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Abstract
Autonomous driving is a challenging task that has a wide range of applications in the
real world. The autonomous driving system can be used in different platforms, such as
cars, drones, and robots. These autonomous systems will reduce a lot of human labor
and improve the efficiency of the current transportation system. Some autonomous
systems have been used in real scenarios, such as delivery robots, and service robots.
In the real world, autonomous systems need to build environment representations and
localize themselves to interact with the environment. There are different sensors can
be used for these objectives. Among them, the camera sensor is the best choice be-
tween cost and reliability. Currently, visual autonomous driving has achieved signif-
icant improvement with deep learning. Deep learning methods have advantages for
environment perception. However, they are not robust for visual localization where
model-based methods have more reliable results. To utilize the advantages of both
data-based and model-based methods, a hybrid visual odometry method is explored
in this thesis. Firstly, efficient optimization methods are critical for both model-based
and data-based methods which share the same optimization theory. Currently, most
deep learning networks are still trained with inefficient first-order optimizers. There-
fore, this thesis proposes to extend efficient model-based optimization methods to train
deep learning networks. The Gaussian-Newton and the efficient second-order methods
are applied for deep learning optimization. Secondly, the model-based visual odometry
method is based on the prior depth information, the robust and accurate depth estima-
tion is critical for the performance of visual odometry module. Based on traditional
computer vision theory, stereo vision can compute the depth with the correct scale,
which is more reliable than monocular solutions. However, the current two-stage 2D-
3D stereo networks have the problems of depth annotations and disparity domain gap.
Correspondingly, a pose-supervised stereo network and an adaptive stereo network are
investigated. However, the performance of two-stage networks is limited by the qual-
ity of 2D features that build stereo-matching cost volume. Instead, a new one-stage 3D
stereo network is proposed to learn features and stereo-matching implicitly in a single
stage. Thirdly, to keep robust, the stereo network and the dense direct visual odometry
module are combined to build a stereo hybrid dense direct visual odometry (HDVO).
Dense direct visual odometry is more reliable than the feature-based method because
it is optimized with global image information. The HDVO is optimized with the pho-
tometric minimization loss. However, this loss suffers noises from the occlusion areas,
homogeneous texture areas, and dynamic objects. This thesis explores removing noisy
loss values with binary masks. Moreover, to reduce the effects of dynamic objects,
semantic segmentation results are used to improve these masks. Finally, to be gen-
eralized for a new data domain, a test-time training method for visual odometry is
explored. These proposed methods have been evaluated on public autonomous driving
benchmarks, and show state-of-the-art performances.

Keywords: Efficient optimization; Depth estimation; Visual odometry; Hybird AI; Au-
tonomous driving; Computer vision; Robotics
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Résumé
La navigation autonome est une tâche difficile qui a un large éventail d’applications dans le
monde réel. Le système de navigation autonome peut être utilisé sur différentes plateformes,
telles que les voitures, les drones et les robots. Ces systèmes autonomes réduiront considéra-
blement le travail humain et amélioreront l’efficacité du système de transport actuel. Certains
systèmes autonomes ont été utilisés dans des scénarios réels, comme les robots de livraison
et les robots de service. Dans le monde réel, les systèmes autonomes doivent construire des
représentations de l’environnement et se localiser pour interagir avec l’environnement. Diffé-
rents capteurs peuvent être utilisés pour atteindre ces objectifs. Parmi eux, le capteur caméra
est le meilleur choix entre le coût et la fiabilité. Actuellement, la navigation autonome vi-
suelle a connu des améliorations significatives grâce à l’apprentissage profond. Les méthodes
d’apprentissage profond présentent des avantages pour la perception de l’environnement. Ce-
pendant, elles ne sont pas robustes pour la localisation visuelle où les méthodes basées sur des
modèles ont des résultats plus fiables. Afin d’utiliser les avantages des méthodes basées sur les
données et sur les modèles, une méthode hybride d’odométrie visuelle est étudiée dans cette
thèse. Tout d’abord, des méthodes d’optimisation efficaces sont essentielles pour les méthodes
basées sur les modèles et les méthodes basées sur les données qui partagent la même théo-
rie d’optimisation. Actuellement, la plupart des réseaux d’apprentissage profond sont encore
formés avec des optimiseurs de premier ordre inefficaces. Par conséquent, cette thèse propose
d’étendre les méthodes d’optimisation efficaces basées sur les modèles pour former les réseaux
d’apprentissage profond. La méthode Gaussienne-Newton et les méthodes efficaces de second
ordre sont appliquées pour l’optimisation de l’apprentissage profond. Deuxièmement, la mé-
thode d’odométrie visuelle basée sur un modèle repose sur des informations préalables sur la
profondeur, l’estimation robuste et précise de la profondeur est essentielle pour la performance
du module d’odométrie visuelle. Sur la base de la théorie traditionnelle de la vision par ordina-
teur, la vision stéréo peut calculer la profondeur avec l’échelle correcte, ce qui est plus fiable
que les solutions monoculaires. Toutefois, les réseaux stéréoscopiques 2D-3D actuels à deux
niveaux présentent des problèmes d’annotations de profondeur et d’écart entre les domaines de
disparité. En conséquence, un réseau stéréo supervisé par la pose et un réseau stéréo adaptatif
sont étudiés. Toutefois, les performances des réseaux en deux étapes sont limitées par la qua-
lité des caractéristiques 2D qui construisent le volume de coût de l’appariement stéréo. Au lieu
de cela, un nouveau réseau stéréo 3D en une étape est proposé pour apprendre les caractéris-
tiques et l’appariement stéréo implicitement en une seule étape. Troisièmement, pour assurer
la robustesse du système, le réseau stéréo et le module d’odométrie visuelle directe dense sont
combinés pour créer un module hybride stéréo (HDVO). L’odométrie visuelle directe dense
est plus fiable que la méthode basée sur les caractéristiques, car elle est optimisée à partir des
informations globales de l’image. HDVO optimise une fonction de coût photométrique. Cepen-
dant, ce coût souffre de perturbations provenant des zones d’occlusion, des zones de texture
homogène et des objets dynamiques. Cette thèse étudie la suppression de ce type de perturba-
tions à l’aide de masques binaires. Pour améliorer ces masques, nous utilisons les résultats de
la segmentation sémantique. Enfin, nous avons exploré une méthode d’entraînement test-temps
afin de généraliser le réseau à un nouveau domaine de données.

Mots-clés : Optimisation efficace, Estimation de la profondeur ; Odométrie visuelle ; IA hybride ;
Navigation autonome ; Vision par ordinateur ; Robotique
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Introduction

Autonomous driving, a concept that was once confined to the realms of science fic-
tion, has now become one of the most important technological advancements in the 21st
century. This innovation represents a paradigm shift in transportation, promising to re-
define how we commute, interact, and perceive mobility. The importance of autonomous
driving lies in its potential to significantly improve road safety, reduce traffic congestion,
and have lower transportation costs, while also providing unprecedented levels of comfort
and convenience to passengers.

At the heart of this transformation is the integration of cutting-edge technologies such
as artificial intelligence, computer vision, and robotics. These technologies enable ve-
hicles to perceive the environment, make reliable decisions, and navigate without human
intervention. The progression towards fully autonomous vehicles is regarded as a key
solution to many of the challenges of current urban transportation systems, including
accidents caused by human error, inefficient traffic management, and the environmental
impact of vehicle emissions.

To achieve autonomous driving, the vehicle needs to plan its path and perform cor-
responding control actions such as accelerating, decelerating, turning left, and turning
right. The navigation system, which is also known as path planning, helps the vehicle
find the optimal path from the starting point to the destination. The control action, on
the other hand, is to control the vehicle to follow the planned path. However, navigation
relies heavily on a pre-defined map which may not always be aligned with real-world
scenes (Ibrahim & Fernandes, 2004). Therefore, the vehicle needs to have the perception
ability to build environment representations (Bartolomei, Teixeira, & Chli, 2020) and self-
localize in real-time. Environment representations and self-localization are the foundation
of autonomous driving because both path planning and control actions are based on them.

Representations contain several aspects : the geometric, semantic, and topology in-
formation of the surrounding environment. The representation defines how the vehicle
interacts with the environment. The geometric representation is the foundation for buil-
ding a 3D space of the environment. It can provide the distance from the autonomous
vehicle to the environment. However, the geometric information can only help to build a
static environment.

The dynamic objects of the environment can not be well recognized only based on
geometric information, as the red box example in Fig. 0.0.1 from (R. Li et al., 2023)
shown. Many autonomous driving tasks are based on temporal models whose goal is to
compute a set of states from complex information, including the expected environment,
motion, and path based on previous states and information. Because of the effect of dy-
namic objects in the geometric representation, temporal geometric representations can
not always be aligned. Therefore, semantic representation is essential to identify dynamic
objects.

1
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Figure 0.0.1 – An example of the geometric representation. From the left to the right :
Depth map, 3D point cloud, reconstructed 3D space.

For autonomous driving vehicles, semantic representation is the closest to the know-
ledge of human beings for the driving task. It helps the autonomous vehicle to identify
different concepts and understand the surrounding environment. There are different mea-
nings of semantics, as shown in Fig. 0.0.2. Based on spatial hierarchies, including scene
level, object level, and pixel level. Based on the temporal information, there is also a dif-
ference between static and dynamic areas. Based on concepts of humans, the semantics
can also be grouped into visual, object and concept layers (Xiao, Liu, Zhou, Jiang, & Sun,
2018). The visual layer (bottom layer) gives low-level information, such as color, texture
and shape, etc. ; the object layer (middle layer) gives the state of a certain object at a cer-
tain moment, which contains object attribute features ; and the concept layer (top layer) is
the closest knowledge to human understanding. With the geometric and semantic repre-
sentations, the vehicle can understand the surrounding environment on a logical level and
interact with it.

Object level 

Visual level 

Concept level 

Static Dynamic

Pixel 
level

Object 
level

Scene 
level

Based on spatial hierarchies

Based on the time Based on concepts

Figure 0.0.2 – Semantic representation of environment.
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The perception module can capture data from various sensors of different modalities.
Specifically, the camera sensor provides visual information while the LiDAR sensor pro-
vides sparse distance information. The radar sensor provides velocity information, and
the GPS sensor provides 2D location information of the vehicle. These sensors are com-
plementary to each other, with each providing unique information that the others cannot.
Among these sensors, the camera sensor is the most important sensor for autonomous
driving (Marti, De Miguel, Garcia, & Perez, 2019) considering cost and reliability. There-
fore, visual perception becomes the primary way to understand the environment (T. Liang
et al., 2022).

To build reliable and abundant environment representations, perception techniques are
required. Perception is the process of acquiring, interpreting, selecting, and organizing
information from various data. The perception system of autonomous driving vehicles
usually uses the image, point cloud, velocity, trajectory, etc. With different perception al-
gorithms, the environment representations can be built based on the sensor data. For the
geometric representation, most perception methods reconstruct a 3D space using LiDar
point cloud data or image data. The LiDar point cloud data provides distance informa-
tion directly, but it is sparse and hard to be processed by algorithms. The image data has
more abundant information than point cloud data. The visual perception algorithms can
also estimate distance information from visual data, such as stereo-matching algorithms
(Chang & Chen, 2018). Usually, dense depth maps can be obtained by visual perception,
but point cloud data can provide more reliable distance information as a supplementa-
tion. Moreover, semantic representation is also obtained by visual perception. Because
the visual data provide abundant spatial information and 2D spatial information is easier
to process, especially for deep learning algorithms.

According to the above discussion, visual perception is an essential module and vi-
sual data provide most information that the vehicle needs. Therefore, this thesis focuses
on visual perception for environment representations. Once the environment representa-
tions are built with a visual perception module, the autonomous vehicle can interact with
the surroundings. However, it can not make a future path planning if its position in the
dynamic 3D space is unknown. Therefore, the self-localization module is also extremely
important for obtaining the accurate relative position of the autonomous vehicle and the
environment. The self-localization module is usually realized by the odometry algorithms.
Similar to building representations, the odometry algorithms also can use visual data or
point cloud data to estimate the motion of the vehicle. The visual odometry methods will
be explored in this thesis considering the cost and performance.

In the past recent years, visual-based algorithms have achieved impressive improve-
ment with the development of data-based and model-based algorithms. The performance
of these methods highly relies on optimization techniques. However, the efficient optimi-
zation of deep learning algorithms is still an open challenge. Therefore, this thesis will
also study the efficient optimization problem for deep learning motivated by the optimi-
zation of model-based methods.

The overall context of this thesis is shown in Fig. 0.0.3, the objectives of this thesis
are introduced as follows : (i) Optimize visual-based autonomous driving algorithms ro-
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Optimization

Environment representation Self-
localizationGeometric Semantic

prediction 
ground truth 

Figure 0.0.3 – Context of this thesis.

bustly and efficiently ; (ii) Build environment representations for autonomous driving with
visual perception ; (iii) Achieve precise self-localization for autonomous driving with vi-
sual odometry.

Optimization for visual-based autonomous driving
Optimization problems will be investigated in Chapter 1. Optimization is the founda-

tion for most algorithms of computer vision and robotics. Optimization aims to find the
optimal parameters of the target model. For example, in the visual odometry problem,
the target model parameter is relative camera pose which is represented by relative orien-
tation and relative position. The optimization problem is solved by minimizing the cost
function. The cost function is also named the loss function in deep learning. In modern
data-based visual perception methods, the optimization problem is to find the optimal pa-
rameters of deep neural networks by minimizing the loss function. Therefore, both visual
perception and localization problems can be transformed into optimization problems. Ex-
ploring efficient optimization methods is required for solving these problems and building
the connection between them.

Optimization is the foundation of visual perception and visual odometry algorithms.
In traditional model-based algorithms, optimization has commonly used second-order or
approximated second-order methods, such as Newton method (Wallis, 1911), Gaussian-
Newton (Floudas & Pardalos, 2008), and BFGS (D. C. Liu & Nocedal, 1989). However,
these methods are not widely used in deep learning because of the high computation cost
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of second-order optimization methods. In contrast, non-efficient first-order methods, such
as SGD (Amari, 1993), Adam (Kingma, 2014), and AdaGrad (Duchi, Hazan, & Singer,
2011), are widely used in deep learning. The gap between model-based and data-based
approaches should be fixed in the optimization perspective. Deep learning optimization
with efficient optimization methods is still a problem. Although there have been some
explorations of approximated deep second-order optimizers (Yao et al., 2021 ; Gupta, Ko-
ren, & Singer, 2018 ; Botev, Ritter, & Barber, 2017). These optimizations either have a
high computation cost or are not stable for various tasks. Therefore, this thesis will first
study the approximated second-order optimization methods for deep learning.

Moreover, as the photometric minimization loss function is commonly used in model-
based and data-based visual tasks, optimizing efficiently with this loss function is im-
portant. In model-based methods, to optimize the dense direct visual odometry model
(Comport, Malis, & Rives, 2010) with the photometric minimization cost function, an
efficient second-order optimization method (ESM (Malis, 2004)) is used. More recently,
the same photometric minimization loss function has been used for training deep neural
networks (Godard, Mac Aodha, Firman, & Brostow, 2019), which is solved by the non-
efficient first-order deep optimization methods. Motivated by the ESM in model-based
optimization, a more efficient method will be explored in this thesis for the photometric
minimization loss in deep learning.

Building environment representations for autonomous dri-
ving

For vision-based perception, there are different kinds of representations : low-level
geometric representations and high-level semantic and topology representations (Chang &
Chen, 2018 ; Y. Li et al., 2023 ; Mattyus, Luo, & Urtasun, 2017). The most important geo-
metric representation usually refers to the depth information that measures the distance
from cameras to the surrounding environments. This thesis will explore how to build a
3D depth geometric representation in Chapter 2. The depth information is the bridge from
2D vision to 3D space. Meanwhile, autonomous driving is a task in 3D space. Therefore,
depth information is essential for autonomous driving. Depth information can be easily
obtained from some sensors, e.g. LiDar. However, there are still no mature perception
solutions only with 3D point clouds. Most solutions are based on the fusion of LiDar and
cameras (Cui et al., 2021). In addition, depth information can be extracted from spatial
visual information. For depth estimation from visual data, it is still an open challenge.
The traditional solution is based on the human vision system, the depth information can
be computed using a stereo-vision method (Hirschmuller, 2005 ; Chang & Chen, 2018).
More recently, with the development of deep learning techniques, monocular depth esti-
mation networks become more and more popular (Zhou, Brown, Snavely, & Lowe, 2017 ;
Godard et al., 2019). These monocular networks have a lower computation cost and do
not require stereo camera calibration compared with stereo-vision methods. However, the
main problem is that monocular depth estimation is an ill-posed problem, which results in
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poor generalization ability on different datasets and does not give a correct depth scale. In
contrast, deep stereo networks share both the advantage of the stereo-vision system and
the learning ability of deep learning (Chang & Chen, 2018 ; Xu, Wang, Ding, & Yang,
2023). This thesis will study to solve the problems of deep stereo networks and improve
them further.

Achieving precise self-localization for autonomous driving
The self-localization problem will be investigated in Chapter 3. Previously, the self-

localization problem has been addressed well with model-based methods using multi-
modalities data. However, achieving robust visual self-localization (visual odometry) is
still a challenging problem. Although there are plenty of deep learning methods proposed
for better solving the visual odometry problem (Zhou et al., 2017 ; S. Wang, Clark, Wen,
& Trigoni, 2017 ; R. Li, Wang, Long, & Gu, 2018 ; Teed & Deng, 2021) only with visual
data, they did not perform well because of the limitation of dataset scale and diversity.
Current visual odometry datasets with well-labeled camera poses are not large enough,
and the diversities of these datasets are limited. A good deep-learning model highly re-
lies on high-quality datasets. Even though deep-learning methods have dominated most
visual perception tasks, model-based solutions are still widely used for visual odometry
with robust performance (Campos, Elvira, Rodríguez, Montiel, & Tardós, 2021). Howe-
ver, model-based visual odometry methods highly rely on some priors, e.g., depth infor-
mation, occlusion information, low-texture information, and dynamic object information
(Comport et al., 2010). These representations are difficult to obtain for traditional model-
based methods. However, solving these problems is the advantage of data-based methods.
Consequently, there are hybrid visual odometry methods (N. Yang, Stumberg, Wang, &
Cremers, 2020 ; Zhan, Weerasekera, Bian, & Reid, 2020 ; Y. Wang et al., 2019) which
utilize deep networks to provide these priors. This thesis then explores a more robust and
reliable hybrid dense direct visual odometry to solve the above problems.

In previous hybrid visual odometry methods (Zhan et al., 2020 ; N. Yang et al., 2020),
the relationship between geometric representation and visual odometry has been investi-
gated. In this thesis, the connection between stereo-based depth representation and dense
direct visual odometry will also be explored. However, the relation between semantic
representation and the hybrid visual odometry method is not investigated well. Seman-
tic tasks, such as semantic segmentation (E. Xie et al., 2021 ; M.-H. Guo et al., 2022),
and object detection (Carion et al., 2020 ; Girshick, 2015 ; Redmon, Divvala, Girshick, &
Farhadi, 2016), have achieved satisfactory performance. These semantic representations
usually can provide more comprehensive information for downstream tasks (Drouilly,
Rives, & Morisset, 2015). How to cooperate and utilize semantic information for other
vision modules is also an important problem (Bowman, Atanasov, Daniilidis, & Pappas,
2017 ; Y. Li et al., 2023). Therefore, this thesis will study using semantic information to
improve visual odometry results.



CHAPTER 1
Optimization for
Model-based and

Data-based Methods
The main topic of this thesis is the exploration of visual perception and visual
odometry methods for autonomous driving applications, which are built on the
foundations of optimization approaches. Whether deep learning networks in vi-
sual perception or model-based methods in visual odometry, their superior per-
formance is due to an efficient and robust optimizer. This chapter first introduces
the background knowledge of optimization methods. Then, it proposes a new
deep adaptive Gaussian-Newton optimization method for training deep learning
networks. Finally, it introduces an efficient second-order optimization method for
the photometric minimization loss in deep learning.

7
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1.1 Introduction
Optimization is the basic and foundation technique for various autonomous driving

applications, from perception, and localization to path planning and control. On the one
hand, optimization supports the latest deep learning networks (S. Sun, Cao, Zhu, & Zhao,
2019). On the other hand, optimization can be used for efficiently updating the target
variables in the traditional model-based methods (Fraundorfer & Scaramuzza, 2012). Al-
though deep learning optimization methods and model-based optimization methods are
different, they also share the same optimization theories.

This chapter begins with an exploration of optimization theories and methods, inclu-
ding previous approaches like SGD (Amari, 1993), Newton Method (Wallis, 1911), and
Gaussian-Newton Method (Floudas & Pardalos, 2008). These concepts provide valuable
context for understanding various optimization techniques.

Firstly, optimization for deep learning networks attracts more and more attention.
Usually, deep learning methods are optimized with first-order optimization techniques
like Adam (Kingma, 2014) and SGD (Amari, 1993) for tasks like depth estimation
(Godard et al., 2019 ; R. Wang, Yu, & Gao, 2023). However, with emerging second-order
optimizers such as Adahessian (Yao et al., 2021) and Shampoo (Gupta et al., 2018), and
the Gaussian-Newton methods (Comport et al., 2010 ; Botev et al., 2017), second-order
optimization methods become more and more popular. This section introduces the Ada-
Gaussian, a Deep Adaptive Gaussian-Newton method inspired by recent advancements.
It highlights its key contributions in Hessian approximation, optimization of multi-layer
neural networks, spatial averaging, adaptive momentum, and the L-M method for better
convergence.

Secondly, optimization for deep learning and model-based methods can share com-
mon optimization methods. In this thesis, the Photometric Minimization (PM) loss func-
tion can optimize both the deep depth networks and model-based direct visual odometry.
Currently, efficient second-order optimization has been used for solving the model-based
visual odometry problem, and impressive performance has been realized. In contrast, deep
learning networks with PM loss are still optimized with low-efficient optimizers. Efficient
optimization techniques are needed to minimize PM loss in deep neural networks. The
PM loss measures the intensity error between generated and ground-truth images. While
the Second-order Newton method can realize second-order convergence, it suffers com-
putational challenges. In response to the challenges, the Efficient Second-Order Method
(ESM) was introduced (Malis, 2004). Furthermore, this chapter has proposed to use ESM
optimization with LM loss for deep learning applications. This innovation aims to com-
bine the benefits of the ESM, allowing the deep adaptive Gaussian-Newton optimizer to
achieve a convergence closer to quadratic convergence.

To sum up, this chapter provides a complete understanding of optimization. It em-
phasizes the relationship and the impact of optimization for data-based and model-based
methods. The chapter discusses traditional optimization methods, and introduces a novel
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adaptive Gaussian-Newton deep learning optimization method, and explores the efficient
photometric minimization optimization for data-based methods.

1.2 Related works
As the foundation of most visual perception and localization algorithms, optimization

methods determine the performance of these algorithms. As described in Fig. 1.1, based
on the properties of optimization methods, they can be divided into first-order and second-
order methods. The first-order methods have lower computation costs but converge slower
than the second-order methods. On the other hand, optimization methods can be used for
model-based methods and deep learning-based methods according to the applications.
This subsection systematically examines these optimization methods, indicating the de-
velopments, applications, and challenges. Through a comprehensive analysis, this subsec-
tion offers a detailed overview of the optimization methodologies in computer vision and
robotics.

Figure 1.1 – Related works of optimization methods

1.2.1 Properties of optimization methods
For a general optimization method, the convergence performance is mostly deter-

mined by the order of this method. For any optimization problem, the gradient decent
(Amari, 1993) is the basic and simple solution, which is a first-order optimization me-
thod. In practice, gradient descent is performed using stochastic, mini-batch, or momen-
tum techniques (Amari, 1993 ; Kingma, 2014 ; Duchi et al., 2011). Moreover, the second-
order methods can promise a faster convergence speed with the second-order Hessian
matrix in theory. The second-order methods promise a better convergence bound and re-
quire fewer optimization iterations, resulting in less convergence time. The most common
second-order method is the Newton method (Wallis, 1911) which computes the true Hes-
sian matrix. However, the computation cost of the Hessian matrix is large. Then, more
approximation second-order optimization methods are proposed to reduce the computa-
tion cost. The most typical solution is the Gaussian Newton optimization method (Floudas
& Pardalos, 2008). Gaussian Newton’s convergence speed is between the first-order and
the second-order methods, making it not a true second-order optimization method. There
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are also a lot of variants of the Gaussian Newton method (Botev et al., 2017). Further-
more, in some visual applications, the efficient second-order optimization method (ESM)
(Malis, 2004) can realize second-order convergence speed without computing the Hessian
matrix.

