t{y,0)t(y,n) with
(2.5) tly,$) = >dﬁ_+>mﬁg:<vv+%gAd|1mv+>ﬁwvxmoome\>41dAAA1NVAA+>NAA|<vv.

From the implicit function theorem [11,p.10] and (2.2) we get that the equation
K(x,y) = 0 has one root x = x(y) which is an analytic function of y in the
complex plane cut along m<_.<mu u ﬁ<w.<=u. where Vq1¥pr¥gs¥y are the four zeros

of A{y) (the branch points of X(y)).

In order to locate the zeros of A(y) we state the following general lemma :

Lemma 2.1
For M € [0,2w], the equation t(y,4) = O has exactly two (real) roots <u:~Aev and
y=h,(¢) with 0 < h () <1 < (¢) < (11, )/h, .
2 1 2 2 2.
Proof

+ ——
We have t(0 ,¢)=-=, nﬁ*.evu»~+1dAglwmvxmoowexydwaAalﬁmw > 0 and

1+ (1-rr
t{ ,y 2 0) = L:J:%mv o2

> 4+>m
Consequently, it is seen that for ¢ € [0,2n], t(y,¢) has (at least) two real
roots 3~nev and 3mAev which satisfy the following inequalities

(2.6) 0« E:i <1< :NEL < ::NVSN..

< 0.

2
Noting now that y t(y,¢)t(y,¢+w) is a polynomial of degree four in the variable
y, we deduce from the previous results that t(y,¢) has exactly two real roots
saﬁeu and ﬂmﬁev satisfying (2.6). =

From this lemma and (2.5), (2.6), it is readily seen that <#usgﬁ=v. <wusdﬁov.
<wu:onv. <=n3mn=v with

AN_AA lP
G.joAf&m v.warl.l.

Ao
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As a second result it is shown in Appendix A that the equation K(x,y) = O has for
|y | = 1 exactly one zero x = x(y) such that | x(y) | £ 1. Let us denote x(y) the
algebraic branch defined by K(x,y) = 0 which satisfies the condition fx(y) | <1

for |y _ = 1. The other zero of the equation K(x,y) = O is denoted by x%(y). By
writting y
argh(y) = } arg(y-y,)-2arg(y), it turns out that for y € a7y ¥,1 U ﬁ<w.<:uv
i=1
[ .
the plus and minus signs in (2.2) correspond to x{y) and x (y) respectively
(compute x(1) and x%(1)}.

Similar results also hold when x is fixed. In that case y(x) will denote the root
of K(x,y) which satisfies the condition | y(x) | s 1 for | x| = 1, while y (x) will
denote the other root. y(x) is analytic in @ cut along ﬁxg,xmg U mxw.xzu. where
xd,xw.xw.x: denote the four (real) branch points of y(x). These points satisfy

the following inequalities

A A n . u 1 .
0 < X, < x, $ 1< X3 < Xy < — Axm 1 iff. ym 1 1~V1mv

For concluding this section, we now investigate the image of the cut ﬁwd 1 by

the branch x(y).

Define
ry(orp) 172
p(9) = J'"€. We have the following
x (+a (-n, (6)))
1 2 1
Lemma 2.2

: i
For ¢ € [0,2n], xA:gAevv = p(¢)e ¢
Proof
One easily shows that the point <u3AAeV sweeps twice the cut [y .<mu when ¢
traverses the real interval [0,2n]. Therefore for <u:,Aev. 5y) %< o and
consequently x(y) and x%(y) are conjugate complex numbers whose the product
satisfies the relation, cf (2.1) :
x(h () x’(n, (8)) = | x(h, (o) 12 = 6%(s).
Using now the definition of the algebraic branch x(y), we readily get that
x(h, (8)) = p(e)e?® , ¢ & [0,2n]. O
1 A -
i
Define L = {x € @ : x = plo)e ® 4 e [0,2n1]).

It is easily verified that rx is a smooth closed contour symmetric w.r.t. the
1mmwmxwm,:wn:omrx. Arxam:owmwﬁ:mwznm1H01 ow rxv.

Finally the following important relation will be used in the next sections :
(2.8) y(x(y)) =y fory€ m<~.<mu (ef. Appendix B).

3 - Formulation of the boundary value problem

We follow the procedure given in [9].

For pairs (x,y) with K(x,y) = O, fx | €1, |y| s 1, the following relation
between F(x,0) and F(0,y) must hold (cf.(1.4)-(1.8)) :
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~ RN 1 _ o 1

(3.1) rpl(1-r 0 Iw.v r, (1 nuwquﬁx,ov+1aﬁﬂg r) (g )r, (1 .vaumﬂo.<v
‘o NMN-.WN..xMw ] F(0,0) = 0.