1.2.2 Applications of optimization methods
Optimization methods are used for different applications, including model-based me-

thods or deep learning-based methods. The former sees its roots in traditional algorithms,
evolving from first-order to second-order optimization methods, notably within the visual
odometry domain. In contrast, the latter, deep learning-based methods, have emerged with
the breakthroughs like ImageNet (Russakovsky et al., 2015), ResNet (He, Zhang, Ren, &
Sun, 2016), and Transformer (Han et al., 2022). The deep learning optimization landscape
is dominated by first-order methods due to the constraints inherent to the enormous deep
network parameters.

For model-based methods, to achieve faster convergence speed, most algorithms use
second-order or second-order approximation optimization methods, such as the Newton
method (Wallis, 1911) or its variants (Gaussian-Newton (Floudas & Pardalos, 2008), ESM
(Malis, 2004)). Because model-based methods have fewer parameters than deep learning
networks, the computation cost of the second-order optimization method is acceptable.
For example, the direct visual odometry methods (Comport et al., 2010 ; Newcombe, Lo-
vegrove, & Davison, 2011) are usually optimized with the Gaussian Newton methods.

Since the success of the large-scale dataset, ImageNet (Russakovsky et al., 2015),
and the deep neural network ResNet (He et al., 2016), deep learning-based methods have
gained widespread adoption in various computer vision tasks. Deep learning networks
perform exceptionally well due to the vast number of learnable parameters and the op-
timization method of backward propagation. Consequently, first-order optimization me-
thods, such as SGD (Amari, 1993) and Adam (Kingma, 2014), have become primary tools
for optimizing deep neural networks, given that second-order optimization methods may
incur excessive memory costs, rendering them unfeasible.

More recently, researchers have proposed second-order or approximated second-order
optimization methods for training deep learning models (Gupta et al., 2018 ; Yao et al.,
2021 ; Botev et al., 2017). The practical Gaussian-Newton (Botev et al., 2017) was among
the first to explore the potential of applying the Gaussian-Newton method to visual clas-
sification. The Shampoo (Gupta et al., 2018) optimizer computes the pre-conditioner on
split dimensions to enhance computation efficiency. Additionally, the AdaHessian (Yao
et al., 2021) optimizer computes the true Hessian matrix while only storing the diago-
nal, effectively reducing memory costs. These methods have shown the efficiency and
the potential of second-order deep learning optimization. This chapter proposes a new
Gaussian-Newton method, which not only can be used for large-scale visual tasks but
also requires lower computation cost and time.
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1.3 Background of optimization methods
Before delving into the optimization algorithms in deep learning, it is crucial to

have an understanding of optimization. This section aims to introduce the fundamental
concepts of optimization theory, including first-order and second-order optimization me-
thods. These concepts serve as the foundation for the subsequent section.

Optimization is a basic problem in mathematics, statistics, robotics and computer
science. Usually, an optimization problem contains three components : model parameters
x, constraints (the equality constraint m(·), the inequality constraint n(·)), the objective
function l(·), which is expressed as the Eq. 1.1.

x = arg min
x∈R

l(x),

s.t., mi(x) = 0, i = 1, 2, ..., M

nj(x) ≤ 0, j = 1, 2, .., N

(1.1)

where
— R is the set of real numbers, which is the searching space.
— l(·), m(·), n(·) are continuous differentiable functions relative to x.
— M is the number of the equality constraints.
— N is the number of the inequality constraints.
The optimization algorithm aims to minimize the object function l(·) and find the

variables x.
The inequality constraint nj can be transformed into the following equality constraint.

nj(x) ≤ 0→ nj(x) + 1
2µ2

j = 0 (1.2)

where µ = [µ1, µ2, ..., µN ] is the slack (dummy) variable.
Because the µ2

j is a non-negative variable, which means nj(x) ≤ 0, the inequality
constraint can be transformed into the equality constraint.

Assume λ = [λ1, λ2, ..., λM ], γ = [γ1, γ2, ..., γN ] are the Lagrange multipliers, the
minimization objective becomes :

min
x∈R

l′(x)→ min
x∈R,λ∈RN ,γ∈RM

l(x) +
M∑

i=1
λimi(x) +

N∑
j=1

γj(nj(x) + 1
2µ2

j) (1.3)

For the above equation, gradients are computed with respect to x, λ, γ and µ, which
is shown in Eq. 1.4. The gradients are set to zero to find the optimal solution. Equality
constraint and inequality constraint are the same as the case without constraint.
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∂l′(x)
∂x

= ∂l(x)
∂x

+
M∑

i=1
λi

∂mi(x)
∂x

+
N∑

j=1
γj

∂nj(x)
∂x

= 0

∂l′(x)
∂λi

= mi(x) = 0

∂l′(x)
∂γj

= nj(x) + 1
2µ2

j = 0

∂l′(x)
∂µj

= γjµj = 0

(1.4)

In the context of visual perception and visual odometry, optimization is typically per-
formed with gradient-based methods without constraints. The optimization problem relies
on two fundamental components : the model’s parameters x and the loss function l(·). The
objective of optimizer methods is to minimize the loss l while updating the model para-
meters using gradients g through multiple iterations.

1.3.1 Gradient Decent (GD) method
Firstly, assuming there is a function f(x + ∆x), which can be expressed as a first-

order approximation of the Taylor Series, which takes the first two terms in the series.
This approximation is shown in Eq. 1.5.

f(x + ∆x) ≈ f(x) + J(x)T ∆x = f(x) +
(

∂f(x)
∂x

)T

∆x (1.5)

where the Jacobian matrix J is the differential of f(x) with respect to x. ∆x is the
incremental update to the model’s parameters x.

Then, moving the f(x) to the left of the equation, the Eq. 1.5 becomes Eq. 1.6.

f(x + ∆x)− f(x) = J(x)T ∆x (1.6)

As the aim of the gradient decent optimization is to minimize function f(·), there is

f(x + ∆x)− f(x) < 0 (1.7)

Lemma 1.3.1. Assume that a, b are two vectors, α is the angle between vectors, there is
a · b = ||a|| · ||b|| · cosα

The a · b is minimum when the cosα = −1, i.e. the a, b are opposite vectors.
Therefore, when the ∆x and J are opposite vectors, the update of f is the biggest, and

the optimization convergence is the fastest. The update ∆x becomes Eq. 1.8.

∆x = −J(x) (1.8)

Finally, Gradient Descent updates as Eq. 1.8 at each iteration, but it suffers from a zigzag
pattern, leading to increased optimization iterations.
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1.3.2 Newton method
Firstly, assuming there is a function f(x + ∆x) which can be expressed as a second-

order approximation of the Taylor Series, which takes the first three terms in the series.

f(x + ∆x) ≈ f(x) + J(x)T ∆x + 1
2∆xT H(x)∆x (1.9)

where the second-order Hessian Matrix H is the differential of the Jacobian matrix J
with respect to x. ∆x is the incremental update to the model’s parameters x.

Then, Eq. 1.10 can be obtained by taking the derivative of ∆x through both sides of
the equation in Eq. 1.9.

0 = J(x)T + H(x)∆x
→ ∆x = −H(x)−1J(x)T

(1.10)

where the ∆x is the update of the model’s parameters.
The Newton optimization method is a second-order optimization technique that uses

the Hessian matrix to find the minimum of a given function. It is based on the idea of
approximating the function to be optimized with a quadratic function and then finding the
minimum of that quadratic function. This quadratic approximation is obtained by using
the first and second derivatives of the function, which are calculated using the gradient
and Hessian matrix, respectively.

The Newton method is known for its fast convergence rate, as it can converge qua-
dratically to the optimal solution. However, it also has some limitations, such as the high
computational cost and memory requirements for calculating the Hessian matrix. Addi-
tionally, the Hessian matrix may not be positive definite, i.e. a singular matrix. Therefore,
H−1 can not be computed or closed to a singular matrix. This can lead to convergence
issues.

To address these limitations, variations of the Newton method have been develo-
ped. For instance, the Gauss-Newton method (Floudas & Pardalos, 2008), specifically
designed for least-squares problems, simplifies the Hessian matrix by assuming the se-
cond derivatives of the residuals are negligible. This leads to an approximation that only
uses the Jacobian, making the method more computationally efficient for problems fit-
ting its assumptions. Furthermore, the quasi-Newton method (Nocedal & Wright, 2006)
approximates the Hessian matrix using gradient information, and the limited-memory
BFGS (Broyden–Fletcher–Goldfarb–Shanno) method (D. C. Liu & Nocedal, 1989) ap-
proximates the Hessian matrix using a limited amount of memory. These methods have
improved the efficiency and applicability of the Newton optimization method in solving
various optimization problems.

1.3.3 Gaussian-Newton method
The Gaussian-Newton method is proposed for solving non-linear least square pro-

blems, which has the loss function shown in Eq. 1.11.
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l = 1
2 ||f(x)||2 (1.11)

where f(·) is a L1 residual function.
Firstly, instead of computing the quadratic form 1

2 ||f(x)||2, the Gaussian-Newton me-
thod computes the Taylor Series for the residual function f(x). The method keeps the first
two terms of the first-order linear approximation of the Taylor Series, shown as Eq. 1.12.

f(x + ∆x) ≈ f(x) + J(x)T ∆x (1.12)

where the Jacobian matrix J(x) is the partial derivative for f(x).
With the insertion of the approximation of Eq. 1.12, the loss function Eq. 1.11 be-

comes Eq. 1.13.

1
2 ||f(x + ∆x)||2

= 1
2
(
f(x)T f(x) + 2f(x)T J(x)∆x + (J(x)∆x)T J(x)∆x

) (1.13)

Finally, by taking the derivative of both sides of Eq. 1.13 with respect to ∆x, Eq. 1.14
is obtained.

J(x)T f(x) + J(x)T J(x)∆x = 0

→ ∆x = −
(
J(x)T J(x)

)−1
· J(x)T f(x)

(1.14)

In each iteration, the model parameters are updated by ∆x.
Let G = J(x)T J(x) and g = J(x)T f(x), the update parameters ∆x can be expressed

as
∆x = −G−1 · g (1.15)

The G = JT J matrix serves as an approximation of the Hessian matrix, meaning that the
Gaussian-Newton method is not a quadratic convergence in general. It only uses the first-
order Taylor series approximation. It is important to note that G must be a positively defi-
nite regular matrix to make the optimization converge. However, in the Gaussian-Newton
method, this cannot always be guaranteed, which may lead to optimization divergence.
Moreover, there are different versions of the Gaussian-Newton method, including For-
ward Compositional (FC), Inverse Compositional (IC). Their details can be found in the
Appendix.

1.3.4 Efficient Second-order Method (ESM)
Finally, ESM is introduced and it can achieve quadratic convergence in theory.
Assume that the ESM has the same cost function as the FC method in Appendix A,

x = arg min
x=x+∆x

∑
p∈P
∥I(p)−W(W(I, x), ∆x)(p)∥2 (1.16)
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Firstly, the approximation of the second-order Taylor series expansion of the generated
image W(W(I, x), ∆x) on ∆x is

W(W(I, x), ∆x) = W(I, x + ∆x)

≈W(I, x) + J(x)∆x + 1
2!H(x)∆x2 (1.17)

where H is the Hessian matrix of the generated image W(I, x) relative to the model
parameters x.

With this second-order Taylor approximation, the loss function will become

l = ∥I− [W(I, x) + J(x)∆x + 1
2!H(x)∆x2]∥2 (1.18)

As the high computation cost of the Hessian matrix, the ESM method uses the first-
order approximation of the Taylor series of the Jacobian matrix J(x + ∆x). There is

J(x + ∆x) ≈ J(x) + H(x)∆x (1.19)

Then, replacing H(x) of the second-order approximation in Eq. 1.17 with Eq. 1.19,
and setting x + ∆x = x, there is

W(I, x + ∆x) = W(I, x) + J(x)∆x + (J(x + ∆x)− 1
2!J(x))∆x

= W(I, x) + J(x)∆x + 1
2!(J(x)− J(x))∆x

= W(I, x) + 1
2(J(x) + J(x))∆x

(1.20)

and

l = ∥I− [W(I, x) + 1
2(J(x) + J(x))∆x]∥2 = 0 (1.21)

In the given equation, the computation of Hessian matrix is not required. At the same
time, the ESM method can ensure second-order optimization approximation, as shown in
Eq. 1.17.

Finally, according to Eq. 1.21, the update of the model parameters is

∆x = −
(1

2(J(x) + J(x))T 1
2(J(x) + J(x))

)−1
· 12(J(x) + J(x))T (I−W(I, x))

(1.22)
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1.4 Deep adaptive Gaussian-Newton optimization
Optimization methods for deep learning networks are also receiving increasing at-

tention. The field of deep learning mainly relies on first-order optimization methods,
with Adam (Kingma, 2014) and SGD (Amari, 1993) being the prime choices for various
computer vision tasks, such as depth estimation (Godard et al., 2019 ; R. Wang et al.,
2023). However, the role of optimization techniques in network performance hasn’t been
thoroughly analyzed yet. Nevertheless, the landscape is shifting towards approximated
second-order optimization methods that promise enhanced accuracy and faster conver-
gence. For example, Adahessian (Yao et al., 2021) employs a real Hessian matrix and
approximates it to a diagonal vector for memory efficiency. Similarly, Shampoo (Gupta
et al., 2018) computes preconditioning matrices for each dimension separately. Further-
more, considering the success of the Gaussian-Newton methods in the optimization of
traditional model-based methods (Comport et al., 2010), Gaussian-Newton methods have
been used for optimizing deep learning models (Botev et al., 2017). But the efficiency of
these methods is mainly evaluated on limited classification datasets. This section aims to
evaluate the proposed Deep Adaptive Gaussian-Newton optimizer on large-scale visual
benchmarks.

Drawing inspiration from the success of the Gaussian-Newton optimization in both
model-based and deep learning approaches, a Deep Adaptive Gaussian-Newton method,
namely AdaGaussian, is proposed for deep learning. The main contributions can be sum-
marized as :

1. An efficient Hessian diagonal approximation is used to reduce the memory cost of
the optimization.

2. The original Gaussian-Newton, which is for the single-layer model, is extended to
the deep Gaussian-Newton for the multi-layer neural network.

1.4.1 Hessian diagonal approximation
In a deep learning optimization problem, the total loss is summed to a scalar. The-

refore, the gradient of model parameter has the same size as model parameter, which is
usually a high-dimension tensor. The gradient can be reshaped to a vector j.

Firstly, as shown in the original Gaussian-Newton Eq. 1.15, the matrix G = jT · j has
the same size N × N as the Hessian matrix, which needs the square of the memory of
Jacobian j, as shown in Tab. 1.1. This memory cost is not acceptable for most deep neural
networks (He et al., 2016 ; Z. Liu, Mao, et al., 2022) which have an enormous number of
parameters.

To solve this Hessian matrix memory explosion problem, the Hessian matrix diagonal
approximation method (Yao et al., 2021) is introduced.

diag(G) = j⊙ j (1.23)

where ⊙ is the Hadamard product. diag(·) is the diagonal vector of a matrix.
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Memory Complexity
Parameters x N

Jacobian j N
G N2

Diagonal diag(G) N

TABLE 1.1 – Memory cost of network parameters, gradients.

In this way, the memory cost will be linear increase. The model’s parameter update
∆x becomes

∆x = − (1/diag(G))⊙ (j(x)f(x)) (1.24)

1.4.2 Deep Gaussian-Newton for multi-layer neural network
The Gaussian-Newton update (Eq. 1.24) was proposed to update the parameters of

a single-layer model. For a multi-layer deep network x = [xh; xp], there are two parts,
hidden layers xh and final prediction layer xp. For the final prediction layer, the update
is the same as the Gaussian-Newton method in Eq. 1.24. But for the hidden layers of the
neural network, the residual f(x) in Eq. 1.24 can only be computed at the prediction layer.

Firstly, the loss gradient jl(x) of the mean square loss can be expressed as

jl(x) =
∂ 1

2 ||f(x)||2

∂x
= j(x)f(x) (1.25)

where both the gradient j(x) of the residual function and the residual f(x) are computed.
Then, the J(x)T f(x) in Eq. 1.24 is replaced with the Eq. 1.25. The new deep Gaussian-

Newton update ∆x becomes

∆x = −(1/(j⊙ j))⊙ jl (1.26)

This update equation depends on both the loss gradient jl and the gradient j of the
residual f(x). They can be computed by deep learning gradient backward propagation.

1.4.3 Spatial average pooling for Hessian diagonal
To replace the large matrix JT J, the diagonal approximation diag(G) is used. Ho-

wever, the diagonal vector introduces new variations (Yao et al., 2021). To ensure that
the optimization remains stable, a block diagonal average over diagonal elements (spatial
averaging) is introduced to smooth the update of the parameters (Yao et al., 2021). For
convolution operations, the diagonal diag(G) is averaged along the convolution kernel
dimensions, as shown in Eq. 1.27.

diag(G)s
t,ib+j =

∑b
k=1 diag(G)t,ib+k

b
, for 0 ≤ i ≤ d/b− 1, 1 ≤ j ≤ b (1.27)
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where b is the spatial average block size, d is the model parameters. i is the indices of
blocks, j is the indices of the size of a block, t is the current optimization iteration index.

1.4.4 Adaptive momentum for the adaptive Gaussian-Newton
Momentum is a common strategy used in most deep-learning optimizers (Kingma,

2014 ; Duchi et al., 2011). It computes the current gradients with the previous t optimiza-
tion iterations. For the first-order optimizer, the momentum is shown as Eq. 1.28.

ρ1,t = (1− β1)
∑t

i=1 βt−i
1 gi

1− βt
1

(1.28)

where β1 ∈ (0, 1) is the momentum factor, g is the gradient, t is the time step of optimi-
zation.

For the proposed Adaptive Gaussian-Newton method, the momentum ρ1,t, ρ2,t for loss
gradient jl with Eq. 1.29 and diagonal diag(G) with Eq. 1.30 is computed.

ρ1,t = (1− β1)
∑t

i=1 βt−i
1 jl,i

1− βt
1

(1.29)

ρ2,t = diag(G)sm
t =


√√√√(1− β2)

∑t
i=1 βt−i

2 diag(G)s
i diag(G)s

i

1− βt
2


k

(1.30)

where the β1, β2 ∈ (0, 1) are the momentum factors. k is the Hessian power, which is 1
normally.

1.4.5 Levenberg–Marquardt (L-M) Method
The L-M method (Levenberg, 1944 ; Marquardt, 1963) is a combination of the

Gaussian-Newton method and the first-order method. It can partly solve the divergence
problem in Gaussian-Newton.

∆x = − (1/(j⊙ j + λ · diag(E)))⊙ jl (1.31)

When the weight λ = 0, it is a Gaussian-Newton method. When the weight λ is large,
the update ∆x is dominated by the first-order gradient descent. E is the identity matrix.

With the L-M method, the diagonal vector diag(G) becomes :

diag(G) = (j⊙ j + λ · diag(E)) (1.32)
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1.4.6 Deep adaptive Gaussian-Newton optimizer
In this part, the Deep Adaptive Gaussian-Newton algorithm is shown in Alg. 1.1. The

model parameter’s update is formulated as Eq. 1.33.

∆x = −δρ1,t

ρ2,t

(1.33)

where δ is the given learning rate, which is positive.

Input: Initial network parameters x0 ; Learning rate δ ; Exponential decay rates β1, β2 ;
Block size b ; Hessian power k ; first-order momentum ρ1,t ; approximated second-order
momentum ρ2,t

for t do
jt, jl,t ← The current step’s residual gradient and loss gradient
diag(G)t ← The current step Hessian diagonal with Eq. 1.23
Compute the diag(G)s

t using spatial averaging with Eq. 1.27
Compute the diag(G)sm

t using the momentum with Eq. 1.30
Update momentum ρ1,t, ρ2,t with Eq. 1.29 and Eq. 1.30
Update parameters xt = xt−1 − δρ1,t/ρ2,t

end for

Algorithm 1.1: Deep adaptive Gaussian-Newton optimizer.

1.4.7 Analysis the complexity
The complexities of the first-order optimizers, second-order optimizers, and the pro-

posed AdaGaussian are analyzed. As shown in Tab. 1.2, assume the complexity of the
first-order optimizer is N , the AdaHessian second-order optimizer has N2 complexity be-
cause of the computing of the Hessian matrix. The proposed AdaGaussian successfully
reduces the complexity to the linear complexity 2N . The AdaGaussian optimizer com-
putes two kinds of gradients : the gradients of the residual f(x) and the gradients of the
loss L(x), whose time complexity is about two times of the first-order optimizers.

Optm. Time Complexity
SGD/Adam (Kingma, 2014 ; Amari, 1993) N

AdaHessian (Yao et al., 2021) N2

AdaGaussian 2N

TABLE 1.2 – Complexities of different optimizers.
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1.5 Efficient second-order optimization for the photome-
tric minimization loss

Photometric Minimization (PM) loss has been commonly used in visual perception
and visual odometry methods. Essentially, it measures the error in intensity differences
between the generated image and the original ground-truth image. Deep neural networks
that rely on this loss require efficient optimization methods for good performance.

In the past, traditional model-based approaches employed second-order Newton op-
timizer (Wallis, 1911). However, the second-order Newton method required higher com-
putation costs. In contrast, the Gaussian-Newton method was used for optimizing the PM
loss, but it is not an exact second-order method in theory and its convergence rate is
between that of first-order and second-order methods. To address this issue, an efficient
second-order optimization method (ESM) was developed for the PM loss, which ensures
quadratic convergence without the need for computing the time-consuming Hessian ma-
trix (Malis, 2004).

In the age of deep learning, numerous deep networks also use the PM loss (Godard et
al., 2019 ; Zhou et al., 2017 ; R. Wang et al., 2023 ; N. Yang et al., 2020 ; Zhan et al., 2020),
but only first-order optimizers such as SGD and Adam (Amari, 1993 ; Kingma, 2014) are
employed for their optimization. These optimizers require more convergence iterations
and are more prone to converge into a local minimum, while second-order optimizers
are more likely to find the global minimum. Motivated by this, the ESM-based LM loss is
proposed by taking an efficient second-order method into the PM loss-based optimization.
With the ESM-based LM loss, the deep adaptive Gaussian-Newton optimizer in the last
section can achieve a close-quadratic convergence.

1.5.1 Photometric minimization loss
This part describes the definition and formulation of the photometric minimization

loss (PM loss). Generally, the photometric minimization loss is defined as follows.

Definition 1.5.1 (The Photometric Minimization Loss). The photometric minimization
loss is the difference in pixel intensity between the generated image Ia

b and the ground-
truth image Ib.

where Ia
b is the generated image from view a to view b, Ib is the ground truth of view

b.
Usually, the photometric minimization loss is used with L1 loss as Eq. 1.34 or L2 loss

as Eq. 1.35.

l1 = ||L1||1 = ||Ia
b − Ib||1 (1.34)

l2 = ||L2||2 = 1
2 ||I

a
b − Ib||2 (1.35)
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1.5.2 Deep adaptive Gaussian-Newton optimizer with ESM-based
photometric minimization loss

As described in Appendix A, the update equation of ESM is :

∆x = −
(1

2(J(x) + J(x))T 1
2(J(x) + J(x))

)−1
· 12(J(x) + J(x))f(x) (1.36)

The term J(x) represents the gradient of the residual function f(x) with respect to the
ground truth image.

Let J̃ = 1
2(J(x) + J(x)), the update equation of the model parameters x becomes

∆x = −
(
J̃T J̃

)−1
· J̃f(x) (1.37)

For deep learning optimization problem, this equation will be transformed as :

∆x = −(1/
(
j̃⊙ j̃

)
)⊙ j̃f (1.38)

Using AdaGaussian optimizer, the update equation of the model parameters x be-
comes

∆x = −(1/
(
j̃⊙ j̃

)
)⊙ j̃l (1.39)

The photometric minimization loss can be represented by a mean square loss as shown
in Equation 1.35, where f(x) = ||Ia

b − Ib||1.
For a model with photometric minimization loss, there are three components : the

hidden layers of the network represented by xh, the prediction layer denoted as xp, and
the photometric minimization loss function lpm(x).

After incorporating the efficient second-order optimization method (ESM) into the
AdaGaussian optimizer, the equations for updating the gradient of the loss function l and
the gradient of the residual function f are as follows.

j̃l = 1
2(jl(x) + jl(x))

= ∂lpm

∂ 1
2(Ia

b + Ib)
·

∂ 1
2(Ia

b + Ib)
∂xp

· ∂xp

∂xh

(1.40)

j̃ = 1
2(j(x) + j(x))

= ∂f(x)
∂ 1

2(Ia
b + Ib)

·
∂ 1

2(Ia
b + Ib)

∂xp

· ∂xp

∂xh

(1.41)

where j(x), j(x) refer to the gradients relative to the generated image and the ground
truth image in the photometric minimization loss function.

In this way, the AdaGaussian optimizer updates the model parameters as follows.
For any hidden layers of the neural network, the Hessian diagonal becomes
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˜diag(G) = j̃⊙ j̃ (1.42)

The gradient of the loss function g becomes

g̃ = j̃l (1.43)

The update ∆x̃ of the model parameters become

∆x̃ = −δ
ρ̃1,t

ρ̃2,t

(1.44)

Same as the Eq. 1.29 and 1.30, the ρ̃1,t and ρ̃2,t are expressed as follows.

ρ̃1,t = (1− β1)
∑t

i=1 βt−i
1 g̃i

1− βt
1

(1.45)

ρ̃2,t =
( ˜diag(G)sm

t

)k
=


√√√√(1− β2)

∑t
i=1 βt−i

2
˜diag(G)s

i
˜diag(G)s

i

1− βt
2


k

(1.46)

1.6 Experiment results
In this experiment section, the dataset and evaluation metrics are first introduced. Pro-

posed optimization methods are evaluated on depth estimation benchmarks. Then, the
experiment results of the proposed AdaGaussian and efficient second-order optimization
method are shown in the two separated subsections.

1.6.1 Dataset
As the proposed optimization methods are evaluated by training depth estimation net-

works, two datasets with sparse LiDar depth annotations are used for experiments.
KITTI Depth ∗ (Eigen split (Eigen, Puhrsch, & Fergus, 2014)) : The KITTI Depth

dataset uses the Eigen train/test split (Eigen et al., 2014). The dataset contains 22,600
training stereo images, 888 validation stereo images, and 697 benchmark testing stereo
images. To ensure fair evaluation, the same code provided by (Godard, Mac Aodha, &
Brostow, 2017) was used to generate the ground truth depth maps. These maps were
created by re-projecting 3D points viewed from the velodyne laser to the left RGB camera.
The same cropping operation as in (Eigen et al., 2014) was applied, and the depth results
were tested with the original image resolution.

KITTI Odometry † : The KITTI Odometry dataset includes 11 sequences (seq 00→
10) that have camera pose annotations. Most previous works have used seq 00 → 08 for
training and seq 09→ 10 for testing.

∗. https ://www.cvlibs.net/datasets/kitti/eval_depth.phpbenchmark=depth_prediction
†. https ://www.cvlibs.net/datasets/kitti/eval_odometry.php
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1.6.2 Evaluation metrics
For depth estimation benchmark, there are two types of evaluation metrics : error

metrics and accuracy metrics. Each of them is introduced as follows.
Depth error metrics : abs rel, rel sqr, rmse, rmse log refer to absolute relative error,

relative square error, root-mean-square error and log root-mean-square error.
The absolute relative error is defined as :

abs rel = 1
N

N∑
i=1

|Zi − Z∗
i |

Zi

(1.47)

The relative square error is defined as :

rel sqr = 1
N

N∑
i=1

|Zi − Z∗
i |2

Zi

(1.48)

The root-mean-square error is defined as :

rmse =

√√√√ 1
N

N∑
i=1
|Zi − Z∗

i | (1.49)

The log root-mean-square error is defined as :

rmse log =

√√√√ 1
N

N∑
i=1
| log Zi − log Z∗

i | (1.50)

Z∗
i , Zi are the ground truth depth and predicted depth values.

Depth accuracy metric : The accuracy (0%→ 100%) of the depth Zi with threshold
τ is defined as follows :

max( Zi

Z∗
i

,
Z∗

i

Zi

) < τ (1.51)

where τ = 1.25, 1.252, 1.253.

1.6.3 Deep adaptive Gaussian-Newton optimizer
To demonstrate the effectiveness of the AdaGaussian optimizer, different depth esti-

mation benchmarks are utilized, ranging from unsupervised to supervised depth estima-
tion tasks. The unsupervised and supervised benchmarks for the depth estimation task
are evaluated separately. The following subsections provide detailed descriptions of the
specific settings for each benchmark.

1.6.3.1 Unsupervised Depth Estimation Benchmark : MonoDepth2

Setting : For this benchmark, Monodepth2 network is trained (Godard et al., 2019)
on KITTI depth eigen split dataset (Eigen et al., 2014 ; Godard et al., 2019). The stereo
and temporal loss functions are used for training Monodepth2. As the Guassian-Newton
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method is proposed for the least square problem, mean square loss on the original loss
functions is used in this experiment for all optimizers.

For the optimizers, the learning rate ranges from 1e-6 to 0.1 and the suitable learning
rate is used for different optimizers. The other optimizer super-parameters use default
values. A step learning rate schedule is used. The learning rate ×0.1 at epoch 15. All of
the experiments train the network for 66, 000 iterations, i.e. 20 epochs with batch size 12
on one A40 GPU.

Method
Depth Error Metrics↓

abs rel rel sqr rmse rmse log
SGD 0.154 1.145 5.616 0.231
Adam 0.120 0.879 5.144 0.209
This work 0.112 0.822 4.837 0.199

Method
Depth Accuracy Metric ↑ Mem (G) Time/Iter (s)

τ < 1.25 < 1.252 < 1.253

SGD 0.776 0.926 0.974 11 0.74
Adam 0.836 0.946 0.978 11 0.74
This work 0.861 0.954 0.980 14 0.85

TABLE 1.3 – The results of Monodepth2 network.

Figure 1.2 – Training losses of MonoDepth2 network.

Results : For the quantitative results, as shown in Tab. 1.3, the proposed second-order
optimization method achieves higher accuracy and lower error on this benchmark than the
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famous first-order methods. The proposed optimizer improves the absolute error 7%, 27%,
and improves the accuracy 3%, 11% for Adam and SGD optimizer separately. At the same
time, the training time only increases 15%.

The process of training qualitatively can be seen in Figure 1.2. the proposed optimizer
has a faster convergence speed, and the loss can reach a lower value.

Finally, the efficiency of the proposed optimizer can also be demonstrated in Fig.
1.2. For the training loss of 0.077, the proposed optimizer consumes only 42k iterations
(595min), while Adam needs 56k iterations (690min). The proposed optimization can use
less time than first-order optimizers to train the network.

1.6.3.2 Unsupervised Depth Estimation Benchmark : PlaneDepth

Setting : Besides the famous Monodepth2 network, we also evaluate different opti-
mizers with the newest state-of-the-art depth network, PlaneDepth (R. Wang et al., 2023),
which is an improved model based on Monodepth2 (Godard et al., 2019). Therefore, this
experiment uses the same dataset configuration.

For the optimizers, we also explore different learning rates from 1e − 6 to 0.1. We
report the results of SGD, Adam, and the proposed optimizer with learning rate 1e −
3, 1e−5, 1e−5 separately. The networks are trained for 112500 iterations with batch size
8 on one A40 GPU.

Method
Depth Error Metrics↓

abs rel rel sqr rmse rmse log
SGD 0.244 3.344 7.770 0.318
Adam 0.104 0.689 4.535 0.197
This work 0.095 0.676 4.609 0.187

Method
Depth Accuracy Metric ↑ Mem (G) Time/Iter (s)

τ < 1.25 < 1.252 < 1.253

SGD 0.713 0.864 0.934 20 0.62
Adam 0.868 0.954 0.979 20 0.71
This work 0.901 0.964 0.983 34 0.97

TABLE 1.4 – The results of PlaneDepth network.

Results : In Table 1.4, we have presented the depth estimation error, accuracy results
of the PlaneDepth, memory cost, and training time of the optimizer. We have compared
our proposed optimizer with two popular first-order optimizers, SGD and Adam. Our op-
timizer has shown significant improvements in terms of absolute relative error and depth
accuracy. Specifically, it has improved by 60% and 27%, respectively, compared to SGD,
and 9% and 4%, respectively, compared to Adam. Moreover, the training time has only
increased by 0.35s and 0.26s compared to the first-order optimization methods.

We have presented the convergence process in Figure 1.3. The proposed optimizer
shows a significantly faster convergence speed during the early iterations of the training
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Figure 1.3 – PlaneDepth network.

process. Moreover, the training loss is the lowest, which indicates that the proposed opti-
mizer can find the global minimum easier.

Furthermore, to show the efficiency of the proposed optimizer, the training time is
compared. To reach the same loss (24) as Fig. 1.3, the proposed optimizer only needs
17.5k iterations (283min), while Adam needs 32k iterations (379min), SGD consumes
72k iterations (744min). This suggests that the proposed optimizer is more efficient than
common first-order optimizers.

1.6.3.3 Supervised Depth Estimation Benchmark : MIMdepth

The traditional Gauss-Newton method is commonly used to optimize the cost function
for image photometric minimization in direct visual odometry (Comport et al., 2010). In
order to further test the proposed optimizer’s generalization ability, we conducted experi-
ments on unsupervised depth estimation, which is trained using the photometric minimi-
zation loss. Additionally, we also carried out experiments on a supervised dense prediction
task, specifically the supervised monocular depth estimation benchmark.

Setting : For this benchmark, we use the newest state-of-the-art depth network, MIM-
depth (Z. Xie et al., 2023). MIMdepth is trained on the KITTI depth dataset with ground-
truth depth annotations (Z. Xie et al., 2023).

For the optimizers, we also explore the learning rate from 1e-6 to 0.1 for each opti-
mizer. The default learning rate schedule is used (Z. Xie et al., 2023). The learning rate
increase to the maximum at the first half of iterations and then decreases to the minimum
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at the last half of iterations. The network is trained for 25 epochs with batch size 6 on one
A40 GPU.

Method
Depth Error Metrics↓

abs rel rel sqr rmse rmse log
SGD 0.143 0.689 4.393 0.183
Adam 0.057 0.170 2.171 0.084
This work 0.053 0.157 2.118 0.081

Method
Depth Accuracy Metric ↑

τ < 1.25 < 1.252 < 1.253

SGD 0.822 0.961 0.993
Adam 0.970 0.997 0.999
This work 0.972 0.997 0.999

TABLE 1.5 – Results of MIM-Depth network.

Figure 1.4 – Training losses of MIMdepth network.

Results : As shown in Tab. 1.5, we compare the proposed optimizer with SGD and
Adam. Because the official code of MIMdepth (Z. Xie et al., 2023) does not support
saving the training time yet, we do not report the training time. For the depth absolute
relative error, the proposed optimizer reduces 63%, 7% errors compared with SGD and
Adam. For depth accuracy, the proposed optimizer improves 15%, 0.2% than the first-
order methods separately on this state-of-the-art depth estimation benchmark.
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Fig. 1.4 illustrates the optimization process of MIMdepth. The proposed optimizer
shows a similar convergence rate to Adam. However, it converges faster at the early stage
and achieves lower loss values in the end. To reach the same loss (0.13), Adam consumes
13 iterations, while the proposed optimizer uses only half iterations, which means less
training time.

1.6.3.4 Compare with second-order optimizer

In the above experiments, we compare the proposed optimizer with the most famous
first-order optimizers. In this part, we further compare the optimizer with more recent
approximated second-order optimizers.

Method
Depth Error Metrics↓

abs rel rel sqr rmse rmse log
AdaHessian 0.118 0.871 5.016 0.202
This work 0.112 0.822 4.837 0.199

Method
Depth Accuracy Metric ↑ Mem (G) Time/Iter (s)

τ < 1.25 < 1.252 < 1.253

AdaHessian 0.844 0.949 0.979 20 1.46
This work 0.861 0.954 0.980 14 0.85

TABLE 1.6 – The results of comparing with Newton-based second-order optimizers.

τ < 1.25 accuracy τ < 1.252 accuracy τ < 1.253 accuracy

abs rel error rel sqr error rmse error rmse log error

Figure 1.5 – Accuracy and error comparison along training iterations between AdaHes-
sian (blue) and the proposed optimizer (orange).

This experiment compares the proposed optimizer with state-of-the-art second-order
optimizers : AdaHessian (Yao et al., 2021). The Monodepth2 benchmark is used. Lear-
ning rates are 0.1, 1e-4 for AdaHessian and the proposed optimizer. As shown in Tab. 1.6,
the proposed optimizer produces better results with fewer memory costs and optimization
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time. The AdaHessian optimizer consumes almost 2× training time, and increases +43%
memory cost than the proposed optimizer. Based on Fig. 1.5, the proposed optimizer is
more efficient than AdaHessian optimizer. For accuracy (τ < 1.25), the proposed opti-
mizer only needs about 30k iterations (425min) to reach 85% accuracy, but AdaHessian
optimizer consumes about 42k iterations (1022min) to have the same accuracy.

Finally, their training losses are also reported to show that the proposed optimizer
makes deep learning network easier to find a better local minimum. For the same loss
value as Fig. 1.6, the proposed optimizer only needs 14k iterations (198min) while Ada-
Hessian needs 20k iterations (486min). The new optimizer is 2.45 times faster than the
previous second-order solution.

Figure 1.6 – Training losses of comparing second-order optimizers

1.6.4 Efficient second-order optimization for photometric minimiza-
tion loss

To evaluate the performance of the efficient second-order optimization method (ESM)
on deep networks with photometric minimization loss, this section conducts experiments
by comparing several different Gaussian-Newton methods. The details of these methods
can refer to Appendix A. The difference between these methods lies in the gradient com-
putation, shown as follows.

Baseline :
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g = ∂l
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· ∂Ia

∂x
(1.52)

Forward Compositional (FC) :
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b

· ∂Ia
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∂x (1.53)

Inverse Compositional (IC) :
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∂Ib

· ∂Ib

∂x
(1.54)

Efficient Second-order Method (ESM) :

g = ∂l

∂ 1
2(Ia

b + Ib)
·

∂ 1
2(Ia

b + Ib)
∂x

(1.55)

Where Ia, Ib, Ia
b refer to the source image, the target image, and the warped image of

the target view. l is the loss. x is model’s parameters.

Figure 1.7 – Optimization process of three kinds of Gaussian-Newton optimizers : FC,
IC, ESM.

In the training process, as illustrated in Figure 1.7, the IC and ESM methods converge
quickly during the early stages of training. This indicates that the image gradient of the
target image helps the deep neural network to converge faster in the early stages of trai-
ning. At the end stage of training, the FC method shows lower losses, but the ESM method
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converges to similar loss values. To summarize, the ESM method is a mixed efficient me-
thod that has the advantages of both IC and FC methods. It converges quickly as IC during
the early stages of training and finally converges to a low loss value close to FC.

Table 1.7 provides the accuracy and errors of depth prediction in the experiment,
where the training set is video 00-08 and the test set is video 10. As shown in the table, the
ESM method performs the best in terms of prediction accuracy and error. And the training
time and memory cost of these methods is almost the same. Therefore, the ESM-based
Gaussian-Newton method is the most optimal choice.

Method
Depth Error Metrics Depth Accuracy Metric

abs rel rel sqr rmse rmse log τ < 1.25 < 1.252 < 1.253

Baseline 0.187 5.760 5.461 0.263 0.903 0.950 0.969
FC 0.079 0.375 2.912 0.177 0.914 0.960 0.979
IC 0.096 0.861 3.581 0.200 0.904 0.956 0.977
ESM 0.077 0.362 2.947 0.162 0.919 0.966 0.984

TABLE 1.7 – Depth prediction accuracy and error on KITTI Odometry video id 10 using
the stereo network.

Apart from the quantitative results, there are also qualitative results to consider. Gene-
rally, stereo depth estimation models face an edge-blurring problem. This occurs because
the stereo-matching warped images cannot avoid the hallucinated edge area, which even-
tually causes the predicted depth map to blur. The FC method computes the image gra-
dients of the generated image, which will be affected by the edge-blurring problem. The
IC and ESM compute the image gradients of the ground truth image, which will avoid
the edge-blurring problem. The image in Fig. 1.8 illustrates that the Gaussian-Newton
optimization method based on IC and ESM can solve this problem of edge blurring.

1.7 Conclusion
This chapter has introduced the foundational optimization methods for the upcoming

chapters. It begins by providing background knowledge on optimization, followed by pro-
posing a new efficient Gaussian-Newton method for deep learning. Compared with the
previous first-order or approximated second-order optimizers, the proposed method has a
better performance on time and accuracy. Additionally, the chapter explores the optimiza-
tion problem of photometric minimization loss which is widely used in visual perception
and visual odometry. Motivated by the efficient second-order optimization method (ESM)
in model-based algorithms, the ESM is first used for the optimization of deep learning.
The ESM shows better convergence results than the previous. The proposed methods in
this chapter indicate that traditional optimization techniques still have significant potential
to improve the performance of state-of-the-art deep learning networks.
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Figure 1.8 – The visualization of three different optimization ways





CHAPTER 2
Depth Representation

Visual perception is the most important ability for autonomous driving vehicles.
Low-level information such as geometric representation plays a crucial role in
enabling more complex downstream tasks. Among the different types of low-level
geometric representations, depth information is the most significant for visual
odometry tasks. Stereo matching methods are widely used to obtain depth in-
formation as they offer more reliable performance than monocular depth esti-
mation. However, current 2D-3D stereo methods have limitations due to fixed
disparity searching space in stereo networks and dynamic disparity ranges in
different images. To overcome these limitations, this chapter first explores the
self-supervised stereo network for efficient optimization and then proposes an
adaptive 2D-3D stereo network for the disparity domain gap in different images.
Finally, a new one-stage 3D stereo network is developed to avoid the feature
problems in 2D-3D stereo networks.

35
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2.1 Introduction
Accurate depth estimation is crucial for the success of visual autonomous driving ap-

plications, as it provides essential information for downstream tasks, such as 3D semantic
completation (Y. Li et al., 2023) and localization (N. Yang et al., 2020 ; Zhan et al., 2020).
This is achieved through a high-performing depth estimation network. In practice, the
stereo-matching network shows more robust performance than the monocular networks
(J. Li et al., 2022 ; Xu et al., 2023). The stereo network is to accurately estimate the depth
of objects in the visual scene, enabling the vehicle to perceive the physical world in real-
time. Therefore, improving the accuracy and efficiency of stereo-matching networks is
important. It ensures that autonomous driving systems are reliable, efficient, and robust,
allowing them to make precise decisions based on the generated depth maps.

Stereo matching is one of the most crucial computer vision tasks. It has undergone va-
rious stages of development, including traditional algorithms such as SGM (Hirschmuller,
2005), convolutional networks like MC-CNN (Zbontar, LeCun, et al., 2016), two-stage
stereo networks like PSMNet (Chang & Chen, 2018), and recurrent stereo networks
(Lipson, Teed, & Deng, 2021 ; Xu et al., 2023). The age of deep learning techniques
has seen state-of-the-art stereo matching methods being dominated by deep stereo mat-
ching networks. The most successful solutions are the two-stage 2D-3D methods (Chang
& Chen, 2018 ; Gu et al., 2020). Even the newest state-of-the-art recurrent stereo networks
(Xu et al., 2023) highly rely on the two-stage stereo networks (Chang & Chen, 2018). The
early 2D-3D two-stage methods were introduced in (Kendall et al., 2017 ; Chang & Chen,
2018). These stereo networks contain a feature extraction network and a 3D CNN-based
matching network. Since then, many methods have been proposed based on this two-stage
architecture (Gu et al., 2020 ; X. Guo, Yang, Yang, Wang, & Li, 2019).

Recurrent stereo networks have recently achieved state-of-the-art accuracy perfor-
mance, as cited in (Xu et al., 2023 ; Lipson et al., 2021 ; J. Li et al., 2022). These me-
thods work exceptionally well on high-resolution stereo images. However, their inference
speed is affected by the time-consuming design of recurrent GRU units. Additionally, re-
current stereo networks can be combined with the two-stage 2D-3D stereo network, as
demonstrated in (Xu et al., 2023).

Considering the robustness of different data domains and model complexity, the two-
stage 2D-3D stereo network outperforms other solutions. However, two-stage 2D-3D ste-
reo networks also have a lot of problems. Firstly, the ground truth depth or disparity
annotations are difficult to be obtained. Sparse depth annotations are computed from ca-
librated LiDar sensors, which is expensive and time-consuming. Secondly, the disparity
distributions of each image are different. The fixed disparity searching space in the two-
stage 2D-3D stereo network limits the further improvement of the disparity prediction.
Thirdly, the two-stage 2D-3D stereo networks build 4D cost volume with downsampled
2D features. The quality of 2D features is hard to be optimal (Y. Zhang et al., 2020).
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To overcome the problems of the previous works. This chapter will propose new stereo
networks : the pose-supervised stereo network, the adaptive stereo network, and the one-
stage stereo network. The pose-supervised stereo network, which utilizes stereo-matching
and temporal-matching losses, demonstrates more robust and reliable performance than
the popular monocular networks. To realize more accurate depth estimation results, a
disparity-adaptive stereo network is proposed. Finally, a one-stage 3D end-to-end stereo
network is proposed. The one-state network builds 4D cost volume in original resolution
and learns disparity with an end-to-end 3D CNN.

2.2 Related works
In this section, abundant analysis and comparison are made for the methods that ob-

tain depth information, which is a critical geometric representation. These depth estima-
tion methods are discussed based on the paradigm, the architecture, and the optimization
losses, as shown in Fig. 2.1. In addition, with depth information, 3D reconstruction and
3D completion can be realized for different objects or scenes.

Figure 2.1 – Related works of depth estimation.

2.2.1 Paradigm of depth estimation
To obtain the depth information of a given image, there are two kinds of models, i.e.,

monocular methods and stereo methods. The monocular solution is an ill-posed problem.
Although monocular methods show satisfied accuracy with the deep learning networks
on the same data domain, the generalization ability of these methods is still far from the
stereo solutions (W. Yin et al., 2023). Motivated by the stereo vision of human eyes, the
stereo depth estimation methods promise a more reliable and robust depth result (Chang
& Chen, 2018).

Currently, the typical monocular methods are based on an end-to-end auto-encoder
architecture, such as the convolution network (Zhou et al., 2017 ; Godard et al., 2019),
the Transformer network (Ranftl, Bochkovskiy, & Koltun, 2021). In contrast, most ste-
reo methods are based on the feature matching between the stereo images (Scharstein &
Szeliski, 2002 ; Chang & Chen, 2018).
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2.2.2 Architecture of depth estimation
The architecture of the depth estimation has evolved from the classical computer vi-

sion algorithm (Scharstein & Szeliski, 2002), the convolution network (CNN) (Godard et
al., 2019), the Vision Transformer network (ViT) (Ranftl et al., 2021) and the recurrent
network (RNN) (Lipson et al., 2021).

Firstly, the traditional stereo methods are based on dense matching or feature mat-
ching using the classical computer vision features (Lowe, 2004). These methods obtain
the depth by solving the stereo matching with four steps (Scharstein & Szeliski, 2002) :
feature extraction, feature matching across stereo images, disparity computation, and dis-
parity refinement, post-processing. The first two modules construct the cost volume. The
third module regularizes the cost volume and then finds an initial estimate of the disparity
map. The last module further refines the disparity map.

Since the success of the convolution network on computer vision, CNN has also been
used for depth estimation (Zbontar et al., 2016 ; Eigen et al., 2014). The early work has
demonstrated the possibility of using deep learning for stereo matching (Zbontar et al.,
2016). Then, the famous auto-encoder architecture is also used for this task (Mayer et al.,
2016 ; Eigen et al., 2014 ; Godard et al., 2017).

Furthermore, based on the stereo-matching paradigm, the 2D-3D two-stage CNN me-
thods were proposed (Kendall et al., 2017 ; Chang & Chen, 2018). The two-stage stereo
networks have a 2D CNN-based feature extraction network and a 3D CNN-based feature
matching network. Because 2D-3D stereo networks have better performance and follow
the same pipeline of traditional stereo matching, more deep networks have been proposed
to improve the 2D-3D two-stage architecture (Gu et al., 2020 ; X. Guo et al., 2019).

More recently, with the superior ability of the Vision Transformer network (Han et al.,
2022), depth estimation method using Vision Transformer Network also shows impres-
sive results (Ranftl et al., 2021). Vision Transformer can model the long-range context
with self-attention operation (Vaswani et al., 2017), which can help to solve the depth
estimation of ambiguous or homogeneous areas.

Finally, recurrent network-based methods have achieved state-of-the-art accuracy per-
formance (Xu et al., 2023 ; Lipson et al., 2021 ; J. Li et al., 2022). With the recurrent
disparity refinement, these methods perform especially well on high-resolution images,
but their inference speed is affected by the time-consuming design of recurrent GRU
units. Recurrent stereo networks can also be combined with the 2D-3D two-stage stereo
network (Xu et al., 2023).