For r + r, = 1 this equation reduces to

.

Ad-1avoAx.<u

(3.2) mgl1avax.ovl1Aon.<v + F(0,0) = 0,
o(x,y)
where F(0,0), a(x,y) and c(x,y) are given by (1.11), (1.6), (1.8) respectively.

For r,.rr, # 1 equation (3.1) can be rewritten as

(3.3) G(x,0) b(x,y) + G(0,y) a(x,y) = O,

where
r F(0,0)
(3.4) G6(x,0) = F(x,0) + __ ,
_|1~|1m
1mmﬁo,ov
(3.5) G(0,y) = F(0,y) + .
dl1g|ﬁm

Next define D = {y € @/ |y <1, |x(y) | s1}, p=1{yee/|y|s1,|xty)] »}.

Note that D is non-empty from Appendix A.

We have :

forp, *r, =1 .

(3.6) A4:1avqﬁxﬁ<v.ov-wdon.<v «Aguw_wo ) F(0,0) for y € D,
for r * T, # 1 b (y)

(3.1 b (Gx(y),0) + a' (1)6(0,y) = 0 for y € D,
whére

]
(3.8) a (y)=alx(y),y), cgﬁ<vucﬂxﬁ<v.<v. Q~A<VnoAxA<v.<v.

In the 1light of egs. (3,6), (3.7), we may write some results concerning the
ergodicity oo:apn»oﬁm.ow the system.

Indeed for y € D

e

o\m<4.<mu the functions F(0,y) and F(x(y),0) are both

apalytic. This entails from (3.6), (3.7) that a'(y) and b'(y) must not vanish in
D' otherwise F(0,y) and/or F(x,0) would have poles in |x| <1, |y} s 1.

¢ : 125102
a (y)#0 and b (y)#0 are satisfied for y € D iff.

To this end it is shown in [19, Appendix D] that for ) <r_ (1-r_ the conditions
* A

AwJov Ao < 1NA_«1AV or ﬁym 2 1NA4|1AV and yd1m+ymﬁés1mv < 1mAd|1wvw.

Consequently, conditions (3.9) are necessary conditions for the stability of the
mwmwwa. and in the following we shall assume that they are satisfied. (actually
conditions (3.9) are also sufficient, see Section 4).

Remark : Note that (1.16), (3.9), reduce to condition (1.12) when r *r,=1.

We now proceed with the analytic continuation of the function F(x,0) outside the
unit disk, which turns out to be a crucial point of the method used hereafter
(cf. the pioneering paper [91).
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When y is in the region |y | < 1, where F(0,y) is analytic, x(y) is in a region
containing the curve L. Consequently (3.6) [resp.(3.7)] can be used to continue
F(x,0) [resp. G(x,0)] as a meromorphic %c:onwoz up nonﬁx. The eventual poles of
F(x,0) [resp. G(x,0)] are the zeros of b (y) for y € D.

It is shown in Appendix C that caﬁwv has no zeros for y € D. Consequently, F(x,0)
[resp. G(x,0)] can be continued analytically up to rx using (3.7) [resp.(3.8)1.
Taking y € ﬁ<g.<mu in (3.6) [resp.(3.7)], then multiplying the relation by the
complex number i°and using the fact that F(0,y) has in |y | < 1 a power series
expansion with positive coefficients, it comes up using Lemma 2.2 and (2.8) that:

for r + r, # 1

cwhxv

a%(x)
1

(3.10) Re{i

G(x,0)} =0 for x € L,

for ry + ﬁm =

2
(3.11) Re{i F(x,0)} = Re{-i losmbwifo.ov for x € L,
where b (x)

(3.12) a2(x) = alx,y(x)), b2(x)=blx,y(x)), o2(x)=c(x,y(x)).

The equation (3.10) defines an homogeneous Riemann-Hilbert boundary valye
problem, ef.[13,p.220], [17,p.99], that is find a function G(x,0) analytic in rx.
continuous in rw U rx_ satisfying (3.10) where

w
cx . .. ,
Av is a non-vanishing function on L . Aaswmpwmnnwoum1«<Hmwoo:mmncmzom
a“(x) of the results obtain in [19, Appendix DJ.

Similarly the equation (3.11) defines a Dirichlet boundary value problenm,
ef.[13,p.221], ,[17,p.107), ‘that is find a function F(x,0) analytic in Ly’
continuous in Ly U rxm satisfying (3.11) where
2
¢ (x) . - . .
is a non-vanishing function on Ly. (This function only vanishes
T X 4

p°(x) for x = 1 which does not belong to rx under the condition (1.16)).