2.2.3 Optimization losses of depth estimation
As previously mentioned, the accuracy of depth estimation models is heavily influen-

ced by the optimization methods used. This section will focus on analyzing various opti-
mization losses that are applicable to deep learning methods, as they have been domina-
ting the state-of-the-art depth estimation techniques.
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Obtaining accurate depth labels for real-world data is a challenging task, as dense
ground truth depths are impossible to obtain. To tackle this issue, previous works have
utilized simulation data with dense ground truth depths to pre-train deep networks. These
networks are then fine-tuned on real-world datasets with sparse ground truth depths obtai-
ned from LiDar sensors. Supervised training is widely used for both monocular and ste-
reo depth estimation networks. In the training of monocular networks, data augmentation
plays a crucial role in ensuring stable optimization. Recent studies suggest that network
pre-training is also crucial for achieving state-of-the-art depth estimation accuracy (Z. Xie
et al., 2023 ; Xu et al., 2023).

Obtaining ground truth depth labels can be difficult, which is why self-supervised
training methods based on geometric constraints are becoming more popular. Two types
of geometric constraints are typically used to create self-supervised optimization losses :
stereo-matching and temporal-matching constraints. These constraints are both the image
photometric minimization loss, which is calculated based on the raw image intensity.

Left image Right image

Left depth

Stereo-warping

Generated 
left image

Stereo-matching 

constraint

reference image current image

reference depth

Temporal-warping

Generated 
reference image

Temporal-matching 
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Camera pose
From the reference to 
the current

Figure 2.2 – Stereo-matching constraint and temporal-matching constraint.

Stereo cameras have an intrinsic that can be used to train a depth estimation network.
After being calibrated, the stereo images provide a strong stereo-matching constraint,
which is shown in Fig. 2.2. The depth prediction of the network is used to create the
stereo-matching constraint. MonoDepth (Godard et al., 2017) is an early-stage method
that uses the stereo-matching constraint to train a depth network. This method is widely
used in future depth estimation networks, such as (Godard et al., 2019 ; N. Yang et al.,
2020 ; Zhan et al., 2020).

Self-supervised training can also use the temporal-matching constraint of adjacent
frames in a video sequence. This constraint is based on the depth prediction and relative
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camera pose of the frames, as shown in Fig. 2.2. SFMLearner (Zhou et al., 2017) is an
early-stage network that is optimized with the temporal-matching constraint. Unlike the
stereo-matching constraint, the temporal-matching constraint requires the relative camera
pose of the adjacent frames, which is usually predicted by a convolution network (Zhou
et al., 2017 ; Godard et al., 2019) or a model-based visual odometry method (C. Wang,
Buenaposada, Zhu, & Lucey, 2018).

As the temporal-matching is not a perfect matching constraint, different mask me-
thods have been proposed to mask the temporal-matching loss of each pixel (Klodt &
Vedaldi, 2018 ; Mahjourian, Wicke, & Angelova, 2018 ; G. Wang, Wang, Liu, & Chen,
2019 ; Godard et al., 2019). These mask methods can be categorized as binary masks or
soft masks.

In public datasets, there are no ground truth masks available for binary masks. There-
fore, the previous methods are all based on hand-craft design. These masks are designed
based on different criteria, but they only solve part of the problems related to temporal-
matching constraint. For instance, Principled mask in (Mahjourian et al., 2018) computes
the binary mask by considering the image warping alignment. It filters out those pixels
that are out of the image boundary. Similarly, Monodepth2 (Godard et al., 2019) proposes
an auto-mask that filters out pixels from a static camera, an object moving at the same
relative translation to the camera, or a homogeneous texture. Then, an overlap mask and
a blank mask in (G. Wang et al., 2019) are also proposed based on the image warping ali-
gnment. However, these masks only partly solve several occlusion cases. Finally, DFNet
and UnOS (Y. Zou, Luo, & Huang, 2018 ; Y. Wang et al., 2019) generate a binary mask
from the forward-backward consistency of optical flow. But, overall, these binary masks
only solve part of the problems in temporal-matching constraint.

Using soft masks or uncertainties, losses of each pixel can be re-weighted instead
of masking them. The SFMLearner (Zhou et al., 2017) first introduced an unsupervised
explainability mask, which is generated by a network and optimized with the temporal-
matching loss. This is done by multiplying it with the loss. To prevent it from diminishing
to zero during loss minimization, there is a regularization term on this mask. Similarly,
SFMfromSFM (Klodt & Vedaldi, 2018) proposed another probability uncertainty mask
that also needs a log regularization term to avoid the loss vanishing to zero. Subsequently,
D3VO (N. Yang et al., 2020) utilized the same uncertainty mask, which borrows from the
concept of an earlier Bayesian uncertainty mask (Kendall & Gal, 2017), that employs a
Gaussian Distribution as the posterior probability distribution. Furthermore, SFMfrom-
SFM (Klodt & Vedaldi, 2018) replaces it with a Laplace distribution. In addition to the
above, a depth scale consistency mask (Bian et al., 2019), another learnable soft mask,
has been proposed to address moving objects and occlusions. Some studies also incorpo-
rate optical flow and semantic segmentation to produce soft masks that represent moving
objects (Ranjan et al., 2019). The soft mask strategy can mitigate the impact of noisy
pixels, however, negative effects remain. Essentially, the soft mask serves as an attention
mechanism that re-weights the losses of each pixel.
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2.2.4 Applications of depth estimation
The 3D reconstruction is a visual task that estimates the 3D structure of an object and

scenes based on the images and the depths information. Usually, according to the different
way of obtaining depth, there are single-view and multi-view 3D reconstruction methods.
The single-view methods learns shape priors from the data (Choy, Xu, Gwak, Chen, &
Savarese, 2016 ; Fan, Su, & Guibas, 2017). In contrast, the multi-view methods realize
the reconstruction by the 3D points of different views (Newcombe, Izadi, et al., 2011 ; Gu
et al., 2020).

Different from the 3D reconstruction, the 3D completion requires to estimate the dense
structure for every 3D position, especially for the halluciante or occupancies position. For
3D completion, the input becomes 3D information instead of 2D information. For object-
level 3D completion, 3D completion structure can be extracted from the point (Yuan,
Khot, Held, Mertz, & Hebert, 2018 ; Yan et al., 2022), voxels (Chibane, Alldieck, & Pons-
Moll, 2020 ; X. Wang, Ang, & Lee, 2021), and distance fields (Dai, Ruizhongtai Qi, &
Nießner, 2017). For the scene-level 3D completion, indoor scene completion an outdoor
scene completion are explored separately with 3D information input, such as RGB-D, or
LiDar data (Dai, Diller, & Nießner, 2020 ; Vizzo et al., 2022).

2.3 Pose-supervised stereo network
Many approaches in deep learning have focused on using monocular images to esti-

mate depth maps (Godard et al., 2017 ; Zhou et al., 2017 ; Godard et al., 2019 ; Zhan et al.,
2020). However, monocular depth estimation is an ill-posed problem, and as a result, the
scale factor cannot be accurately estimated. In this study, stereo depth estimation DNNs
are proposed since they are more reliable and stable (Chang & Chen, 2018). Recent stu-
dies have shown that deep learning-based approaches (Chang & Chen, 2018) can perform
much better than traditional stereo-matching approaches (Hirschmuller, 2005 ; Yamagu-
chi, McAllester, & Urtasun, 2014) and provide more accurate depth estimation. Some
deep learning-based methods follow the traditional stereo matching pipeline, making this
pipeline differential and trainable with deep learning (Chang & Chen, 2018). Other stu-
dies use a simple encoder-decoder architecture to predict the disparity and depth (Mayer
et al., 2016).

The success of stereo networks depends not only on the network architectures but also
on suitable optimization loss functions.

Deep neural network training can be self-supervised or supervised. Self-supervised
approaches can use the stereo-matching constraint in (Godard et al., 2017, 2019) or use
the temporal-matching constraint in (Zhou et al., 2017 ; Zhan et al., 2020 ; Godard et
al., 2019). Supervised stereo depth estimation networks can be trained with ground truth
depth maps (Chang & Chen, 2018). The self-supervised learning method is commonly
used since it does not require ground truth depth maps for training, making it easier and
cheaper to implement. However, it often requires large amounts of data to achieve high
accuracy. On the other hand, the supervised regression method is more accurate but can
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be more expensive to implement because it requires the annotations of ground truth depth
maps.

Generating accurate depth maps for all pixels in real-world environments is a challen-
ging task, especially for dense depth maps. Previous studies have relied on self-supervised
loss functions for monocular depth estimation techniques (Godard et al., 2019 ; Zhou et
al., 2017), while stereo methods commonly train the network on large-scale simulation da-
tasets and then fine-tune it on small-scale real datasets. The latter datasets include sparse
depth annotations generated from 3D LiDar sensors. This section explores self-supervised
loss functions for training the popular two-stage 2D-3D stereo network (Chang & Chen,
2018).

2.3.1 Supervised stereo network baseline
2.3.1.1 Two-stage 2D-3D stereo network

The latest advanced deep stereo network is based on the 2D-3D stereo network. The
structure of the structure is shown as Fig. 2.3. This network follows the traditional stereo-
matching method which involves feature extraction, feature matching across images, dis-
parity computation, refinement, and post-processing (Scharstein & Szeliski, 2002). For
the 2D-3D stereo network, the feature extraction module is the 2D CNN, while the feature
matching module is the 3D network. The Soft Argmin disparity prediction layer handles
the disparity computation by computing the product of the disparity searching space and
the predicted differential probability (Kendall et al., 2017 ; Chang & Chen, 2018). The
Soft Argmin layer makes the disparity computation module differential, and the end-to-
end training of the stereo network becomes possible.

Feature cost volume2D CNN 3D CNN

0
1
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...

Disparity 
searching 

spaceProbability

Disparity 
searching space

0

1

𝐷-1
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Soft Argmin Layer

Disparity 
prediction

Left image

Right image

Left feature

Right feature

Figure 2.3 – Structure of two-stage 2D-3D stereo network.

In the 2D-3D stereo network, a fixed disparity range is used in both the feature cost
volume building module and the soft Argmin disparity prediction layer. This fixed dispa-
rity range is pre-defined and uniform, and it is commonly used across different methods
and datasets (Scharstein & Szeliski, 2002).
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To obtain the depth Z with the stereo network, the network first predicts the disparity
map D.

D = SN(IL, IR) (2.1)

where SN is the 2D-3D stereo network. IL, IR are the left image and the right image.
As shown in Eq. 2.2, the depth map Z can be transformed using the camera intrinsics :

focal length f and stereo baseline b.

Z = f · b
D + ϵ

(2.2)

To prevent infinity when D = 0, a small shifting value ϵ is added.
In previous works, most 2D-3D stereo networks are optimized with depth-supervised

loss. They are first trained on large-scale simulation datasets, then are fine-tuned on small-
scale real data with sparse depth maps. For these methods, the depth-supervised loss func-
tion is used for optimization, which is described as follows.

2.3.1.2 Depth-supervised loss

The supervised training needs ground truth disparity (depth) annotations. For the si-
mulation data, there are easy-obtained dense ground truth disparity labels to train the
network (Mayer et al., 2016). For the real-world data, only parts of the datasets have the
sparse ground truth depth (provided by the 3D LiDar) (Menze & Geiger, 2015).

To train the stereo network in a supervised way, the smooth L1 loss function is used
in the previous works (Chang & Chen, 2018 ; Xu et al., 2023). The L1 loss function for
the stereo network is shown in Eq. 2.3.

l1 = 1
N

∑
p∈P
|D(p)− D̂(p)| (2.3)

where P is the image coordinates, p is the 2D Pixel Coordinates Vector, p = (u; v),
D(p), D̂(p) are the ground truth and predicted disparity value on p position.

Obtaining supervised training data for stereo networks can be challenging due to va-
rious factors such as the quality of the dataset and the difficulty of obtaining accurate
ground truth depth annotations. Even annotations from other sensors such as LiDar may
not be completely reliable, especially for distant or translucent objects. Moreover, external
factors such as rain and fog can introduce noise into the signal by reflecting the LIDAR
pulse. Given these challenges, self-supervised training methods are becoming increasin-
gly attractive for training stereo networks, as they do not require high-quality disparity
annotations for real data.

With the excellent performance of self-supervised learning using stereo-matching
constraint (Godard et al., 2017) and temporal-matching constraint (Zhou et al., 2017),
researchers have been increasingly focusing on self-supervised optimization for depth es-
timation, particularly for the monocular depth estimation networks (Godard et al., 2019 ;
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Zhan et al., 2020). The following sections delve into the exploration of self-supervised op-
timization and further pose-supervised optimization for stereo depth estimation networks
(Chang & Chen, 2018).

2.3.2 Pose-supervised depth estimation stereo network
Obtaining dense ground truth depth labels is a challenging task, which makes it ne-

cessary to explore alternative optimization methods. Previous works have shown some
improvements by using unsupervised stereo-matching losses to optimize stereo networks
. Additionally, self-supervised monocular depth estimation networks have also achieved
impressive accuracy in comparison to supervised methods (Godard et al., 2019 ; R. Wang
et al., 2023). Due to these advantages and the cost-effectiveness, a new stereo network
called Pose-supervised Depth Estimation stereo Network (PDENet) has been proposed.
PDENet uses temporal-matching loss to provide a stronger photometric minimization
constraint for optimizing the stereo depth network.

Stereo-matching loss

The stereo-matching loss is computing the pixel intensity error between the ground
truth image IL and the generated image IR

L . The generated image is obtained with the
image warping layer, which depends on the predicted disparity DL and the source image
IR.

The equation of stereo-matching loss is shown as follows. The L1 loss between the
ground truth and the generated images is computed.

lR→L = 1
N

∑
p∈PL

|(IL(p)− IR
L (p)| (2.4)

where p = (u, v) indicates the image pixel, P is the image coordinates, I(p) is the
intensity on pixel p. IR

L (p) is the pixel generated from the right image to the left image.
(IL(p) is the pixels of the ground truth left image.

The warped image IR
L is computed as follows. Eq. 2.6 computes the new left image

coordinates PL = (UL; VL). Then Eq. 2.5 generates the warped left image IR
L .

IR
L = W(IR, PL) (2.5)

UL = UR + D̂L (2.6)

where P = (U; V) is the image coordinates, U is the horizontal image coordinates,
D̂L is the predicted disparity map, W is the image warping layer.

Temporal-matching loss

Same as the stereo-matching loss, the temporal-matching loss is also an intensity error
between the ground truth image Ir and the generated image Ic

r. The difference is that the
temporal-matching loss computes the temporal-warped image Ic

r instead of the stereo-
warped image IR

L . Under the context of the temporal-matching constraint, the reference
view and the current view usually refer to the frame of time t− 1 and the frame of time t.
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Firstly, with the example of the temporal-matching loss on the reference view, the
temporal-matching loss is shown as Eq. 2.7.

lc→r = 1
N

∑
p∈Pr

|Ir(p)− Ic
r(p)|, (2.7)

where p = (u, v) indicates the image pixel, Pr is the image coordinates on the reference
view, I(p) is the intensity on pixel p. Ic

r(p) is the pixel generated from the current image
to the reference image. (Ir(p) is the pixels of the ground truth reference image.

The warped image Ic
r is computed as follows. Firstly, Eq. 2.8 computes each warped

pixel position pr ∈ Pr based on the current image coordinates pc ∈ Pc.

pc = [uc; vc]
pc = [pc; 1]
qc = K−1pc

mc = Zc × qc

mc = [mc; 1]
[Xr; Yr; Zr; 1] = mr = rTc ·mc

mr = [Xr; Yr; Zr]
qr = mr/Zr

pr = K× qr = [ur; vr; 1]
pr = [ur; vr]

(2.8)

where q is the 2D normalized coordinates, m is the 3D coordinates. Assuming that the
reference and current images are taken by the same camera, K is a 3 × 3 matrix that
contains the camera’s intrinsic parameters. The matrix cTr is a 4×4 matrix that represents
the pose of the reference frame in relation to the current frame. Lastly, Zr is a matrix of
size rows × cols that contains the depth information of the 3D points in the scene with
respect to the reference frame.

Although the camera pose may not be available, it can be captured by GPS or IMU
sensors at a low cost or predicted using a visual odometry model. As a result, the stereo
network that uses temporal-matching optimization loss to estimate depth is called the
Pose-supervised Depth Estimation Network, or PDENet for short.

Then, the warped image Ic
r from the current to the reference is obtained by image

warping W(·) as Eq. 2.9.

Ic
r = W(Ic, Pr) (2.9)

Besides the temporal-matching loss bc→r on the reference view, the temporal-matching
loss lr→c as shown in Eq. 2.10 on the current view is also considered in practice. This can
provide stronger temporal-matching constraints for optimizing the depth network.

lr→c = 1
N

∑
p∈Pc

|Ic(p)− Ir
c (p)| (2.10)
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Disparity structure similarity loss

The Structural Similarity Index (SSIM) is a metric used to measure the similarity
between two images (Z. Wang, Bovik, Sheikh, & Simoncelli, 2004). In this context, SSIM
is used to compare generated images with ground truth images. Additionally, SSIM loss
is commonly used in self-supervised learning methods for depth estimation, where it is
referred to as disparity structure similarity (Godard et al., 2017, 2019).

The SSIM loss is shown as the follows.

lSSIM =
∑
p∈P

1
2(1− SSIM(Ib, Ia

b )(p)) (2.11)

The details of the SSIM measurement are shown as Eq. 2.12. Let µx and µy be the
mean pixel intensity of images Ix, Iy, respectively. Let σ2

x and σ2
y be the variances of

images Ix, Iy, and let σxy be the covariance of images Ix, Iy. Additionally, let c1 and c2 be
two variables that help stabilize the division in cases of weak denominator.

SSIM(Ix, Iy) = (2µxµy + c1)(2σxy + c2)
(µ2

x + µ2
y + c1)(σ2

x + σ2
y + c2)

(2.12)

In practice, the SSIM loss is applied for three generated images IR
L , Ic

r, Ir
c. The equation

is shown as follows.

lSSIM =
∑

p∈PL

1
2(1− SSIM(IL, IR

L)(p))

+
∑

p∈Pr

1
2(1− SSIM(Ir, Ic

r)(p)) +
∑

p∈Pc

1
2(1− SSIM(Ic, Ir

c)(p))
(2.13)

Brightness robustness loss

In previous methods, the stereo-matching loss and the temporal-matching loss were
optimized using L1 loss (Godard et al., 2019) or L2/MSE loss (Malis, 2004). However,
these loss functions are not robust when it comes to image intensities noise due to the
brightness discrepancy problem caused by camera view changes.

To keep the loss be robust for the brightness discrepancy of different camera views,
the loss is modeled with the image’s local patches instead of the previous single pixel in-
tensity. Furthermore, instead of simply summing or averaging the error of the local patch,
the well-known zero mean normalized cross-correlation C(p) is introduced to model the
error of the prediction and ground truth image local patches, as shown in Eq. 2.14.

C(p) =
∑

pl∈Pl

(̂Il(pl)− µ̂)(Il(pl)− µ)
σ̂σ

(2.14)

For each position p in the image coordinates P, the local image patch Il is centered
with pixel p. Pl is the image coordinates of the local image patch. ×̂,× refer to the
prediction and the ground truth. µ is the average value of the local image patch. σ =
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∑
pl∈Pl

√
(Il(pl)− µ)2 is the standard deviation of the local image patch. The size of the

local image patch is 5× 5 usually.
Then, the brightness robustness (BR) loss is computed as Eq. 2.15. As the image

intensities are normalized by the average and the standard deviation, the BR loss has the
range of [0, 2].

lBR =
∑
p∈P

(1−C(p)) (2.15)

Where P is the image coordinates of the global image.

Disparity smoothness loss

As the self-supervised loss is noisy compared to the supervised loss, it is essential to
include a disparity smoothness loss for the predicted disparity map, as shown in previous
works (Godard et al., 2017). The disparity smoothness loss can be seen in Eq. 2.16.

lsmooth =
∑
p∈P
|∂xD(p)|e−|∂xI(p)| + |∂yD(p)|e−|∂yI(p)| (2.16)

where ∂x, ∂y refer to the gradient of x and y direction of the image separately. D, I are the
disparity and the image on the same camera view.

Total loss

In order to optimize the pose-supervised stereo network, multiple losses are utili-
zed, including stereo-matching loss, temporal-matching loss, disparity structure similarity
loss, and disparity smoothness loss. The total loss lD is shown in Eq. 2.17.

lD = λ1(lR→L + lc→r + lr→c) + λ2lSSIM + λ3lBR + λ4lsmooth (2.17)

Usually, the loss ratio λ1, λ2, λ3, λ4 are set as 0.85, 0.15, 0.15, 0.1.

2.4 Adaptive stereo network
This section proposes a novel method to enhance the accuracy of the two-stage 2D-3D

stereo network, which serves as the fundamental architecture of most cutting-edge stereo
networks such as (Chang & Chen, 2018 ; Gu et al., 2020 ; Xu et al., 2023). Typically,
these networks use a fixed disparity range of 0 to d, and both the disparity cost volume
and Argmin prediction layer (Chang & Chen, 2018) are designed based on this pre-defined
disparity search space.

However, different images have different disparity distributions. The use of a fixed
disparity search space will limit the accuracy improvement, as validated in the monocular
depth estimation network (Bhat, Alhashim, & Wonka, 2021). In this section, a new adap-
tive disparity search space method is proposed for the two-stage 2D-3D stereo networks
that adapt to the specific image’s disparity distribution, which can improve the accuracy
of stereo matching.
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The section presents an adaptive disparity search space by introducing a monocular
prediction branch, as illustrated in Fig. 2.4. A simple auto-encoder network AN is ad-
ded to generate an initial disparity prediction D̃ for each pixel, as shown in Eq. 2.18.
Specifically, general pyramid encoder networks, such as ResNet (He et al., 2016) and
MobileNetv2 (Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018), are utilized as the fea-
ture encoder for the adaptive search space branch. This allows the encoder network to
take advantage of pre-trained networks.

Left Im
age

R
ight Im

age

Disparity 
searching space

Disparity 
map

Stereo cost volume Matching network

Left feature

0.1 0.1 0.6 0.1 0.1

Disparity dimension

2021 2223 24

Feature network

2021 2223 24

Figure 2.4 – Structure of adaptive stereo network.

D̃ = AN(IL) (2.18)

Then, the predicted initial disparity D̃ is used to construct an adaptive disparity search
space VVV for the soft Argmin layer and cost volume. The adaptive disparity search space
VVVada is obtained by adding the predicted initial disparity D̃ to the pre-defined search space
VVVpre, as shown in equation 2.19.

VVVada = VVVpre + D̃ (2.19)

where the pre-defined disparity searching space VVVpre has the same spatial size as the dis-
parity map D̃. Each pixel position VVVpre is a vector ranging from 0 to Dmax. The adaptive
disparity search space is then clipped using Eq. 2.20.

VVVada =


Dmax, VVVada > Dmax

VVVada, Dmin ≤ VVVada ≤ Dmax

Dmin, VVVada < Dmin

(2.20)

For most datasets, Dmin is 0, Dmax is 191.
After obtaining the adaptive searching space, a 3D CNN is used to learn the cost

volume probability PPP from the adaptive searching space VVVada as follows.

PPP = CNN3D(VVVada) (2.21)
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The final disparity prediction D̂ is obtained by Soft Argmin layer as Eq. 2.22.

D̂ =
Dmax∑

d=Dmin

PPP(d)×VVVada(d) (2.22)

2.5 One-stage 3D stereo network
Stereo matching has evolved through traditional algorithms like SGM (Hirschmuller,

2005), early convolutional networks such as MC-CNN (Zbontar et al., 2016), two-stage
2D-3D stereo networks like PSMNet (Chang & Chen, 2018), and three-stage recurrent
stereo networks (Lipson et al., 2021 ; Xu et al., 2023). Today, deep stereo matching net-
works dominate the scene, with the most successful being the two-stage 2D-3D CNN me-
thods (Chang & Chen, 2018 ; Gu et al., 2020). Recently, three-stage recurrent stereo net-
works have achieved state-of-the-art accuracy but are slower due to the time-consuming
design of recurrent GRU units (Xu et al., 2023). These networks rely on the two-stage
stereo network (Chang & Chen, 2018).

The previous methods build the cost volume on the low-resolution feature maps. The
important matching information has been lost because the stereo matching is performed
at a low-resolution. This is an primary problem for the 2D-3D networks (Chang & Chen,
2018) or recurrent networks (J. Li et al., 2022). Besides the spatial resolution, the disparity
resolution in cost volume also affects the stereo matching.