4. The solution of the boundary value problems

The solutions of the two boundary value problems formulated in the previous

section are known whenever rx is the unit circle. Therefore we must transform the
boundary conditions (3.10) and (3.11) conformally to the unit circle.

To this end we have the following

Lemma 4.1

The conformal mapping <oANv from the unit circle onto the curve L satisfying
<oﬂov = 0 and <oﬁNv = <oan is uniquely determined by :

1 2 mwm+N
4.1y 1 (2) = 2 mxvmlllh logp(6(E)) I|11|s||am_ for |z ]< 1,
0 2n 0 1§
e -z
where 8(w) is the unique continuous and strictly increasing solution in [0,27n] of

the following Theodorsen integral equation : for E € {0,2n]
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18T 1
(4.2) 8(g) = € - ——] 1og(p(ew))) cot{ -l (w-E))dw,
2m 0 2
(4.3) 8(g) = -8(-E).
Moreover Y, maps conformally { |z |= 1} onto L, and

(n.4) role’®) = plo(e)e!®®,
Proof :

These results can be found in [3,p.70-73]. Note that since Ly is symmetric

Ww.r.t. the real axis, v,(2) can be chosen such that v (z) = 7,(Z) for _w;_m 1.

]
We will denote by <Y(z) the inverse of «oANv. Using the above lemma the unique
solution (up to a constant) of the Dirichlet boundary value problem formulated by
(3.11) reads, cf.[13,p.221], [17,p.108],

- + =
for r r, 1

(4.5) F(x,0) - FL0:0) 7 ee) (T Yy 9 Lo por g e Ll
2n Lt |=1 (x|t *
where
C is a constant, 2
o.Aonnvv
(4.6) £(t) = Re[-i S booJe)=1.
, b (¥, (t))
Using (1.11) and Y(0) =, Q, cf. Lemma 4.1, we get
: A ‘2 1
(1) c=fh - L+ AN I aa A
r,or 2n =1 t ;
. . . . i¢) i8(¢)
The constant C is determined as follows. First, note that «oAm =p(8(¢))e ,

cf.(4.4) and that <A,<o$pez = 383: with (2.8), (4.4) and Lemma 2.2. So from

(3:12), (4.6), an easy calculation yields

ry sin(e(4)) (1-n, (8CoN7")

r(el?) - .
cos(8(¢)) sin{8(¢)) 2
Eie:::jv:x ! Tj:- ¢ :m;J €]
3835 p(6(9)) p(e(¢))
From (4.3) we deduce that erf is an odd function of ¢.
X A
This implies with (4.7) that C = 1 - m - 2 and finally that
r
1 2
A X —5n T f we s
w8 |reoo-(-— -2 2 (e77) sing d¢ +1) | for xeL..
r r .
1 2 " 0 1-27(x) cos¢ + <ﬁxvm
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Let us now consider the case r, * 1m 4 1.

Define >
-1

« = ' [arg cmﬁxuva ]
T a“(x) XEL

the index of the homogeneous Riemann-Hilbert boundary

X

value problem defined by eq.(3.10). Qm«_min:nmo denotes the variation of the
argument of the function a(t) when t moves along any closed contour C in the
positive direction, provided that a{(t) # 0 for t € c).

>mw«,mmcw?om.m$.v.mm:.T‘Tm;oi.Sm3w<mhsmn$.5v3www Embn&m .mowcSos
G(x,0) (up to a constant) which is analytic in L , continuous in Ly < iff.
x = 0.

Let us show that x = O under (1.16), (3.9).

It is shown in [19, Appendix D] that if (1.16), (3.9) hold then x(y, )>1. With
this result and the fact that xCJVAo. we immediately deduce that, cf. Wmasm 2.2

1
b (y,)
mmshnlllnlqu\m ).sgn(
1 1
a va a Afv

1
b (y.) .
71" ) > 0, where sgn(.) denotes "the sign of",

Using now the one to one mapping of mf;\mu onto rx‘ ef.(2.8), as well as (3.8)
and (3.12), we readily deduce that y = 0.

The solution of (3.10) reads using (3.4) :

_ 1 *
(4.9) F(x,0)=Dexp|— tog 8(Y) 4] - ! F(0,0) for xeL
2w fg | =1 t-7(x) T=r T,

where

D is a constant,
g, (t) b2 (v (£))

mﬁﬁvul.,_‘diﬁlvlll _N\”Aﬂvnlﬂlolll H.Oﬂ,#ﬁ_u‘_.
& 2% (1, (£))

Making x=0 in (#.9) we obtain the constant D in term of F(0,0). Then combining
(1.13b) and (4.9) for x=1, we get the constants D and F(0,0)., Putting these
results into (4.9) finally gives :

X
o2
1-r r Y(x)=7(1) log g(t)dt
2 2
F(x,0)=( :AT«, Jexp{ %
- 2 i -y =71
dl_)A #m 2iw _ﬁ —u..
4310 -
“10) (1) log g(t) dt 1
-r, exple—m—— —
! 2im [t | =1 t-v(1)
"
for x € Lige
Remark : Similar arguments to those employed in the case r,*r,=1 allow to

tranform the curvilinear integrals of (4.10) into integrals over the real
interval [0,7]. This is not done here for sake of brevity (cf. [19]). .
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In the case where the unit disk is not entirely contained in rw. we need to

analytically continue relations (4.8), (4,10) up to the unit circle to obtain
F(x,0) for all |x| <1.

If conditions (1.16), (3.9) are fulfilled, this analytic continuation can be
carried out with the aid of Plemelj-Sokhotski formulae, cf. [19].

This in turn shows that conditions (1.16), (3.9) are also sufficient conditions
for the stability of the system.

The ergodicity conditions can therefore be summarized as :

A < _‘.diuqmv and/or 3, < 1m3«3v
4.11) I1N\+ »mii‘mv < 1m3-1~u if X < f:awmv
finfv AP < f:%év if Ay < 1m3|fv
se s f »m .
where these conditions reduce to 'J} + uﬂ <1 if Ji;m = 1.

We will not pay attention to the analytic continuation of egs. (4.8), (4.10) in
the following, both for sake of brevity and also because the point x=1 beldngs to
Lx if (1.16), (3.9) hold (it is shown in [19, Appendix D], that x@mvﬁ in that
case, which therefore ensures that 1 & rw by Lemma 2,2).

Consequently, the moments of the queue length processes can be computed from
(1.4), (4.8), (4.10) by standard calculations. This is done for the expected
queue lengths in the next section, both analytically and numerically.

5 ~ Mean response times

E) ' 3
Define a = F(x,0) , b= ___F(0, .
5% J x=1 5 T O |y

Setting y = 1 in (1.4), then differentiating both sides of the equation twice in
the variable x gives by making x = 1 :

r, o [F(1,0)-F(0,0) J+r (1-r ) [1-F(0,1) ]-r v 2

12
(5.1) zd = 3 s
rymry)ay

where z.u. denotes the expected queue-length in station j at steady state, j=1,2.
Introducing relation (1.9) into (5.1) yields

fnfwmm
(5.2) zd = , where a can be computed using (4.8) or (4.10)

fﬁ%mvxf

depending on the value of Ji‘.m.
Take now x = y in the functional equation. A straightforward calculation using
(1.9), (1.10) leads to :

AtA =A A +r (1-2r )b+r_(1-2r Ja
(5.3) zﬂzw - 172 7172 1 2 2 1 .

r Slwmvi_mﬁ»f Tf«y,

2

From (5.1) and (5.3) we obtain ZN. the expected queue length in station 2. If
w,umwaw -and ryIr,=r (symmetrical “case) then we immediately deduce from (5.2),

A(2(1=r)=-ir)
(5.3) that zﬂzN = .
2(r{1-r)-1)
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Finally the mean response times Au for both stations are computed with the aid of
Little's formula, that is
N.
(5.4) T.=_3 _, j=1,2.
j v j=1,2
. . J
It is easily seen that the numerical computation of auAund.mv only requires the

determination of 7¥(1) and ¥'(1). This, in turn, needs the computation of the
angular deformation 6(.) defined in (4.2).

Following the numerical procedure proposed in [6, p.350], we have numerically
computed zd and zN as well as a_. am‘ F(0,0), F(0,1) and F(1,0) for particular
values of the parameters yA.ym.14.1m. These results are given Table 1.

In a future paper we shall concentrate on the determination of "optimal couples"
Aaa‘nmv which minimize -for given Ayd.ywv| the total average line-length. Other

problems will also be addressed, including the calculation of the mean number
of collisions experienced by a packet before its successful transmission.

The author would like to thank Dr. W. SZPANKOWSKI (Technical c:w<mvmwn< of
Gdansk) for submitting this problem and also Dr., J.P.C. BLANC (Delft University
of Technology) for a helpful private communication.

APPENDIX A

Lemma : For |y _n 1, ¥y # 1, the equation K(x,y)=0 has exactly one root x=x(y)
such that _xA<v_ <1, If A < 1~AA:1NV then x(1) = 1 is the only root of K(x,1)
in]x]s1. .