In addition, the stereo 2D feature maps are not optimal in the previous methods (Chang
& Chen, 2018 ; Y. Zhang et al., 2020). The 2D-3D network methods optimize the feature
network and the matching network by minimizing the loss between the ground truth dispa-
rity and the prediction. The optimization goal is to minimizing the matching cost, instead
of extracting high-quality feature maps. There are some methods (Y. Zhang et al., 2020)
have shown that the extracted 2D feature maps are not suitable to build a single peak cost
volume. They propose a constraint loss after the 2D feature network to reduce this effect.

Instead, if the stereo cost volume is built at the raw image resolution and the feature
extraction and the feature matching are learned in one 3D network, the matching informa-
tion lost can be reduced and the conflict of the optimal goal between the feature network
and the matching network can be avoided.

The section proposes the first one-stage 3D stereo network, named StereoOne. Ste-
reoOne generates the stereo cost volume on the raw stereo images using a new image-
based cost volume module. An efficient and real-time volume generation method has been
introduced which is much faster than the previous methods (Chang & Chen, 2018 ; J. Li
et al., 2022). Furthermore, a general 3D network (Feichtenhofer, Fan, Malik, & He, 2019 ;
Carreira & Zisserman, 2017) has been used to learn feature extraction and matching. This
makes the approach more widely applicable.

Furthermore, a disparity dense-sparse network is introduced to maintain a high-
resolution disparity in the cost volume. On the one hand, the disparity-dense network
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is low-cost for high-resolution disparity. On another hand, the dense-sparse design makes
it easier to process different disparity range scales of different samples.

The structure of the one-stage stereo network is shown in Fig. 2.5. The details are
shown as follows.
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Figure 2.5 – Structure of two-stage 2D-3D stereo network, three-stage recurrent stereo
network, one-stage 3D stereo network (single branch) and one-stage 3D stereo network
(dense-sparse).

2.5.1 Cost volume module
Enumerating all aligned stereo images creates image-based cost volume VVVI with dis-

parities ranging from Dmin to Dmax.

VVVI = [[IL; IR(PR + (D; 0))], ..., ]Dmax

D=Dmin
(2.23)

where IR(PR + (D; 0)) is the shifted right image with the uniform disparity map D, and
there is D ∈ [Dmin, Dmax].

The previous methods use two ways to build cost volume : image warping (J. Li et al.,
2022 ; Y. Zhang et al., 2020) or looping-index (Chang & Chen, 2018).

For image warping method :

Firstly, the coordinates of the right image are transformed with a pre-defined disparity
searching range D = [Dmin, Dmax].

Then the right image coordinates will be generated using some uniform disparity map
D ∈ [Dmin; Dmin; ...; Dmax]. The new right image coordinates will be as follows.
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PPPR = [PR + (Dmin, 0); ...; PR + (Dmax, 0)] (2.24)

The shifted right images are computed by image warping. In practice, these processes
can be finished using 3D warping as follows.

ĨIIR = WWW(IIIR,PPPR) (2.25)

Finally, the new cost volume is obtained as VVVI = [IIIL; ĨIIR].
For looping-index method :

This method first generates an empty cost volume VVV0, then it has Dmax − Dmin + 1
times iterations. During each loop iteration, the left image is used to fill the cost volume
directly, while the right image IR[: −D, :] is indexed to fill the empty cost volume accor-
ding to the disparity shift. The disparity shift is a uniform disparity map and takes values
of D within the range [Dmin, ..., Dmax], which is the same as the image warping method.

However, They can not realize real-time inference. Therefore, an efficient method for
generating volumes in real-time is proposed, named EffiVolume.

2.5.2 Efficient cost volume module
Before launching all algorithms, an index matrix AD×W is computed (Eq. 2.26). it

indexes the disparity and image horizontal dimension for the right image. This matrix is
computed only once.

A =



0 1 ... W − 1
0 1 ... W − 1
. . ... .
. . ... .
. . ... .
0 1 ... W − 1


D×W

−



0 0 ... 0
1 1 ... 1
. . ... .
. . ... .
. . ... .

D − 1 D − 1 ... D − 1


D×W

(2.26)

where W is the image width, the range of the disparity searching space is [0, D).
Then, the stereo images IL and IR and the index matrix A are expanded to the size

C ×D ×H ×W , denoted as IIIL, IIIR,AAA by repeating.
Using the index tensors, obtaining the aligned right image ĨIIR can be done easily in a

single step (e.g. by using torch.gather in PyTorch). Fig. 2.6 illustrates this process.
Finally, the raw image cost volume is generated by concatenating them VVV = [IIIL; IIIR].

The new method avoids the time-consuming loop operation, and is much faster than the
previous on both CPU and GPU devices.

2.5.3 3D network
In StereoOne, the raw cost volume is built on raw stereo images. The StereoOne net-

work introduces a general 3D network to process this image-based cost volume. This



2.5 – 2.5.3 3D network 53

0 0

0

0 0

0

1 2 3

4 5 6

7 8 9

1

1

1

1 1

7

4 4

7

2

5

8

W -> 

D -> 

Index matrix Source image Result

Figure 2.6 – Efficient image-based cost volume index on disparity and image width di-
mension.

approach enables the 3D network to learn both stereo features and feature matching in
one network. As a result, StereoOne is based on a flexible and easy-to-deploy gene-
ral 3D network. Specifically, the 3D network has an encoder-decoder structure where
the general 3D encoder networks such as i3d and slow fast network (Carreira & Zisser-
man, 2017 ; Feichtenhofer et al., 2019) can be utilized for the encoder part. For the de-
coder part, a 3D feature pyramid network (FPN) based on 2D FPN (Lin et al., 2017)
has been designed. In the 3D FPN, feature maps of four stages are mapped to the
same channel size with FPN lateral connection layers, which is a 3D convolution layer
(kernel = (1, 1, 1), stride = (1, 1, 1)). Then, these feature maps are summed from the
top to the bottom, and each feature map is upsampled by a factor of two. Finally, the bot-
tom feature is mapped to channel size 1. The proposed approach employs a soft Argmin
disparity prediction layer with the learned cost volume, which is similar to the stereo net-
works proposed in (Kendall et al., 2017 ; Chang & Chen, 2018). Moreover, to address the
issue of varying disparity ranges in different images, a disparity dense-sparse 3D network
is introduced to enhance the learning of the stereo cost volume. This dense-sparse 3D
network contains a dense disparity branch and a sparse disparity branch. There are also
feature connections between two branches in different network layers. Finally, learned
dense and sparse cost volume is fused with a dense-sparse fusing module. Each of them
is introduced as follows.

Disp-dense branch

The dense disparity branch maintains a high disparity resolution and focuses on lear-
ning matching information. It has a shallow feature dimension to reduce the computation
cost, typically about 1/8 that of the sparse disparity branch.

Disp-sparse branch

On the other hand, the sparse branch is designed to focus on learning the image’s spa-
tial information and extracting better features. Each pixel on the predicted disparity map
is not independent, and the spatial context information is crucial for accurate disparity
prediction, particularly in homogeneous areas (Miangoleh, Dille, Mai, Paris, & Aksoy,
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2021). Therefore, the sparse disparity branch has a higher channel dimension but a lower
disparity resolution to ensure that abundant image spatial information is learned.

Feature connection

To better fuse dense-sparse information, the dense feature will be fused into the sparse
feature at stages 1, 2, and 3 of the encoder (using a four-stage structure). Same with
previous deep learning networks (Feichtenhofer et al., 2019 ; Lin et al., 2017), a single-
direction connection will be used, which has been shown to have similar performance to
bi-directional connections but with a lower computation cost.

Dense-sparse fusing module

To combine the two volumes of the disparity dense and sparse branches, different ways
were explored to fuse dense and sparse cost volumes. The first method involved concate-
nating them across the disparity dimension and then using a linear layer to transform the
disparity resolution to the original. The second method involved adding up the two cost
volumes. First, they were transformed into the original disparity resolution, and then the
two volumes were added up. The third method involved concatenating them across the
channel dimension. They were first up-sampled to the original disparity resolution, then
concatenated in the channel, and finally transformed with a linear layer. After conducting
experiments, it was found that the third method had the best performance.

2.6 Experiment results
In this section, datasets and evaluation metrics are first introduced. Then, there are

three subsections to show the experiment results of pose-supervised stereo network, adap-
tive stereo network and one-stage 3D stereo network.

2.6.1 Dataset
The experiments for evaluating the depth estimation involve three datasets : KITTI

Depth, virtual KITTI2 and Scene Flow. They are one real-world and two simulation data-
sets. The proposed pose-supervised stereo network, adaptive stereo network and one-stage
3D network are all evaluated on them.

KITTI Depth (Eigen split (Eigen et al., 2014)) and KITTI Odometry : These da-
tasets have been introduce at Sec. 1.6.1.

Virtual KITTI2 ∗ : The Virtual KITTI2 simulation dataset is extensively annotated
for various auto-driving tasks. It contains six different scenes with varying weather condi-
tions, such as clone, fog, morning, overcast, rain, and sunset. Additionally, it includes
camera degrees of 15-deg-left, 15-deg-right, 30-deg-left, and 30-deg-right. To evaluate
the dataset’s performance, ablation studies are done using six sequences of six scenes of
15-deg-left.

∗. https ://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-2/
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Scene Flow † (Mayer et al., 2016) : This dataset is a popular large-scale simulation
dataset with ground truth disparity labels. It is usually used for stereo matching evaluation
or pre-training the stereo networks. It has more than 39, 000 stereo images, each image
has 960× 540 size.

2.6.2 Evaluation metrics
To evaluate the quality of the predicted depth map, both depth error metrics (including

absolute relative error, relative square error, root-mean-square error and log root-mean-
square error) and depth accuracy (accuracy thresholds are 1.25, 1.252, 1.253) metrics are
used. These evaluation metrics have been described in Sec. 1.6.2.

To evaluate the quality of the disparity, End point error (EPE) is used. The EPE is com-
puted between the predicted disparity D̃ and ground truth disparity D, and it is measured
with Euclidean distance as follows.

EPE = ∥D̃−D∥ (2.27)

2.6.3 Pose-supervised stereo network
This experiment aims to show the advantages and details of a pose-supervised stereo

network on public benchmarks.

2.6.3.1 Implement details

To demonstrate the superiority of the proposed pose-supervised stereo network, a
comparison was made between its results and those of other state-of-the-art monocular
networks on the KITTI Depth dataset (Geiger, Lenz, & Urtasun, 2012) using the Eigen
split (Eigen et al., 2014). Since ground truth poses are not provided in the KITTI Depth da-
taset, image samples were matched between the KITTI Depth dataset and the KITTI Odo-
metry dataset. This results in 13217 KITTI Depth images that corresponded to the KITTI
Odometry dataset, which accounts for approximately 58.5%(13217/22600) of the origi-
nal KITTI Depth dataset. The pose-supervised stereo network achieved state-of-the-art
results on the KITTI Depth dataset using only 58.5% of the samples. The pose-supervised
stereo network was trained using an image resolution of 1024× 320.

2.6.3.2 Results on KITTI depth benchmark

In Tab. 2.1, a comparison between pose-supervised stereo network and recent self-
supervised monocular methods is presented to demonstrate the superiority and robustness
of the former. The pose-supervised stereo network outperforms the monocular-based net-
works trained using ground truth depth maps, such as those presented in (Eigen et al.,
2014) and (N. Yang et al., 2018), as well as those using stereo-matching loss or temporal

†. https ://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
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year model Error Metrics supervision
abs rel rel sqr rmse rmse log depth TM SM

2014 Multi-scale-depth (Eigen et al., 2014) 0.203 1.548 6.307 0.282 ✓
2015 Mono-depthDCN (F. Liu, Shen, Lin, & Reid, 2015) 0.202 1.614 6.523 0.275 ✓
2017 SfmLearner (Zhou et al., 2017) 0.208 1.768 6.856 0.283 ✓
2017 Monodepth (Godard et al., 2017) 0.148 1.344 5.927 0.247 ✓
2018 DVSO(N. Yang, Wang, Stuckler, & Cremers, 2018) 0.097 0.734 4.442 0.187 ✓ ✓
2018 GeoNet (Z. Yin & Shi, 2018) 0.149 1.060 5.567 0.226 ✓
2019 Comp collaboration (Ranjan et al., 2019) 0.148 1.149 5.464 0.226 ✓
2019 EPC++ (Luo et al., 2019) 0.128 0.935 5.011 0.209 ✓ ✓
2019 Monodepth2 (Godard et al., 2019) 0.106 0.806 4.630 0.193 ✓ ✓
2020 D3VO (N. Yang et al., 2020) 0.099 0.763 4.485 0.185 ✓ ✓
2021 Attention multi-warp (Ling, Zhang, & Chen, 2021) 0.121 0.971 5.206 0.214 ✓
2021 Stereo-Dist (Ye, Fan, Zhang, Xu, & Zhong, 2021) 0.105 0.842 4.810 0.196 ✓

Proposed method 0.080 0.795 4.146 0.185 ✓ ✓

year model Accuracy Metric supervision
τ < 1.25 < 1.252 < 1.253 depth TM SM

2014 Multi-scale-depth (Eigen et al., 2014) 0.702 0.890 0.958 ✓
2015 Mono-depthDCN (F. Liu et al., 2015) 0.678 0.895 0.965 ✓
2017 SfmLearner (Zhou et al., 2017) 0.678 0.885 0.957 ✓
2017 Monodepth (Godard et al., 2017) 0.803 0.922 0.964 ✓
2018 DVSO(N. Yang et al., 2018) 0.888 0.958 0.980 ✓ ✓
2018 GeoNet (Z. Yin & Shi, 2018) 0.796 0.935 0.975 ✓
2019 Comp collaboration (Ranjan et al., 2019) 0.815 0.935 0.973 ✓
2019 EPC++ (Luo et al., 2019) 0.831 0.945 0.979 ✓ ✓
2019 Monodepth2 (Godard et al., 2019) 0.876 0.958 0.980 ✓ ✓
2020 D3VO (N. Yang et al., 2020) 0.885 0.958 0.979 ✓ ✓
2021 Attention multi-warp (Ling et al., 2021) 0.843 0.944 0.975 ✓
2021 Stereo-Dist (Ye et al., 2021) 0.861 0.947 0.978 ✓

Proposed method 0.922 0.959 0.976 ✓ ✓

TABLE 2.1 – Compare with state-of-the-art self-supervised (stereo-matching loss (SM),
temporal-matching loss (TM)) depth estimation networks.

matching loss. As shown in Table 2.1, the pose-supervised stereo network achieves the
best results on almost all metrics. The improvement in the abs rel and τ < 1.25 accuracy
metrics is particularly significant, as the stereo network pushes the τ < 1.25 accuracy to a
new level of over 90% for the first time, highlighting the advantage of the stereo network
architecture over monocular-based methods.

Furthermore, it’s worth noting that DVSO (N. Yang et al., 2018) obtained the best
τ < 1.253 accuracy of 0.980 by training with ground truth disparity annotations, while
monodepth2 (Godard et al., 2019) achieved the same accuracy by using an additional pose
CNN and more data. The proposed method achieved a relatively close τ < 1.253 accuracy
with only 58.5% of the samples. However, all these approaches perform worse than the
pose-supervised stereo network in the most challenging accuracy metric τ < 1.25. These
results suggest that the pose-supervised stereo network can achieve state-of-the-art with a
lower cost.

The pose-supervised stereo network proposed in this study has been used to estimate
depths, and the results are presented in Fig. 2.7. The figure provides some examples of
the estimated depth.
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(a) The passerby (b) Parking cars and trees

(c) Buildings (d) The traffic crossing

Figure 2.7 – Examples of depth maps from KITTI depth test set (Eigen split).

2.6.3.3 Stereo-matching V.S. temporal-matching

The Virtual KITTI2 dataset ‡ was used to evaluate the performance of different me-
thods with and without temporal-matching loss. The dataset provides accurate dense depth
labels for evaluation. Sequences 01, 02, and 18 were used for training, and sequence 06
was used for testing.

Table 2.2 shows that the stereo network that utilizes both stereo-matching loss and
temporal-matching loss results in significant improvements compared to the stereo net-
work that only uses stereo-matching loss. The use of ground truth camera poses improves
the quality of the depth map through temporal-matching loss. It is important to note that
obtaining ground truth camera poses is much easier compared to obtaining ground truth
depths.

Loss
Depth Error Metrics

rel rel sqr rmse rmse log
SM 0.0884 1.4229 6.7763 0.2236

SM+TM 0.0565 1.3299 5.9259 0.1880

Loss
Depth Accuracy Metrics

τ < 1.25 < 1.252 < 1.253

SM 0.9101 0.9584 0.9751
SM+TM 0.9495 0.9717 0.9819

TABLE 2.2 – Comparison of stereo-matching (SM) and temporal-matching (TM) loss.

2.6.4 Adaptive stereo network
To show the advantage of this network, it is first compared with the state-of-the-art

methods, and then more detailed experiments are conducted.

‡. https ://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds-vkitti-2/
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This work IGEV-Stereo

PSMNet Cascade PSMNet

Cascade GWCNet Ground truth

Figure 2.8 – Comparison of state-of-the-art stereo depth estimation results.

2.6.4.1 Compare with the state-of-the-art methods

In this section, competitive results are presented to demonstrate the advantage of the
adaptive disparity searching stereo network. As shown in Table 2.3 and Figure 2.8, the net-
work achieves state-of-the-art results on the KITTI depth Eigen split benchmark. These
results suggest that stereo-based depth estimation has a significant advantage over mo-
nocular depth estimation networks. Furthermore, the proposed network exhibits higher
accuracy compared to the current state-of-the-art stereo networks.

Method
Depth Error Depth Accuracy (%)

rel sqr rmse log < 1.25 < 1.252 < 1.253

Monocular network
Adabins(Bhat et al., 2021) 0.1900 0.0880 96.4 99.5 99.9

URCDC-Depth (Shao et al., 2023) 0.1420 0.0760 97.7 99.7 99.9
MIMDepth (Z. Xie et al., 2023) 0.1390 0.0750 97.7 99.8 100.0

Stereo Network
PSMNet (Chang & Chen, 2018) 0.0447 0.040 99.6 99.9 100.0
CascadePSM (Gu et al., 2020) 0.0542 0.042 99.7 99.9 100.0
CascadeGWC (Gu et al., 2020) 0.0695 0.048 99.5 99.9 99.9
IGEVStereo (Xu et al., 2023) 0.0600 0.041 99.6 99.9 99.9

Proposed method 0.0405 0.036 99.8 100.0 100.0

TABLE 2.3 – Compare the adaptive stereo network with the others on KITTI depth (Eigen
split) still image dataset.
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2.6.4.2 Backbone (encoder) network

In the proposed depth network, an analysis was conducted to evaluate the impact of
the feature encoder network. The performance of PSMNet (Chang & Chen, 2018) using
PSMEncoder was compared with PSMNet with ResNet18, MobileNetv2 encoder (He
et al., 2016 ; Sandler et al., 2018), which is a popular deep neural network with fewer
parameters. The results indicated that replacing the custom feature encoder in PSMNet
(Chang & Chen, 2018) with the general encoder network (He et al., 2016) yielded positive
results, as seen in Tab. 2.4.

Encoder EPE(all) EPE(occ) MACs Params
PSMNet Encoder (Chang & Chen, 2018) 2.58 7.38 776.33G 4.06M

ResNet18 (He et al., 2016) 2.26 6.96 966.55G 1.57M
MobileNetv2 (He et al., 2016) 2.36 7.16 517.97G 0.74M

TABLE 2.4 – Results with different backbone (encoder) networks on PSMNet.

2.6.4.3 Adaptive disparity searching space

An experiment was conducted to compare the proposed adaptive disparity searching
space (AdaSearch) method with the previous pre-defined disparity searching space me-
thod (Chang & Chen, 2018 ; Kendall et al., 2017). The AdaSearch submodule is imple-
mented using a monocular network. Results presented in Table 2.5 and Figure 2.9 show
that the AdaSearch method significantly outperforms the default method. These findings
suggest that it is crucial to enable adaptive learning of the disparity searching space.

Searching Space Encoder EPE(all) EPE(occlusion)
Pre-defined MobileNetv2 2.36 7.16
AdaSearch MobileNetv2 1.97 4.81
Pre-defined ResNet18 2.26 6.96
AdaSearch ResNet18 1.86 4.63
Pre-defined PSMNet Encoder 2.58 7.38
AdaSearch PSMNet Encoder 1.99 4.68

TABLE 2.5 – Experiment results of adaptive disparity searching space.

2.6.5 One-stage 3D stereo network
This experiment explores the details of a new paradigm. The one-stage 3D stereo

network shows competitive performance with the other methods.
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Ground truth Pre-define AdaSearch

Figure 2.9 – Visualization of the improvement with adaptive adaptive disparity searching
space using ResNet encoder.

2.6.5.1 Implement details

To assess the performance of the proposed network, the large-scale dataset Scene Flow
(Mayer et al., 2016) was used in experiments. During the experiments on the Scene Flow
datasets, the Lion optimizer with 1e − 4 learning rate was employed. Additionally, the
optimizer was set to use gradient clip norm with L2 norm, with a maximum norm of 35.
To remain consistent with previous settings (Chang & Chen, 2018 ; Gu et al., 2020), the
network was optimized for 48k iterations. The training was conducted using a batch size
of 4, on two Nvidia A40 or RTX8000 GPUs.

2.6.5.2 Compare with the state-of-the-art supervised stereo networks

The evaluation of the one-stage stereo network was performed by comparing it with
state-of-the-art (SOTA) supervised stereo matching approaches on the most common
benchmarks. The comparison was done between StereoOne and other methods on three
benchmarks : large-scale SceneFlow data, KITTI2012, and the 2015 Stereo data.

It was observed that StereoOne had the lowest error compared to most recent methods,
as shown in Table 2.6. ResNet18 and MobileNetv2 3D CNN are described in (Carreira
& Zisserman, 2017 ; Köpüklü, Kose, Gunduz, & Rigoll, 2019). By using a light-weighted
general 3D network, a faster inference speed for light-weighted networks was also achie-
ved.

Furthermore, the results on KITTI 2012 and 2015 stereo data were reported as shown
in Table 2.7. The error results were evaluated on the online benchmark KITTI2012,
KITTI2015. The error metrics are described in benchmarks. These results indicate that
StereoOne can achieve competitive results with state-of-the-art methods on real-world
data.

This experiment suggests the advantage of the proposed method in disparity accuracy
and real-time inference. It also presents the possibility of using the one-stage stereo net-
work to replace the popular two-stage (Chang & Chen, 2018 ; Gu et al., 2020) or recurrent
stereo networks (J. Li et al., 2022 ; Xu et al., 2023).

https://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo&table=refl&error=3&eval=all
https://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo&eval_gt=all&eval_area=all
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Method Error(EPE) Speed(FPS) FLOPS
PSMNet (Chang & Chen, 2018) 0.98 9 1.02T
Cascade-PSM (Gu et al., 2020) 0.93 23 1.37T
Cascade-Gwc (Gu et al., 2020) 0.81 19 1.49T
AcfNet (Y. Zhang et al., 2020) 0.87 9 1.02T
CREStereo (J. Li et al., 2022) 0.78 5 2.27T
† StereoOne(ResNet18 ) 0.73 12 1.48T
CoEX (Bangunharcana et al., 2021) 1.14 81 0.04T
StereoNet (Khamis et al., 2018) 1.29 65 0.11T
† StereoOne(ResNet8 ) 1.22 50 0.09T
⋆ StereoOne(MobileNetv2) 0.89 28 0.05T

TABLE 2.6 – Comparison with other methods on Scene Flow data test set. The model
code is from the official release, all experiments use the same optimizer. Device : Nvidia
A40 GPU. † : disparity dense-sparse network. ⋆ : single branch.

Method
KITTI2012(3pixel Error) KITTI2015

Out-Noc% Out-All/% Avg-All/px D1-fg
PSMNet 2018 8.36 10.18 1.6 4.62
ACVNet 2022 7.03 8.67 1.5 3.07

AcfNet 2020 6.93 8.52 1.9 3.80
CoEX 2021 6.83 8.63 1.4 3.41

SegStereo 2018 6.35 8.06 1.3 4.07
CREStereo 2022 6.27 7.27 1.4 2.86

GANet 2019 6.22 7.92 1.3 3.46
HITNet 2021 5.91 7.54 1.2 3.20

LEAStereo 2020 5.35 6.50 1.2 2.91
CFNet 2023 5.96 7.29 1.3 3.56

CroCo-Stereo 2023 - - - 2.65
Proposed method 2023 4.99 6.50 1.2 2.62

TABLE 2.7 – Error results on the online KITTI benchmark.

2.6.5.3 Compare with the state-of-the-art self-supervised depth networks

The performance of the StereoOne network is not limited to the supervised stereo
matching task ; it is also evaluated on the unsupervised/weakly-supervised depth estima-
tion using KITTI eigen data. According to Tab. 2.8, the StereoOne network has achieved
state-of-the-art (SOTA) performance on this benchmark as well.

2.6.5.4 Image volume module

The comparison of three different methods is shown in Table 2.9. The proposed ef-
ficient volume method achieves significantly faster inference speed and maintains a low
memory cost. Compared to the simple looping-index operation or 3D image-warping ope-



62 CHAPTER 2 — Depth Representation

year Method
Error Metric

abs rel rel sqr rmse rmse log
2017 SFMLearner (Zhou et al., 2017) 0.208 1.768 6.856 0.283
2018 GeoNet (Z. Yin & Shi, 2018) 0.149 1.060 5.567 0.226
2019 EPC (Luo et al., 2019) 0.128 0.935 5.011 0.209
2020 D3VO (N. Yang et al., 2020) 0.099 0.763 4.485 0.185
2021 DepthAttention (Ling et al., 2021) 0.121 0.971 5.206 0.214
2021 StereoDist (Ye et al., 2021) 0.105 0.842 4.810 0.196
2019 MonoDepth2 (Godard et al., 2019) 0.106 0.806 4.630 0.193
2022 PlaneDepth (R. Wang et al., 2023) 0.083 0.533 3.919 0.167
2022 PDENet (Z. Liu, Malis, & Martinet, 2022) 0.080 0.795 4.146 0.185

StereoOne 0.071 0.650 3.896 0.168

year Method
Accuracy Metric

< 1.25 < 1.252 < 1.253

2017 SFMLearner (Zhou et al., 2017) 67.8 88.5 95.7
2018 GeoNet (Z. Yin & Shi, 2018) 79.6 93.5 97.5
2019 EPC (Luo et al., 2019) 83.1 94.5 97.9
2020 D3VO (N. Yang et al., 2020) 88.5 95.8 97.9
2021 DepthAttention (Ling et al., 2021) 84.3 94.4 97.5
2021 StereoDist (Ye et al., 2021) 86.1 94.7 97.8
2019 MonoDepth2 (Godard et al., 2019) 87.6 95.8 98.0
2022 PlaneDepth (R. Wang et al., 2023) 91.3 96.9 98.5
2022 PDENet (Z. Liu, Malis, & Martinet, 2022) 92.2 95.9 97.6

StereoOne 93.5 96.6 98.0

TABLE 2.8 – Compare with the state-of-the-art self-supervised networks.

ration, the proposed module is 66 and 34 times faster, respectively, on a 2080Ti GPU.
These results suggest that the method performs well on different devices and is highly
robust.

2.6.5.5 The disparity distribution

In addition, a comparison of results was made for different disparity distributions
using one-stage 3D and two-stage 2D-3D stereo networks. Figure 2.10 demonstrates that
StereoOne, which has dense-sparse branches for disparity, can successfully resolve the
problem of varying disparity distribution, particularly for high disparities.

2.6.5.6 Disparity resolutions

This section explores the optimal disparity searching space settings for the dense and
sparse branches of the model. The sparse branch has been set to 6, 12, 24, while 48, 96, 192



2.6 – 2.6.5 One-stage 3D stereo network 63

Device Method time/ms memory/M
A40GPU Warping 323 14,154
A40GPU Looping 421 4,938
A40GPU Proposed method 18 7,244

2080TiGPU Warping 678 9,422
2080TiGPU Looping 1318 4,814
2080TiGPU Proposed method 20 7,118

CPU Warping 2181 5,068
CPU Looping 221 5,060
CPU Proposed method 204 5,066

TABLE 2.9 – Performance of different volume generation methods. GPU capability :
A40(8.6), 2080Ti(7.5), CPU : AMD EPYC 7413 24-Core.

Figure 2.10 – Relations of disparity error and different disparity distributions on Scene-
Flow dataset. The two-stage network is PSMNet. End point error (EPE) metric is used.

has been chosen for the dense branch. The results of the predicted disparity error (EPE)
have been presented in Fig. 2.11.

From the sparse branch dimension, denser disparity searching space seems to lead to
better disparity prediction. However, the increase of disparity searching space in the dense
branch does not yield any significant improvement and can even lead to worse results. For
example, the result of the (192, 6) is worse than the result of the (96, 6). This may be
due to the large dense/sparse ratio, which makes it challenging to fuse dense and sparse
information. Overall, a denser searching space in the sparse branch is more crucial in
achieving the final disparity accuracy. This also supports the assumption that the disparity
down-sampling leads to information absence in dense-sparse disparities. In conclusion,
the optimal setting is (96, 24).
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Figure 2.11 – Predicted disparity EPE errors of with different disparity resolution.

2.6.5.7 Dense-sparse fusing module

To explore an efficient fusion module for fusing the dense and sparse cost volume,
experiments were conducted using three different strategies as described in Section 2.5.3.
The results are recorded in Table 2.10. D-cat : concatenate the volumes in disparity dimen-
sion. Add : add up the volumes. C-cat : concatenate the volumes in channel dimension. It
suggests that the C-cat strategy produced the lowest errors across all three error metrics.
Therefore, the C-cat fusion module was chosen for all experiments.

Fusion method EPE 3PE D1
D-cat 0.932 0.046 0.044
Add 0.867 0.046 0.043
C-cat 0.752 0.044 0.042

TABLE 2.10 – Disparity error results of different fusion methods for the dense and sparse
costs volumes.
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2.6.5.8 Masking methods for image cost volume

Due to the lack of matching pixels at the left edge area of the left image, masking
the invisible pixels area can have an impact on the final matching result. In the conducted
experiment, results were compared using masking image volume and without masking
image volume. As depicted in Figure 2.12, the error rate was higher during the early
training iterations when no-masking image volume was used. However, the results were
nearly identical at the end of the training. Hence, masking the image volume is an optional
operation.

500 6500 12500 18500 24500 30500 36500 42500
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Figure 2.12 – Disparity error results of masking the image cost volume.

2.7 Conclusion
The accurate estimation of depth is a fundamental aspect of geometric representa-

tion, particularly in the context of visual odometry. In this section, a global review of the
background and state-of-the-art research related to depth estimation is provided. It has
been widely acknowledged that stereo networks are more reliable and robust than other
methods, as demonstrated by previous research. Motivated by this, three novel stereo net-
works are proposed : the pose-supervised stereo network, the adaptive stereo network,
and the one-stage 3D network.

The pose-supervised stereo network is a cost-effective solution that outperforms po-
pular self-supervised monocular methods. This network can learn from unlabelled data,
which reduces the need for depth supervision during the training process. Additionally,
this network requires fewer data because of introducing stronger temporal-matching
constraints. This work has been published in (Z. Liu, Malis, & Martinet, 2022).

The adaptive stereo network is another novel approach that takes into account the
varying distribution of disparities of different images. This network uses an adaptive dis-
parity searching space that adapts to the specific disparity distribution of each image. By
doing so, it is possible to achieve more accurate and robust depth estimation.
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Finally, the one-stage 3D stereo network is proposed to address the limitations of the
two-stage 2D-3D stereo network. This network uses a single-stage architecture to directly
predict the depth of the scene. This approach is more efficient and accurate than the two-
stage methods which first extract the 2D features and then perform stereo-matching. This
work has been published in (Z. Liu, Malis, & Martinet, 2024).

The future of depth estimation holds the potential for a stereo network that is both
lightweight and robust while maintaining high accuracy. This network would utilize the
strengths of the three proposed methods. It could be trained using self-supervised learning,
an adaptive disparity, or a one-stage 3D architecture. The applications of such a network
could be diverse, ranging from autonomous driving to augmented reality.



CHAPTER 3
Hybrid Visual

Odometry Method
This chapter discusses the visual odometry problem, which is critical for downs-
tream tasks such as mapping and visual navigation. In practice, deep learning-
based methods are useful for optimizing geometric and semantic perception mo-
dules, model-based methods tend to perform better in visual odometry. This
chapter also categorizes and summarizes visual odometry methods into model-
based, deep learning-based, hybrid, and semantic visual odometry. Then, a new
hybrid dense direct visual odometry method is proposed to take advantage of
both dense direct visual odometry and deep learning networks’ geometric and
semantic perception ability.
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3.1 Introduction
Visual odometry aims to predict the orientation and position of the camera, which are

the foundation of the downstream tasks, such as mapping, and navigation. Currently, al-
though there are a lot of deep learning-based methods (Teed & Deng, 2021 ; S. Wang et
al., 2017 ; Sarlin, DeTone, Malisiewicz, & Rabinovich, 2020) for visual odometry, tradi-
tional model-based methods (Campos et al., 2021) still have advantages on this task. In
this chapter, the robust model-based visual odometry algorithm is first explored, then a
new hybrid visual odometry method is proposed.

For the traditional model-based visual odometry method, the direct visual odome-
try method shows more robust performance in most scenarios because the direct me-
thod considers the global photometric consistency (Comport et al., 2010). In contrast, the
feature-based method tries to detect and track fewer local features that may be lost du-
ring the process (Campos et al., 2021 ; Mur-Artal & Tardós, 2017), especially in difficult
scenes. Based on the dense direct visual odometry (DDVO) method, a hybrid dense direct
visual odometry is proposed to take advantage of the perception ability of deep learning
networks and the robustness of the model-based dense direct method.

Firstly, there are some positive results from hybrid visual odometry methods (Zhan
et al., 2020 ; N. Yang et al., 2020). These methods use well-trained deep network to pro-
vide priors for model-based visual odometry modules. However, these methods are based
on monocular deep networks which are not able to be extended to different new data
domains. At the same time, the optimization of these deep networks and model-based vi-
sual odometry modules are separated. Therefore, a more robust hybrid dense direct visual
odometry method is investigated in Sec. 3.4 to solve these problems.

Secondly, hybrid dense direct visual odometry method still suffers from problems of
dense direct methods. The optimization of photometric minimization loss in dense direct
methods is affected by occlusion area, homogeneous texture area and dynamic object
area. The information from these areas should be masked to avoid introducing noises.
Therefore, Sec. 3.5 will explore occlusion mask and homogeneous texture mask to solve
these problems.

Furthermore, the information of dynamic objects is considered as high-level semantic
information. The proposed occlusion mask and homogeneous mask lack semantic repre-
sentation. Therefore, Sec. 3.6 will explore using semantic representations to improve the
proposed occlusion and homogeneous texture masks.

Finally, hybrid visual odometry methods also have the domain gap problem as most
deep learning models. The model-based visual odometry methods will optimize the ca-
mera pose on new data, which does not have the domain gap problem. Motivated by that,
test-time training method is introduced to improve the hybrid dense direct visual odo-
metry method. Sec. 3.7 will investigate hybrid visual odometry with a test-time training
method on new data.
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3.2 Related Works
The different types of visual odometry methods can be broadly categorized into

model-based methods, deep learning-based methods, hybrid methods, and semantic vi-
sual odometry, as shown in Fig. 3.1. Model-based methods rely on a scene model and
geometric constraints to estimate the camera motion (Comport et al., 2010 ; Campos et
al., 2021 ; Engel, Koltun, & Cremers, 2017). Deep learning-based methods employ deep
neural networks to estimate the camera motion (S. Wang et al., 2017). Hybrid methods
combine model-based and deep learning-based approaches (Zhan et al., 2020 ; N. Yang
et al., 2020). Semantic visual odometry is a relatively recent technique that incorporates
semantic information, such as semantic segmentation, object detection, into the visual
odometry process (Bowman et al., 2017 ; Kaneko, Iwami, Ogawa, Yamasaki, & Aizawa,
2018 ; K. Wang et al., 2019). To summarize, while deep learning methods are highly ef-
fective in optimizing visual perception modules, model-based methods tend to yield better
results in visual odometry. However, the use of hybrid and semantic visual odometry me-
thods can further improve the accuracy of the hybrid method.

Figure 3.1 – Related works of visual odometry.

3.2.1 Model-based Visual Odometry
The traditional model-based visual odometry algorithms include the direct method

and the feature-based method. The direct visual odometry methods are optimized with
the direct photometric minimization cost function. In contrast, the feature-based visual
odometry methods first extract sparse feature points and then perform feature matching to
optimize the camera pose.

Direct Visual Odometry

Although the feature-based visual odometry methods have achieved a lot of impres-
sive processes recently, e.g. ORB-SLAM series (Mur-Artal & Tardós, 2017 ; Mur-Artal,
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Montiel, & Tardos, 2015). The feature detection in them can not avoid introducing new
errors before the matching. Direct visual odometry also is successful in development for
many years. For the DVO, it can be divided into dense and sparse further. Dense direct vi-
sual odometry operates on the photometric intensities and a geometric prior to estimating
dense or semi-dense geometry (Comport et al., 2010 ; Engel, Schöps, & Cremers, 2014).
Similarly, semi-dense direct visual odometry (Engel, Sturm, & Cremers, 2013) introduces
the uncertainty weights to reduce the effect of noisy pixels. The dense or semi-dense use
geometry prior (depth prior) to optimize the model parameters. In contrast, direct sparse
visual odometry (DSO) (Engel et al., 2017) does not use geometry prior, it optimizes all
model parameters : camera poses, camera intrinsics, and geometry parameters (inverse
depth) without a geometry prior involved. DSO only uses a selected set of independent
points (e.g. corners).

Feature-based Visual Odometry

Besides direct visual odometry, feature-based visual odometry methods are another
part of the model-based visual odometry algorithm, such as the famous ORB SLAM
(Mur-Artal et al., 2015).

The first work for estimating motion from a camera helps to establish the current
feature-based visual odometry pipeline (Moravec, 1980). This scheme matches features
between stereo images and triangulates them into 3D world. The triangulation error can
be modeled with scalar weights, 3D Gaussian distribution, matrix-weighted least square
solution (Weng, Cohen, & Rebibo, 1992), Kalman filtering (Broida & Chellappa, 1986 ;
Hallam, 1983), maximum-likelihood method (Olson, Matthies, Schoppers, & Maimone,
2001).

Usually, the feature-based visual odometry methods include the following modules :
feature detection, feature matching (tracking), outlier removal, and camera pose optimi-
zation.

For feature detection and matching (tracking), the first step for feature-based models
is to detect robust and reliable features. These feature detectors include corner detectors
(usually used) and blob detectors. The corner detectors contain Moravec, Forstner, Harris,
Shi-Tomasi, and FAST. The blob detectors include well-known SIFT, SURF, CENSUR.

Secondly, feature descriptors are used to model the detected features. The most simple
descriptor is to use the pixel intensity around the feature point. More robust feature des-
criptor includes well-know SIFT (Lowe, 2004), BRIEF, Oriented BRIEF(ORB) which
used in well-known ORB-SLAM (Mur-Artal et al., 2015),

Thirdly, feature tracking is suitable for small motion and view changes. Common fea-
ture tracking methods include region-based local matching methods (such as SSD (Sum
of Squared Differences) and NCC (Normalized Cross Correlation) ), and KanadeLucas-
Tomasi (KLT) tracker (Lucas, Kanade, et al., 1981 ; Tomasi & Kanade, 1991).

In contrast, feature matching is suitable for those cases of large motion/view change.
If the SIFT descriptor is used, Euclidean distance will be considered. If using the feature’s
local appearance descriptor, SSD or NCC methods will be considered.
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Then, The outlier removal of the features is also important for the feature-based me-
thods. Improper calibration, feature matching, noise, and triangulation errors may result
in outliers during pose estimation. Some outliers rejection methods were proposed for
that, such as RANSAC (Fischler & Bolles, 1981), MLESAC (Torr & Zisserman, 2000)
etc.

Furthermore, the camera pose optimization refines the estimated pose. Now we can
compute the relative camera pose k−1Tk from two adjacent frames. However, it is also
possible to compute the transformations between the current time k and the last few time
steps, k−2Tk,k−3 Tk,k−4 Tk, ...,n Tk. If these transformations are known, they can improve
the camera poses by using them as additional optimization methods, including pose-graph
optimization or windowed (local) bundle adjustment.

3.2.2 Deep Learning-based Visual Odometry
As the deep learning-based methods, the deep visual odometry models can be separa-

ted as supervised and unsupervised models. For supervised models, DeepVO (S. Wang et
al., 2017) and 3DC-VO (Koumis, Preiss, & Sukhatme, 2019) are the most representative
models. On the other hand, unsupervised models aim to estimate depth unsupervised. Ho-
wever, despite the dominance of deep learning methods in many computer vision tasks,
deep learning methods perform worse in visual odometry task.

Supervised Deep Visual Odometry

Deep learning-based visual odometry method was first proposed in 2015 (Konda &
Memisevic, 2015). In 2017, DeepVO was proposed, whose CNN (extract image features)
and LSTM (predict camera poses) pipeline became a standard architecture for supervised
visual odometry (S. Wang et al., 2017). Furthermore, new networks and modules are pro-
posed to improve the pose estimation accuracy (Saputra, de Gusmao, Wang, Markham,
& Trigoni, 2019 ; Xue et al., 2019 ; Koumis et al., 2019). Besides higher pose estima-
tion accuracy, fast light-weight visual odometry network was also explored (Saputra, de
Gusmao, Almalioglu, Markham, & Trigoni, 2019).

Unsupervised Deep Visual Odometry

Motivated by the human’s ability to infer ego-motion and the 3D structure of a scene
even over short timescales. More recent works have more attention to the unsupervised
deep learning-based visual odometry methods. SFMLearner (Zhou et al., 2017) propo-
sed a standard unsupervised deep learning-based visual odometry pipeline : a deep depth
network and a deep pose network are trained jointly. The training is based on the self-
supervised temporal photometric minimization loss.

Moreover, recovering absolute scale with stereo images is important for visual odo-
metry (R. Li et al., 2018 ; Zhan et al., 2018). There are also some works exploring new
geometric consistency to train the visual odometry network (Bian et al., 2019 ; Shen et al.,
2019 ; Mahjourian et al., 2018). In addition, the environmental dynamics (e.g. pedestrians
and vehicles) problem is also important (Z. Yin & Shi, 2018). Furthermore, different deep
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learning network architectures, such as GAN (S. Li, Xue, Wang, Yan, & Zha, 2019 ; Al-
malioglu, Saputra, de Gusmao, Markham, & Trigoni, 2019) and Transformer (X. Li et al.,
2021), are explored for deep learning-based visual odometry.

3.2.3 Hybrid Visual Odometry
Besides the full model-based and full deep learning visual odometry methods, the hy-

brid method, which combines the deep learning network and model-based pose estimator,
attracts more and more attention.

For the current hybrid visual odometry, they use the same self-supervised way to ob-
tain the deep depth network, the deep pose network, the deep mask/uncertainty network
or the deep optical flow network. The main difference lies in that these hybrid methods
use different model-based visual odometry modules to infer the camera pose. Specifically,
the D3VO, DVSO (N. Yang et al., 2020, 2018) learn depth and camera pose as the geome-
try and the pose prior for the DSO visual odometry method. There are also some works
(Y. Wang et al., 2019 ; C. Wang et al., 2018) use the direct visual odometry module to
refine the deep camera pose, which is also used for self-supervised monocular depth es-
timation training. The DF-VO (Zhan et al., 2020) first combines the deep depth and deep
pose with the sparse feature-based visual odometry method.

However, previous models have a split training stage and test stage. This means that
the training of the hybrid visual odometry is not end-to-end. The deep networks are trained
independently first, and their outputs are then sent to the model-based odometry module
during the inference stage. As the training and testing do not use the same framework, the
self-supervised training of the hybrid visual odometry methods is not the optimal solution.

3.2.4 Semantic Visual Odometry
Semantic information is a type of structured representation that is commonly used in

computer vision tasks. Previous works also suggest that semantic representation intro-
duces prior knowledge to the visual odometry methods, which can improve the accuracy
of the visual odometry (Bowman et al., 2017 ; Kaneko et al., 2018 ; K. Wang et al., 2019).
On the one hand, semantic representation can select and filter the noisy information for
better visual odometry performance. On the other hand, semantic representation can build
topological relations of the image pixels to improve the visual odometry methods. In this
part, the 2D and 3D semantic representations are first introduced to better understand the
semantics. Then, the related works of semantic visual odometry are described.

2D semantic representation

In a 2D semantic representation, two types of semantic information are commonly
included : pixel-level semantic information and object-level semantic information. The
former corresponds to semantic segmentation, while the latter corresponds to object de-
tection. Deep learning techniques have been widely used in both tasks and have become
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state-of-the-art methods. Therefore, this part will focus on related works that employ deep
learning methods.

Firstly, early-stage deep semantic segmentation research focuses on close-set semantic
segmentation models. Most typical algorithms are introduced in this part (He, Gkioxari,
Dollár, & Girshick, 2017 ; Shelhamer, Long, & Darrell, 2017 ; H. Zhao, Shi, Qi, Wang, &
Jia, 2017 ; Chen, Zhu, Papandreou, Schroff, & Adam, 2018 ; E. Xie et al., 2021 ; Cheng,
Schwing, & Kirillov, 2021 ; M.-H. Guo et al., 2022). Mask RCNN (He et al., 2017) is a
semantics segmentation framework based on the object detection framework (Girshick,
2015). Then, FCN (Shelhamer et al., 2017) proposed a full end-to-end convolution net-
work for semantic segmentation. As a dense prediction task, considering the multi-scale
features, PSPNet (H. Zhao et al., 2017) proposed multi-scale convolution for semantic
segmentation. Moreover, DeepLab series algorithms (Chen et al., 2018) fuse the convo-
lution and Conditional Random Field (CRF) for semantic segmentation. More recently,
transformer-based segmentation models are proposed (E. Xie et al., 2021 ; Cheng et al.,
2021) with the advantage of the self-attention (Vaswani et al., 2017), which can model the
long-range semantic context.

Furthermore, with a larger-scale segmentation dataset (Kirillov et al., 2023), gene-
ral segmentation models are proposed (Kirillov et al., 2023 ; X. Zou et al., 2023). SAM
(Kirillov et al., 2023) is the first to achieve zero-shot general segmentation. Then, SEEM
(X. Zou et al., 2023) is proposed, which has better performance and supports more diverse
prompts to generate the segmentation.

Secondly, object detection is also an important semantic representation learning task,
which predicts object-level semantic information. The classical object detection methods
use sliding windows to detect the objects, whose performance is not satisfying (Sudowe
& Leibe, 2011). With the advantage of the deep learning network, RCNN series networks
(Girshick, 2015) increase the performance of object detection to a new level. RCNN me-
thods are two-stage object detection methods. It has a region proposal network (RPN)
to generate regions of interest for the final label classification and bounding box re-
gression. RCNN methods proposed the anchor mechanism, which becomes an important
concept for deep object detection methods. Furthermore, one-stage object detection net-
works achieve faster speeds than RCNN methods. YOLO series methods (Redmon et al.,
2016) are the common real-time object detection networks, which have a good balance
of speed and accuracy. Some YOLO networks (Redmon et al., 2016) also introduce the
anchor mechanism. However, the pre-defined anchor mechanism limits the further impro-
vement of deep object detection. More anchor-free object detection methods are propo-
sed (Law & Deng, 2018 ; Duan et al., 2019 ; Zhu, He, & Savvides, 2019), which increase
the object detection result further. More recently, the detection Transformer (DETR) net-
works realize new state-of-the-art accuracy performance (Carion et al., 2020). The DETR
methods simplify the object detection framework, the previous anchor mechanism and
Non-maximum Suppression (NMS) part are abandoned.
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3D semantic representation

This part highlights the growing interest in estimating 3D semantic representation
from visual data, building on the successes of modeling 3D geometry information and
2D semantic information discussed in Sections 2 and 3.2.4, respectively. Similar to 2D
semantic representation learning methods, 3D semantic representation also includes pixel-
level and object-level representations, which correspond to 3D semantic scene completion
and 3D object detection, respectively.