Proof

m01_<_ud.<m_w:a_x_aAn:m:_eﬁx.<v_Aau_x<_‘z:mﬂmﬁﬁx,<vn m*xm <M*
has been introduced in Section 1. With Rouche's theorem this implies that for |y
= 1, y # 1 there exists exactly one x, |x | < 1, such that xy - ¥(x,y) = 0. The
first statement of the lemma is then proved by noting that

|

K(x,y) = xy-¥{x,y) » ef.(1.17) and that H(x,y) # 0 for [x |, |y |s 1, ef.(1.19).
xy H(x,y)
For y=1, the equation K(x,1) = O reduces to, cf.(2.1)
r (1-r.)
1 2
A,-xVﬁyg - ] = 0 which concludes the proof. ]
X
APPENDIX B
+
Lemma B.1 : The cut ﬁ<_<<wu is contained inside the domain Ly U r<.
Proof :

Since <Mvo for i=1,2 and that the curve L_ cuts the positive real axis at point
<u<Axmv ef. Lemma 2.2, it suffices to show ‘that <Axmv e uo.<mm.

First, we get from the relations xA<Axmvvnxm or xaAwnxmvvuxm that <Axwv -4 u<a,<mm
(otherwise x(y) and x%(y) would be complex (conjugate) numbers, see Section 2,
which would contradict the fact that xm is a real number).

On the other hand it is readily seen that <Axmvn<w if y4n1~A~|1mv and

h that
A 1hpryary S ows tha

<Axmvw<m, which concludes the proof. o

u1NAA-1mv. Then a continuity argument on the parameters ) s
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+

Lemma B.2 : The algebraic branch <anV lies entirely outside the domain r<.

Proof
The function

1
" ¥ (x)
(y (x) =0 entails x=0, cf.{2.1). But from the definition of <q it is readily seen

is analytic in @ / ﬁxa.xmu U [x ]

3%y

g
that y (0) = = and y(0) = 0, which proves that ! is well-defined for x=0 and

equal to 0 at this point), yo(x)
Then by applying the maximum modulus v1H50mvwm [12,p.201] we have :
1 1 )
_ | € max{ | _ I tn | —
I x€[x, ,x.] °’ » lim | _*.
00 V0 1% <oAxv xmmxw.xzu %00 O (0)
. 1NA4|1~V 1/2
For x € T:.xmu U mxw.x:u, [P e (2 1) (cf.Section 2).
»mﬁd+>gA4|xvv

0 0

Cons tl (%) < .
equently |y _xmﬁxé.xmu Iy 6o L xetag x,3

On the other hand

T+
tim |y’ () | = 2 .
X>oo »N
. . o _+>M g
w+meampzm to show that |y Axv_xmmxg.me < - or equivalently that y (x,) <

. 2

5 .

g

We have that wamv (= vy Axwvu é u<w,<zm (same proof as in Lemma B.1). Therefore
o

necessarily y Axmv s <w by a continuity argument (since for )

=r_(1-r,),
#r. (1-r_) th 1 o =
M 1 N en x,=1, and that y (1) = 1 < <wv.

2

. a 0 )
Finally |y (x) | 2]y (x) _xmﬁx x.] for all x € 4, which concludes the ‘proof.
1772
o

From Lemma B.2 we get
y(x(y))=y and y%(x(y)) # y for y € L.

~

Then, in particular,
y{x(y)) = y for y & h<dhkmw using Lemma B.1 and the fact that

P - .

y Awamvv = <Axﬁ<mvv w Y, if vy € r< (i.e. v, = <Axmvv.

APPENDIX C

Lemma : b (y) = 1mmAA|1_VAd|IHlv:1AﬁA; ! ] has no root for y € D.
y x(y)

Proof

, .
b. (¥y) = 0 together with (2,1) entails
P(y) &y (-1ear -x (1-r )] m+Ad|1 Y ) (*a )= 2

2 1™ 1Y 1 1 »mv mddv<|nd;1~v = 0.

The discriminant >v
2 2
Bp = (1420705 + m»mﬁ-d+~1,|ydﬁd-w_v+y4ﬁd+,

of the polynomial P(y) reads
nwde+Ad|m1 +>_vw.

1 1
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An elementary study of this polynomial in A

P. Nain

> reveals that it 1is always positive

for i > 0. Then P(y) has always two real” roots. For -15y<0 then |x(y) | 1

1
(apply Rouche's theorem to K(x,y)=0 with y<0). For 0<y<i1, then obviously b (y)
cannot vanish in D, which concludes the proof.

m
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