The 3D semantic scene completion task is an important aspect of visual semantic re-
presentation, as it estimates the dense voxel-based 3D semantic representation that can
help build the 3D semantic mapping of a static environment and detect dynamic objects
in a scene. The task was first proposed in SSCNet (Song et al., 2017), which optimizes the
geometry and semantics together with incomplete visual data. Subsequent works have in-
vestigated 3D semantic scene completions for indoor scenes (J. Zhang et al., 2018 ; S. Liu
et al., 2018 ; J. Li et al., 2019 ; Cai et al., 2021) and outdoor scenes (Y. Li et al., 2023 ;
Cao & de Charette, 2022), with the latter being developed well with the public Seman-
tic KITTI dataset (Behley et al., 2019). However, the 3D semantic scene completion for
outdoor autonomous driving scenes is still being explored, with previous works mainly
using 3D information from LiDAR data (Rist, Emmerichs, Enzweiler, & Gavrila, 2021)
or estimated from monocular images (Cao & de Charette, 2022). While Monoscene (Cao
& de Charette, 2022) was the first to realize 3D semantic scene completion based on vi-
sual data using a 2D-3D CNN architecture, depth estimation from monocular images is an
ill-posed problem, as described in Sec. 2. As a result, more robust stereo-based methods
have been proposed to achieve better accuracy performance (Y. Li et al., 2023).

Moreover, for the object-level 3D semantic representation, there are similar pathways
as the 2D object detection methods. The state-of-the-art 3D object detection methods
also use detection Transformer (DETR) architecture (Y. Wang et al., 2022), which learns
the 3D-to-2D queries. And it also has the advantage of 2D DETR (Carion et al., 2020).
Furthermore, BEVFormer is a spatial-temporal Transformer network that learns Bird’s
Eye View (BEV) features for 3D object detection (Z. Li et al., 2022).

In terms of 3D semantic representation, there are two approaches : 3D semantic com-
pletion and 3D object detection. The former generates a dense volumetric 3D semantic
representation, providing the semantic occupancy of each position. On the other hand, 3D
object detection provides labeled bounding boxes of objects in the 3D space. While both
approaches are useful for different applications, 3D semantic completion is better suited
for finding potential obstacles and dynamic objects, as it provides a more detailed and
complete representation of the 3D environment.

Semantic visual odometry

There have been different semantic visual odometry methods (Bowman et al., 2017 ;
Yu et al., 2018 ; K. Wang et al., 2019). According to the functions of the semantics in
visual odometry, they can be categorized into two groups.

Firstly, the reprojection results of the same 3D point should have the same semantics.
This is a reprojection optimization problem, which can modify the optimization object
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in the bundle adjustment equation. The key problem is to compute the reprojection error
(Bowman et al., 2017 ; Lianos, Schonberger, Pollefeys, & Sattler, 2018).

Secondly, the dynamic regions can be identified based on the semantic information.
Model-based localization algorithms assume the scene in images is static, but there are
various dynamic objects in the real world. No matter the feature-based methods or direct
methods, the dynamic objects affect the localization results seriously. Semantics can help
to find these dynamic regions and objects (Yu et al., 2018).

The semantics representation can associate groups of pixels into different regions and
label these regions. The former can determine if the objects are dynamic by moving
consistency check, reducing the noise in the localization process (Yu et al., 2018). The
latter can help to filter some noise (such as the sky, and trees) and identify if some objects
will move (such as vehicles, and pedestrians) (Kaneko et al., 2018 ; K. Wang et al., 2019).

3.3 Dense Direct Visual Odometry (DDVO)
The dense direct visual odometry method is a type of optimization-based localization

method that has proven to be successful in the field of visual odometry. There are many
direct visual odometry methods that are based on it, such as (Comport et al., 2010 ; New-
combe, Lovegrove, & Davison, 2011 ; Engel et al., 2014 ; Forster, Zhang, Gassner, Werl-
berger, & Scaramuzza, 2016 ; Engel et al., 2017). This section reviews DDVO method.
It utilizes photometric minimization loss. The first step involves generating a reference
image using an image warping operation. Camera intrinsic and reference depth are used
in this operation. The cost function is computed by comparing the generated reference
image with the ground truth reference image. Finally, the initial camera pose is updated
by minimizing the photometric minimization cost function in iterations.

The traditional direct visual odometry approach is an optimization-based algorithm
that iteratively updates the relative camera pose T̂. Usually, it is optimized with Newton
method or Gaussian-Newton method (Comport et al., 2010). As illustrated in Fig. 3.2,
the cost function is first built with the warped and the ground truth reference images. The
warped reference image can be obtained by the image warping module which uses the
current image, the reference depth map, and the initialized relative camera pose. Then,
the update pose ∆T of the relative camera pose is computed using a suitable optimization
method. Finally, the relative camera pose is updated. After N iterations, the camera pose
prediction will be close to the ground truth camera pose.

Specifically, DDVO is a non-linear least square problem, the optimization loss is
shown in Eq. 3.1. It performs in dense 3D geometric space. The optimization goal of
DDVO is to obtain the prediction camera pose T̂ ∈ SE(3), which is updated in an itera-
tive way.

In this section, the Gaussian-Newton optimization method is introduced as a way to
optimize the traditional DDVO method. For each iteration for the optimization of DDVO,
there are a forward inference and a backward parameter update.
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Figure 3.2 – Structure of traditional dense direct visual odometry approach.

Input: Init camera pose T̂ = T(0), reference depth map Zr, current image Ic, reference
image Ir, threshold τ .
for t=1,2,... do

Compute the warped reference image Ic
r from the current image.

Compute the cost l(x).
Find the incremental parameters ∆x, make the l(x + ∆x) < l(x).
if ||T(∆x)||1 < τ then

return Predicted camera pose T̂
end if
Update camera pose T̂ = T̂ ·T(∆x).

end for

Algorithm 3.1: Dense direct visual odometry algorithm.

Forward inference
In the forward inference, the current image is warped to the reference view, and then

the cost function is computed.

l(x) =
∑

pr∈Pr

∥Ir(pr)− Ic
r(pr)∥2

(3.1)

where pr is the coordinates of the reference image. Ic
r is the generated reference image

from the current image, it can computed as Eq. 2.9 and Eq. 2.8.
Backward parameter update
Following the Gaussian-Newton method, which has been introduce in Appendix A,

the update of the model parameters, i.e., the camera pose T, is computed as Eq. 3.2.

x = (JT J)−1 · J(Ir − Ic
r) (3.2)
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Usually, there are three types of Jacobian matrices, as shown in Appendix A, where J is
the Jacobian matrix.

The model’s parameters are represented with x ∈ R6. It is expressed as the exponen-
tial coordinates, as the Eq. 3.3.

x = (ω, ν) (3.3)

where ν is the translation linear velocity, ω is the angular velocity.
Then the incremental camera pose ∆T can be expressed as Eq. 3.4.

∆T = T(∆x) = e[v]×θ (3.4)

where [v]× is the twist, and θ is the radian rotation angle.
As shown in Eq. 3.5, the T̂ is updated iteratively. It is the product of the last step

T̂k−1 and an incremental pose T(x). The ∆x is a update parameter in the Lie algebra
se(3) of the Special Euclidean Group SE(3). In theory, there is a optimal [v]× to make
T̂T(x̂) = T. T is the optimal camera pose from the reference to the current.

T̂k(x) = T̂k−1T(∆x) (3.5)

3.4 Stereo Hybrid Dense Direct Visual Odometry (Ste-
reoHDVO)

Visual odometry approaches based on traditional models are typically composed of
two steps. Firstly, the disparity between left and right images is matched to estimate
the depths of the observed scene. Then, the camera pose is obtained using the estimated
depths. The depths can be computed for selected features, as in sparse visual odometry
methods like (Mur-Artal et al., 2015 ; Engel et al., 2017), or for all possible pixels in the
image, as in dense direct visual odometry methods like (Comport et al., 2010). Dense
direct methods have been proven to be more robust than sparse-based visual odometry
methods as they use global information and avoid feature detection errors.

Recently, more and more end-to-end deep learning visual odometry approaches have
been proposed, including supervised (S. Wang et al., 2017) and self-supervised (Zhou et
al., 2017) models. However, it has been shown that hybrid visual odometry approaches
can achieve better results (N. Yang et al., 2018, 2020 ; Zhan et al., 2020). Hybrid visual
odometry models predict depths with a deep neural network and estimate the camera
poses with model-based methods. However, previous works focused on combining deep
neural networks with sparse pose estimation methods. In this section, a new dense hybrid
approach is proposed by combining a deep neural network with the dense direct visual
odometry method, as shown in Fig. 3.3. And this is the first stereo hybrid visual odometry
method.
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Figure 3.3 – Stereo hybrid dense direct visual odometry (HDVO).

3.4.1 Model-based module
The Dense Direct Visual Odometry (DDVO) module is the essential component of

HDVO. It is a proven model-based solution for visual odometry that provides reliable
and clear pose prediction, especially when compared to deep learning-based camera pose
estimation. For more information about DDVO module, please refer to Sec. 3.3.

3.4.2 Deep learning module
The dense direction visual odometry algorithm explained in this section heavily relies

on high-quality depth prior. With the help of deep learning networks, this prior can be
obtained using end-to-end deep networks. For the depth prior, a deep stereo network is
used, which provides a more robust and accurate depth map compared to the popular
monocular depth network (Z. Liu, Malis, & Martinet, 2022).

To obtain the accurate and robust depth, deep 2D-3D stereo network (Chang & Chen,
2018) instead of the monocular auto-encoder (Zhan et al., 2020 ; N. Yang et al., 2020 ; Go-
dard et al., 2019) is used to obtain the depth. The deep stereo network has been described
in Chapter 2.

Chapter 2 has introduced the structure of the stereo networks. Any of these stereo
networks in Chapter 2 can be used here. For example, the two-stage 2D-3D stereo network
is shown in Fig. 3.3. There are two main stages in this network : feature extraction and
stereo feature matching. The former is processed by a 2D CNN, and the latter is learned
with a 3D CNN.

To optimize a depth estimation loss, the details have been well-discussed in Chapter 2.
Because ground truth depth labels are not available for most visual odometry datasets, the
pose-supervised strategy is applied in the StereoHDVO. Specifically, the stereo-matching
loss, the temporal-matching loss, the structure similarity loss, the brightness-robust loss
and the disparity smoothness loss are used. The stereo-matching and temporal-matching
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losses provide strong geometry constraints between different image views. They are both
photometric minimization losses.

3.4.3 Optimization
The optimization of the StereoHDVO involves two stages : training and testing. It is

a hybrid artificial intelligence method that follows the same approach as other previous
hybrid visual odometry methods such as (Zhan et al., 2020 ; Y. Wang et al., 2019). The
deep learning module and the model-based module are optimized separately.

In the training stage, the deep stereo network is optimized as explained in Chapter 1
and 2. This stage results in a well-trained depth estimation network, which will be used
for generating depth maps in the test stage.

During the testing stage, the parameters of the deep stereo networks are kept fixed,
while only the model-based DDVO module is optimized online. As explained in Sec. 3.3,
DDVO is optimized using an efficient second-order optimization method. The predicted
depth map from the fixed stereo network is used to initialize DDVO module.

3.5 Masked HDVO
The dense direct visual odometry (Comport et al., 2010) and the self-supervised depth

estimation networks (Godard et al., 2017, 2019) are all optimized based on the photome-
tric minimization This kind of loss function is computed from a ground truth image and
a generated image warped with an estimation of the pose and of the depth map, as shown
in Fig. 3.3. The optimal pose or depth map is found by optimizing this loss function.

As shown in Fig. 3.4, during the computation of the photometric minimization loss
with the warped image, it is inevitable to encounter noise in certain areas of the image
where the texture is uniform or in areas where there are stereo or temporal occlusions.
These incorrect image warping losses can lead to inaccurate depth estimation and ultima-
tely affect the accuracy of the visual odometry method.

The methods using the image photometric minimization loss have achieved great suc-
cess in many tasks, mainly in deep learning-based depth estimation (Godard et al., 2019),
and visual odometry (Comport et al., 2010). For most self-supervised depth estimation
networks, photometric image warping loss has shown good performance without any
ground truth depth annotation (Godard et al., 2019). For visual odometry, DDVO does not
need feature detection and feature matching/tracking. This not only reduces the possible
errors from feature detection but also saves the time for constructing feature descriptors
(Comport et al., 2010).

Recent state-of-the-art self-supervised depth estimation works have widely used
image photometric minimization loss optimization. Meanwhile, many of these works have
shown the importance of applying masks on the loss during optimization. The proposed
masking methods mainly focus on solving the problem of removing hallucinated depth
areas. A group of them choose to define geometric rules to obtain masks (Godard et al.,
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2019 ; G. Wang et al., 2019 ; Bian et al., 2019 ; Mahjourian et al., 2018). However, these
masks generation methods highly rely on accurate disparity predictions, and most of them
only consider temporal context. There are also some works using deep networks to ge-
nerate masks (Zhou et al., 2017 ; Z. Yang, Wang, Xu, Zhao, & Nevatia, 2018). These
approaches need more computations and parameters. Another problem for them is the
ground truth mask annotations can not be obtained.

Various dense direct method visual odometry techniques currently available make use
of different kinds of masks, such as certainty and rigid masks, to improve the accuracy
of their loss maps (N. Yang et al., 2020 ; Y. Wang et al., 2019). Although these methods
have demonstrated the benefits of using masks, they are only able to partially address
challenges related to occlusions and homogeneous textures.

A new approach called "multi-mask" is being proposed in this section to improve the
accuracy of image-based loss. This approach can be used in two parts. Firstly, the HDVO
depth estimation network can be trained using masked image-based loss. Secondly, the
dense direct visual odometry module can be optimized with masked image-based loss
during the inference stage of HDVO.

To reduce the impact of occlusion areas, the consistency in stereo and temporal war-
ping within the same view is taken into consideration. For non-occluded pixels in view
(camera i, time t), the intensity of the pixels in the stereo warping result and the tem-
poral warping result is the same. A Stereo-Temporal Consistency (STC) occlusion mask
is proposed based on this motivation. Additionally, homogeneous texture areas like the
sky can result in hallucinated depths. To address this issue, a Local Average Max (LAM)
homogeneous texture mask is proposed.
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3.5.1 Stereo-Temporal Consistency occlusion mask (STC Mask)
3.5.1.1 Theoretical analysis

Assume the d is the distance between the prediction pixel and the ground truth pixel.
During the optimization with loss L, the distance d will close to 0, as shown in Eq. 3.6.

L(p)


= 0, p ∈ non− occlusionarea, d = 0
> 0, p ∈ non− occlusionarea, d > 0
> τ, p ∈ occlusionarea

(3.6)

where p is the 2D pixel coordinates vector.
When a pixel is occluded, it cannot be matched, resulting in a minimum error τ , cau-

sing the affected pixels to impact the model’s convergence to a global minimum.

3.5.1.2 Approach

Occlusion pixels are commonly present in stereo and temporal sequential images. The
simplest and most direct method to detect occlusion pixels is by comparing the intensity
difference between the generated image and the ground truth image. However, this me-
thod does not always produce robust and reliable results. The depth prior used to generate
the generated image is not always reliable. Moreover, brightness discrepancies often oc-
cur in stereo and temporal sequential images, which can cause a mismatch between the
generated image and ground truth image even in non-occlusion areas.

To prevent outliers caused by incorrect depth prior, a method is employed to compare
the image intensity difference between the warped stereo image and the warped temporal
image of the same camera view. This approach ensures that only the pixels belonging to
the non-occlusion area and having the correct depth prior achieve perfect matching.

To mitigate the impact of brightness discrepancies, the local-patch-based brightness-
robust (BR) loss is utilized to measure the intensity difference, as opposed to measuring
it pixel-by-pixel.

A new occlusion mask, termed as stereo-temporal consistency (STC) occlusion mask,
is proposed. The computation steps of the STC mask are illustrated in Fig. 3.5. The warped
stereo image Iws is obtained for the stereo matching loss, and the warped temporal image
Iwt is derived for the temporal-matching loss. Both Iws and Iwt correspond to the same
camera view.

Subsequently, the error map Merr between Iws and Iwt is computed using the BR loss
function (Eq. 2.15), as shown in Eq. 3.7.

stc1 : Merr = LBR(Iws, Iwt) (3.7)

As explained in the introduction section, the binary mask was chosen over the soft
mask 1 −Merr. Consequently, setting an appropriate threshold value on this error map
results in the STC binary mask MST C as indicated in Eq. 3.8.
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Stereo-
matching

Temporal-
matching

Eq. stc1

Error map STC mask

Eq. stc2Stereo-warped result

Temporal-warped result

Figure 3.5 – Steps for computing the STC occlusion mask.

stc2 : MST C(p) =
{

1, Merr(p) < τ

0, Merr(p) ≥ τ
(3.8)

where τ is a given threshold value.
The proposed STC mask has several advantages :
1. The STC mask can be obtained at a low cost by using the outputs of the stereo mat-

ching loss and the temporal-matching loss. These outputs are originally generated
for the photometric minimization loss.

2. STC mask can remove stereo and temporal occlusion pixels and outliers from the
wrong depth prior.

3.5.2 Local Average Max homogeneous texture mask (LAM Mask)
For the homogeneous texture or low-texture area, the intensity loss in Fig. 3.3 will fail

because there are the same pixel intensities in this area. Intuitively, humans also can not
estimate the correct depth from the homogeneous texture area.

Average pooling

Smoothed error mapError map

Eq.lam2
Eq. lam1

Eq. lam3 Eq. lam4

LAM mask

Average mapSingle image

Max pooling

Figure 3.6 – Steps for computing the LAM homogeneous texture mask.

3.5.2.1 Theoretical analysis

Assumed that a pixel p = (m, n) and its surrounding circle R = 10 belong to a
homogeneous texture area. The warped image pixel is p̂ = (i, j). As shown in Eq. 3.9, if
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the distance between the warped pixel and the target pixel is in the surrounding circle, the
loss is still zero. If the distance is out of the surrounding circle, the intensity loss plays its
role.

L(p)


= 0,

√
(m− i)2 + (n− j)2 = 0

= 0, 0 <
√

(m− i)2 + (n− j)2 <= R

> 0,
√

(m− i)2 + (n− j)2 > R

(3.9)

Therefore, the intensity loss will be constant at zero even when the warped image and
the target image are not matched. The model can not converge to the minimum point.

3.5.2.2 Approach

To find the homogeneous texture in a simple, fast, and unsupervised way, we propose
the local average max mask based on the following hypothesis :

Hypothesis : The pixels in a homogeneous texture area have the same intensity
with their surroundings.

In the LAM mask, we simplify the hypothesis. We define the pixels that have the same
intensity with the average value of their surrounding local patch to be a homogeneous area.
To realize that, as shown in Eq. 3.10, we first compute the average map using the average
pooling layer. The kernel size is the same as the local patch size, e.g. (5, 5). The stride is
1.

lam1 : Imean(p) = 1
|Pl|

∑
pl∈Pl

I(pl) (3.10)

where the Imean(p) is the average pooling value of the image local patch, p is the
position in global image coordinates, i.e., p ∈ P. I(pl) is the pixel pl in the local image
patch. pl is the position of the local image patch, there are pl ∈ Pl, Pl ∈ P. |Pl| is the
number of pixels of the local image patch.

Then the intensity difference between the image pixels I and the average map pixels
Imean is computed as Eq. 3.11.

lam2 : Merr = |I− Imean| (3.11)

However, if we directly generate the binary mask from the soft mask 1 −Merr, the
binary mask will be noisy. We think this problem is caused by the limited context of the
average pooling layer. To solve that, we first repeat the average pooling to be two layers
to enlarge the context field of the local image patch. Meanwhile, we use a max pooling
layer (kernel size = local patch size, stride=1 ) to filter the outliers in each local image
patch as Eq. 3.12. The max pooling layer can make the LAM mask continuous in the
homogeneous texture area.
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lam3 : Msmooth(p) = max
pl∈Pl

Merr(pl) (3.12)

where Msmooth(p) is the max pooling output in the global image p position. In the p
position’s local image patch Pl, Merr(pl) is the error at the position pl.

Finally, the LAM binary mask is also obtained according to a threshold τ , as shown
in Eq. 3.13. The threshold can be fixed for each video sequence, or it can also be dynamic
by controlling the percentage of masked pixels.

lam4 : MLAM(p) =
{

0, Msmooth(p) < τ

1, Msmooth(p) ≥ τ
(3.13)

3.6 Semantic masks for masked HDVO
In Chapter 2 and Chapter 3, pose-supervised depth estimation and hybrid dense direct

visual odometry techniques are optimized with a photometric minimization loss func-
tion. However, the photometric minimization loss function can be noisy in the real world,
which can affect the accuracy of the results. To address this issue, corresponding mask
methods have been proposed in Chapter 3. These mask methods are based on rules and
are robust, but they may not be accurate enough. Therefore, it is crucial to introduce se-
mantic information to obtain more accurate occlusion and homogeneous texture masks.

For the STC occlusion mask, the mask accuracy is affected by the brightness discre-
pancies problem caused by different camera views. This problem is reduced by introdu-
cing the brightness robust measurement in Eq. 2.15. However, this problem is not fully
solved. With the semantic information, the STC mask can be obtained on the semantic
segmentation map instead of the RGB image, which avoids this brightness discrepancies
problem.

For the LAM homogeneous texture mask, it is based on the hypothesis that the ho-
mogeneous texture pixels have similar intensities. This hypothesis can not be satisfied in
some scenes, and it is also affected by the noisy RGB intensities. Furthermore, there is
another attribution for the homogeneous texture areas. Usually, the homogeneous texture
areas belong to the same object, e.g., the sky, the white wall, or the dark object. Therefore,
the semantic segmentation map can be used to refine the original LAM mask further.

3.6.1 Semantic STC occlusion mask
The original STC occlusion mask is shown in Fig. 3.5.1. This mask is obtained by

comparing the RGB images and thresholding the error map. This is a simple but efficient
rule-based method. However, the RGB intensities suffer from the noises and brightness
discrepancies.

As the RGB information is not accurate enough to generate the mask, the semantic
information is essential for the STC mask. The overall structure of the semantic STC
mask is illustrated in Fig. 3.7.
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Semantic STC Occlusion Mask

Difference
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t1-left t1-left
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Figure 3.7 – Structure of the semantic STC mask.

The first step is to extract the segmentation map of the image and then compute the
stereo-warped segmentation map and temporal-warped segmentation map.

Extract the segmentation map

Firstly, the segmentation maps SR, St0 of the t1 right image IR and the t0 left image It0

are obtained by a general semantic segmentation network in Eq. 3.14. The recent state-
of-the-art segmentation model Seg (Kirillov et al., 2023) is used, with better zero-shot
generalization performance.

SR, St0 = Seg(IR, It0) (3.14)

Stereo-warped segmentation map

The stereo-warped segmentation S′
L is computed as follows.

Assume the coordinate of the right segmentation is PR. To obtain the coordinate of
the left image PL

PL = PR + DL (3.15)

where the DL is the disparity map of the left view. PR is the coordinate of the right view.
The DL is generated from the stereo network or transformed from the depth map with

the following equation.

DL = f ∗ b/ZL (3.16)

The ZL is the left depth, f, b refers to the horizontal focal length and the stereo baseline.
Finally, the warped left segmentation S′

L is obtained as follows.

S′

L = W(SR, PL) (3.17)
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where W is the image warping function.

Temporal-warped segmentation map

Similarly, the temporal-warped segmentation S′
t1 can be computed as follows.

Firstly, Assume the coordinate of the reference segmentation is Pt0 , pt0 ∈ Pt0 .

pt0 = [ut0 ; vt0 ] (3.18)

pt0 = [pt0 ; 1] (3.19)

Then the reference t0 coordinate is transformed to the 3D space as follows.

qt0 = K−1 · pt0 (3.20)

mt0 = Zt0 × qt0 (3.21)

In the 3D space, the coordinate is transformed with the relative camera pose t1Tt0

from the reference view t0 to the current view t1.

mt0 = [mt0 ; 1] (3.22)

[Xt1 ; Yt1 ; Zt1 ; 1] = mt1 = t1Tt0 ·mt0 (3.23)

mt1 = [Xt1 ; Yt1 ; Zt1 ] (3.24)

Then, the coordinate of the current view is transformed to 2D calibrated space.

qt1 = mt1/Zt1 (3.25)

where Zt1 is the depth of the current view t1.

pt1 = K× qt1 = [ut1 ; vt1 ; 1] (3.26)

pt1 = [ut1 ; vt1 ] (3.27)

The current view coordinate map Pt1 is obtained, which is the set of the pt1 .
Finally, the temporal-warped segmentation S′

t1 is generated by image warping.

S′

t1 = W(St0 , Pt1) (3.28)

Semantic STC mask generation

The original STC mask generation process introduces a more robust measurement to
generate a better occlusion mask. However, this method only alleviates the noise problem.
Instead, the semantic segmentation maps can provide clean and robust matching informa-
tion. With the semantic segmentation results, a clean and stable occlusion mask can be
generated.

Assume the segmentation maps S′
L, S′

t1 have NL, Nt1 segmentation objects separately,
the maximum intersection Mi of the stereo-warped map and temporal-warped map is the
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non-occlusion area for the segmentation object i. The index of the maximum intersection
is computed as follows.

j∗ = arg
Nt1max
j=1

∑
p∈P

(S′

L,i(p)&S′

t1,j(p)
 (3.29)

Then the mask for segmentation object i is

Msem,i =
(
S

′

L,i&S
′

t1,j∗

)
∈ {0, 1} (3.30)

The overall semantic mask is represented as follows.

Msem(p) = 1,
NL∑
i=1

Mi(p) > 0

Msem(p) = 0,
NL∑
i=1

Mi(p) = 0
(3.31)

3.6.2 Semantic LAM homogeneous texture mask
The overall semantic LAM homogeneous-texture mask is shown in Fig. 3.8. The se-

mantic segmentation model is fused with the original LAM mask module by the voting
strategy. A clean and accurate homogeneous texture mask is generated in this way.

Segmentation model LAM mask module

vote

Semantics LAM homogeneous-texture mask

Figure 3.8 – Structure of the semantic LAM mask.

Firstly, the semantic segmentation map S is obtained with the semantic segmentation
model. The original LAM mask Mlam is obtained as introduced in Sec. 3.5.2. Next, this
section mainly introduces the voting strategy to generate the semantic LAM mask.

This voting strategy is based on the hypothesis that most homogeneous texture regions
are segmented into individual objects with the semantic segmentation model.
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Assume there are Nseg segmented object regions in the semantic segmentation map S.
In the LAM mask Mlam, maintained pixels have the value 1, and removed pixels have the
value 0.

The semantic mask Mslam can be computed as Eq. 3.32. The segmentation object
is fully masked if the LAM masked pixels are more than LAM maintained pixels. This
object is maintained if the LAM masked pixels only account for a small part of this object.

Moverlap,i = (!Mlam)&Si

Mslam(p ∈ Pi) = 1,
∑

p∈Pi

Moverlap,i(p)/
∑

p∈Pi

Si(p) ≥ τ

Mslam(p ∈ Pi) = 0,
∑

p∈Pi

Moverlap,i(p)/
∑

p∈Pi

Si(p) < τ

(3.32)

where τ ∈ [0, 1] is a ratio threshold. Moverlap,i is the overlapped pixels of the LAM mask
and the segmentation map for object i. Pi is the coordinate of the segmentation object i.

3.7 HDVO with the sequential test-time training frame-
work

Among the many algorithms for visual odometry, deep hybrid visual odometry method
has proven to be a successful solution for localization (Y. Wang et al., 2019 ; Z. Liu,
Malis, & Martinet, 2022 ; Zhan et al., 2020 ; N. Yang et al., 2020). For these hybrid visual
odometry methods, there are three main types : sparse direct odometry (N. Yang et al.,
2020, 2018), dense direction odometry (Z. Liu, Malis, & Martinet, 2022), and sparse
feature-based odometry (Zhan et al., 2020). The deep hybrid visual odometry contains a
deep neural network that predicts the depth map of the environment, and a model-based
pose estimation module that outputs the camera motion. Typically, the quality of the depth
map is the most critical factor for visual odometry accuracy.

For the depth estimation networks in deep hybrid visual odometry method, there have
been a lot of supervised or unsupervised methods (Godard et al., 2019) providing high-
quality depth prior for the visual odometry on the public datasets (Geiger et al., 2012).

The supervised depth networks include stereo and monocular networks. All of these
supervised networks are trained with L1 photometric loss on the ground truth sparse depth
maps. For the monocular networks, various state-of-the-art network architectures are ex-
plored, such as transformer (Z. Xie et al., 2023). Data augmentation is important for the
performance of the monocular depth network. The self-supervised pre-training also per-
forms a critical role for the monocular depth estimation networks (Z. Xie et al., 2023). For
the stereo networks, there are three kinds of methods. The first type is the simple auto-
encoder network, such as the DispNet (Mayer et al., 2016). A more successful architecture
is the two-stage 3D-CNN network (Chang & Chen, 2018 ; Kendall et al., 2017). GCNet
(Kendall et al., 2017) builds the 4D cost volume and predicts the disparity map using the
soft arg-max method. PSMNet (Chang & Chen, 2018) further proposes pyramid network
architecture and cascade 3D-CNN based on GCNet (Kendall et al., 2017). CascadeNet
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(Gu et al., 2020) predicts disparity map with multiple cascaded PSMNet (Chang & Chen,
2018) or GWCNet (X. Guo et al., 2019), the last disparity prediction initializes the cost
volume of the next prediction. More recently, the recurrent stereo networks (Lipson et al.,
2021 ; J. Li et al., 2022 ; Xu et al., 2023) achieve better accuracy, especially on the high-
resolution image. RAFTStereo (Lipson et al., 2021) first builds a recurrent network based
on RAFT optical flow network. Then CREStereo (J. Li et al., 2022) improves the disparity
prediction with Adaptive Group Correlation Layer. IGEVStereo (Xu et al., 2023) intro-
duces the two-stage 3D-CNN to provide a disparity initialization for the recurrent stereo
network. Although the recurrent stereo network has high accuracy, the inference speed
also becomes much slower because of the recurrent network.

In addition, self-supervised depth estimation networks have also achieved impressive
results. The self-supervised depth estimation is based on two types of loss functions, in-
cluding the self-supervised stereo matching loss and temporal matching loss. For the self-
supervised stereo matching methods, the reconstructed warped image is obtained between
the stereo images. Then a photometric loss function is built between them. Monodepth
(Godard et al., 2017) achieves the monocular self-supervised depth estimation with the
stereo matching loss and SSIM (Z. Wang et al., 2004), disparity smooth losses. More re-
cently, the combination methods of the self-supervised stereo matching and the temporal
warping are proposed (Godard et al., 2019). For the temporal warping methods, the re-
constructed warped image is obtained between the adjacent video frames with the depth
map and the camera relative pose. The temporal warping method can provide a stronger
constraint by fusing with the stereo-warping method (Godard et al., 2019, 2017). SFM-
Learner (Zhou et al., 2017) achieves the depth estimation and pose estimation at the same
time on the monocular videos with the temporal matching.

All in all, the previous deep visual odometry methods are trained with self-supervised
depth networks on the target video dataset (Zhan et al., 2020 ; Y. Wang et al., 2019 ;
N. Yang et al., 2020). The supervised depth networks (Chang & Chen, 2018) are not
well-investigated. And these odometry methods rely on training and testing on the same
data domain (the same dataset) to have good performance. However, training on the video
datasets is high-cost, and it is not possible to train the model again when deploying the
model to a new real-world scene.

To solve this problem, test-time training (TTT) on the testing data is a low-cost solu-
tion to maintain a high localization accuracy. test-time training has been explored on many
fundamental computer vision tasks, e.g. image recognition (Y. Sun et al., 2020 ; Y. Liu et
al., 2021 ; Gandelsman, Sun, Chen, & Efros, 2022 ; M. Zhang, Levine, & Finn, 2022 ;
J. Liang, Hu, & Feng, 2020 ; D. Wang, Shelhamer, Liu, Olshausen, & Darrell, 2021).
However, test-time training has not been explored on the deep visual odometry task.

The previous TTT methods can be grouped into two types. The first type jointly trains
the network with the main task and the auxiliary self-supervised task. For example, the
image rotation prediction auxiliary task is jointly trained with the image classification task
in (Y. Sun et al., 2020). The contrastive learning task (Gao, Liu, Zhang, Li, & Qin, 2023) is
used as the auxiliary self-supervised task in (Y. Liu et al., 2021). Another self-supervised
task, image reconstruction by masked autoencoder, is also explored in (Gandelsman et al.,
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2022). The test-time training for visual odometry also belongs to this group. Another type
of test-time training method does not need to change the training loss function, instead
of using regularization methods in the testing time. For example, TENT (D. Wang et al.,
2021) minimizes the entropy of the output distribution at the testing stage. MEMO method
(M. Zhang et al., 2022) minimizes the entropy of the output distributions of different aug-
mentations. SHOT method (J. Liang et al., 2020) proposes the information maximization
regulation for source-free adaption.

This section introduces a novel approach called the test-time training visual odometry
which is based on the deep hybrid visual odometry (Z. Liu, Malis, & Martinet, 2022).
test-time training visual odometry contains two stages.

Firstly, to obtain a generic depth representation, there is a depth network that is pre-
trained on a still image dataset using both supervised depth estimation and self-supervised
stereo matching tasks, as illustrated in Fig. 3.9 (Left).

Image 
dataset 
𝑥!, 𝑑! !"#$

Self-supervised 
auxiliary task

Main task

Pre-training on static images Test-time Training for Visual Odometry

Optimize 𝑛 iterations
Self-supervised 
auxiliary task

Test-Time Training 
param 𝜃∗

Video 
sample 
(𝑣!)

DDVO 
Module

Pre-trained param 𝜃

init

poseDepth
Pre-trained param 𝜃

Optimize one iteration

Figure 3.9 – Structure of the test-time training visual odometry method.

Secondly, the pre-trained depth network is used for the hybrid visual odometry mo-
del on the visual odometry dataset, obviating the need for additional training on visual
odometry data. A test-time training strategy is used to generalize the pre-trained deep hy-
brid visual odometry model to the visual odometry data domain, as depicted in Fig. 3.9
(Right). At this stage, there are three steps, firstly, the network is initialized with pre-
trained parameters, then, the self-supervised auxiliary task updates the network for one
iteration to obtain new network parameters θ∗. Finally, the TTT network θ∗ is composed
of the traditional dense direct visual odometry module to output camera pose p̂i.

The contributions are concluded as follows :
— This is the first work exploring test-time training on the deep visual odometry task,

and a sequential test-time training method is proposed for visual odometry.
— Based on the TTT, the first deep hybrid visual odometry method which is only

trained on the still image dataset is proposed, which is different from the previous
methods trained on the videos (N. Yang et al., 2020 ; Zhan et al., 2020 ; Z. Liu,
Malis, & Martinet, 2022). As shown in Fig. 3.10, the previous method should
make training and testing for each dataset, the test-time training method can make
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training once and testing on multi-datasets. The test-time training is operated on
each testing sample, not a training set as the previous.
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Figure 3.10 – Illustration of previous hybrid visual odometry and test-time training visual
odometry.

3.7.1 Standard test-time training
The standard test-time training method has a self-supervised learning task to help the

main task (Y. Sun et al., 2020). The network parameters x = (x1, .., xK) of the K layers
can be divided into three groups : xb, xm, and xs, corresponding to the backbone network,
the main classification head, and the self-supervised head, respectively. By incorporating
the self-supervised learning task, the objective function to be minimized during joint op-
timization over training samples (I1, y1), (In, yn) is as follows :

min
x

n∑
i=1

lc(Ii, yi, xm, xb) + ls(Ii, xs, xb) (3.33)

This is a multi-task learning pipeline, the losses of the two tasks are added together.
The gradients of the backbone network are updated according to both of them.

In the stage of test-time training, they use one test sample x to minimize the self-
supervised loss. The parameters of the backbone network and the self-supervised head
are updated as follows.

min
x

ls(I, xs, xb) (3.34)

Then they make the classification prediction ŷ for the input x with the updated net-
work parameters x∗ = (x∗

b , xm). They claim that the minimization over xb or both xb, xs

is almost the same. The difference only exists when doing more than one gradient optimi-
zation.

3.7.2 Test-time training visual odometry
In this section, the test-time training for visual odometry is different from the image

recognition problem. The proposed method has two stages.
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The first stage is the depth pre-training. The pre-trained depth network is formulated as
x = (x1, ..., xn). In the pre-training stage, the main task is the supervised disparity (depth)
prediction. A self-supervised stereo matching loss using the same disparity prediction d̂i

is introduced. Assuming the image and disparity pairs Ii, Di, the optimization formulation
for this stage is as follows.

min
x

n∑
i=1

lm(Ii, D̂i, Di, x) + ls(Ii, D̂i, x) (3.35)

In the Test-Test Training for visual odometry, the main task is the supervised depth
estimation with the sparse ground truth annotations. The self-supervised auxiliary task is
self-supervised stereo matching.

In detail, the loss functions of the main task and self-supervised auxiliary task are
shown as follows.

lm(Ii, D̂i, Di, x) = |D̂i −Di|
ls(Ii, D̂i, x) = |W(Ii,R, D̂i,L)− IL

i |
(3.36)

where Ii,L, Ii,R refer to the left and the right of the calibrated stereo images. D̂i,L is the
predicted disparity map of the left view. W() is a stereo image-warping operation.

The second stage is the test-time training on the visual odometry videos VVV =
(I1, ..., In). The pre-trained parameters x of the depth network are updated as the fol-
lowing formulation.

min
x

ls(VVVi, D̂i, x) (3.37)

For new each video frame VVVi, the updated network parameters are denoted as x∗. The
predicted disparity D̂i is obtained with parameters x∗. Same as the standard TTT, only
one gradient step is performed. According to the previous works (Y. Sun et al., 2020),
the single-iteration update does not suffer the difference between the minimization over
xb, xs and the minimization over xb.

3.7.3 Sequential test-time training visual odometry
Given the nature of the visual odometry task, a Sequential test-time training (SeqTTT)

strategy is proposed to produce better depth prior. For a video sequence, frames within
a local video clip share similar information and belong to close data domains. Drawing
inspiration from this, the optimization of frame t in each short video clip VVV is initialized
using the parameters xt−1 of the previous frame t − 1, rather than the pre-trained depth
network parameters x. Only a short video clip satisfies the theoretical guarantee of the
test-time training. Longer video clips can result in significant differences between the
optimization goals in Eq. 3.37 and in Eq. 3.35. Therefore, a sequential test-time training
is performed on a short video clip.
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3.8 Experiment results
This section shows the experiment results of HDVO-related methods. The datasets and

evaluation metrics are first described. Then, experiment results for DDVO, stereo HDVO,
masked HDVO, semantic masks, and test-time training visual odometry, are shown sepa-
rately.

3.8.1 Datasets
The datasets for evaluating the visual odometry tasks include the real-world data

KITTI odometry, EuRoC MAV, and the simulation data VKITTI2, Mid-Air. The KITTI
odometry and the VKITTI2 have been introduced in Sec. 1.6.1 and Sec. 2.6.1.

Two visual odometry datasets, EuRoC MAV and Mid-Air, are used for evaluating the
visual odometry task for drone scenarios, both indoor and outdoor. The details of these
drone datasets are shown as follows.

EuRoC MAV ∗ (Burri et al., 2016) : This is a widely used drone dataset. Following
previous works, MH_03_m MH_05_d V 1_03_d V 2_02_m are used for the evaluation.

Mid-Air † (Fonder & Droogenbroeck, 2019) : The dataset consists of drone simula-
tion data. The training of the depth network involved using all 30 sequences of ’sunny’
weather, while 3 VO testing sequences were used for evaluation purposes. Since the test
sequences contained 14990, 14990, 7867 frames, and the trajectories were repeated pat-
terns, only the first 1499, 1499, 787 frames were kept for evaluation.

3.8.2 Evaluation metrics
The metrics commonly used in the KITTI dataset literature are being considered.

1. terr(%) : Evaluate the average translation error of sub-sequences of length (100,
200, ..., 800) meters.

2. rerr(◦/100m) : Evaluate the Average rotational errors of sub-sequences of length
(100, 200, ..., 800) meters.

3. RPE (Relative Pose Error), including RPE(m), RPE(◦) : RPE measures the
difference of ground truth and prediction with the relative pose of two frames of
∆t interval.

4. ATE (Absolute Trajectory Error) : It directly measures the difference between
estimated trajectory points and ground truth trajectory points at each frame.

To evaluate the accuracy of a sequence of poses, the sequence is first broken down
into segments of 5 frames each. The Absolute Trajectory Error (ATE) is then computed
for each segment and averaged over the entire sequence. To calculate the ATE for each
segment, the predicted absolute poses (a = [x; y; z]) are aligned with the ground truth

∗. https ://projects.asl.ethz.ch/datasets/doku.phpid=kmavvisualinertialdatasets
†. https ://midair.ulg.ac.be
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absolute poses (a′ = [x′; y′; z′]) and the scale factor γ is optimized using the method
described in (Mur-Artal et al., 2015 ; Zhou et al., 2017).

Assuming a segment length of L = 5 and a step-size of S = 1, where N is the length
of the sequence, the relative mean square error for each segment is given by

rmsei =

√∑i+L−1
k=i ||(γ · a′

k − ak)2||1
L

(3.38)

where i indexes the frame ID of the sequence, and k = i, ..., i + L− 1.
The scale factor γ is calculated as

γ =
∑i+L−1

k=i ||(a′
k ∗ ak)||1∑i+L−1

k=i ||a2
k||1

(3.39)

where k = i, ..., i + L − 1. The sequence RMSE is calculated as RMSE =
{rmsei}, i = 1, ..., N .

The mean ATE is then given by

ATEmean =
∑N

i=1 rmsei

N
(3.40)

where i = 1, ..., N .
The standard deviation of the ATE is given by

ATEstd =
√∑N

i=1(rmsei − ATEmean)2

N
(3.41)

where i = 1, ..., N .

3.8.3 Dense direct visual odometry method
To fuse the dense direct visual odometry (DDVO) module into the hybrid visual odo-

metry model, the details of the DDVO module are evaluated again. Firstly, the design
of the image warping operation has been rethought by exploring different interpolation
modes and align corner methods. Then, the effectiveness of different robust cost func-
tions such as HUBER loss and different masking techniques on the loss map has been
investigated. Additionally, the impact of brightness rectification when computing the cost
function has been tested. The significance of pose initialization during the initialization
stage has also been explored.

Interpolation mode
The interpolation mode of image-warping will affect the accuracy of the odometry

results. In this study, three different interpolation methods, including bicubic, bilinear,
and nearest, are compared. Based on the results presented in Tab. 3.1, the bicubic method
provides the best odometry results, while the commonly used bilinear method performed
the worst.

Aligned corner in image warping
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Interpolation Align corner RPEt/m RPER/deg
bicubic ✗ 0.00977 0.05320
bilinear ✗ 0.00989 0.05349
nearest ✗ 0.00968 0.05346
bicubic ✓ 0.01566 0.04469
bilinear ✓ 0.01593 0.04498
nearest ✓ 0.01577 0.04536

TABLE 3.1 – Visual odometry results with different interpolation methods.

This experiment explores the effect of the aligned corner on DDVO. Fig. 3.11 shows
the difference with or without the aligned corner in 2× image upsampling.
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Figure 3.11 – Results with or without aligned corner in image warping of 2× upsampling.

The data presented in Tab. 3.1 indicates that when the aligned corner is set to false for
image-warping, the relative translation error is lower. Setting it to true results in a lower
relative rotation error.

Robust cost

To demonstrate the effectiveness of robust cost functions, a comparison is made bet-
ween odometry results with and without the HUBER cost function. As illustrated in Tab.
3.2, the HUBER robust cost function reduces relative translation error by 18% and relative
rotation error by 10%.
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Implement Cost RPEt/m RPER/deg Time/s
C/CPU Baseline 0.01574 0.04526 0.13584
C/CPU HUBER 0.01309 0.04068 4.36780

Pytorch/GPU Baseline 0.01566 0.04469 1.04704
Pytorch/GPU HUBER 0.01289 0.04011 1.35262

TABLE 3.2 – Visual odometry results with or without robust cost function (HUBER).

Loss mask

In DDVO, there are many pixels in the reference and current images that produce
noise. These noise pixels can arise due to brightness differences in various camera views,
occlusion in the temporal images, and inaccurate depth values in far distances. Therefore,
masking is crucial for DDVO. As seen in Tab. 3.3, the odometry results improve with
masking strategies compared to the baseline.

Mask Depth Range RPEt/m RPER/deg
None 0.01561 0.04510

DepthMask 1-200 0.01580 0.04460
DepthMask 1-100 0.01566 0.04463
DepthMask 1-90 0.01564 0.04446
DepthMask 1-75 0.01558 0.04373
DepthMask 1-50 0.01553 0.04426

TABLE 3.3 – Visual odometry results with different masks.

Brightness discrepancy

The problem of brightness discrepancy always exists in the DDVO method that is
optimized with photometric minimization loss. To address this issue, the brightness dis-
crepancy rectification method (Silveira & Malis, 2010) was used to rectify the images
in the experiment. Tab. 3.4 clearly indicates that rectifying the brightness discrepancy
improves DDVO.

Rectify RPEt/m RPER/deg
None 0.01372 0.04099

(Silveira & Malis, 2010) 0.01289 0.04011

TABLE 3.4 – Visual odometry results with different strategies to rectify the brightness
discrepancy.

Pose initialization

It is crucial to understand that the DDVO involves an iterative updating process used
for the camera pose. Therefore, the initial pose that is set will have an impact on the final
odometry results. According to the results presented in Tab. 3.5, the pose initialization is
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a crucial factor in achieving accurate odometry predictions and can also speed up optimi-
zation convergence.

Init RPEt/m RPER/deg Time/s
Identity matrix 0.40129 0.32539 1.83495

Last motion 0.01566 0.04469 1.04704

TABLE 3.5 – Visual odometry results with different pose initialization strategies.

3.8.4 Hybrid Dense Direct Visual Odometry (HDVO)
In this section, the comparison of state-of-the-art visual odometry approaches using

the KITTI Odometry dataset (Geiger et al., 2012) is presented. Recent deep learning-
based visual odometry approaches can be classified into three groups : model-based, end-
to-end deep learning models, and hybrid approaches. The mainstream is the end-to-end
deep learning models. To evaluate the camera pose results on KITTI Odometry, the KITTI
terr and rerr metrics and the Absolute Trajectory Error (ATE) metric are both used. The
state-of-the-art comparison is performed on KITTI Odometry benchmark on sequences
00→ 08, and testing on sequences 09, 10, as most papers do.

KITTI odometry metrics

The results for the terr and rerr metrics are presented in Table 3.6.

year model
seq.9 seq.10

terr rerr terr rerr

2015 ORBSLAM (Mur-Artal et al., 2015) 15.30 0.26 3.68 0.48
2017 SfmLearner (Zhou et al., 2017) 17.84 6.78 37.91 17.80
2018 Geonet (Z. Yin & Shi, 2018) 43.76 16.00 35.60 13.8
2019 Wang (R. Wang, Pizer, & Frahm, 2019) 9.30 3.50 7.21 3.90
2019 Li (Y. Li, Ushiku, & Harada, 2019) 8.10 2.81 12.90 3.17
2021 TAPE (X. Li et al., 2021) 6.72 2.60 8.66 3.13
2021 F2FPE (X. Li et al., 2021) 2.36 1.06 3.00 1.28
2019 UnOS (Y. Wang et al., 2019) 5.21 1.80 5.20 2.18
2020 DFVO (Zhan et al., 2020) 2.07 0.23 2.06 0.36

HDVO 0.87 0.28 0.83 0.54

TABLE 3.6 – Compare with the others using KITTI odometry metrics on KITTI Odometry
dataset.

The proposed HDVO approach has achieved competitive results when compared with
all state-of-the-art methods. Similarly, like other hybrid methods, the proposed HDVO
approach has also shown better results than model-based ORB SLAM methods and state-
of-the-art end-to-end deep learning methods. In comparison to the hybrid method, the
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proposed approach has yielded the best translation result on sequence 10 and sequence
09.

In comparison to the latest DF-VO hybrid visual odometry method (Zhan et al., 2020),
which relies on sparse pose estimation to solve a perspective-n-point problem, the propo-
sed HDVO method achieves better results as it utilizes a more accurate direct approach
that takes advantage of the global information of image data. Furthermore, the DF-VO
method is much more complicated as it requires two networks to generate depth maps
and optical flow for pose estimation.

ATE metric

Here is an overview of the absolute trajectory error (ATE) on the KITTI Odometry
dataset displayed in Tab. 3.7.

year model
seq.9 seq.10
ATE ATE

2015 ORB full (Mur-Artal et al., 2015) 0.0140±0.0080 0.0120±0.0110
2015 ORB short (Mur-Artal et al., 2015) 0.0640±0.1410 0.0640±0.1300
2017 SfmLearner (Zhou et al., 2017) 0.0160±0.0090 0.0130±0.0090
2018 Geonet (Z. Yin & Shi, 2018) 0.0120±0.0070 0.0120±0.0090
2018 Vid2depth (Mahjourian et al., 2018) 0.0130±0.0100 0.0120±0.0110
2019 Com Col (Ranjan et al., 2019) 0.0120±0.0070 0.0120±0.0080
2019 UnOS (Y. Wang et al., 2019) 0.0120±0.0060 0.0130±0.0080

HDVO 0.0109±0.0068 0.0105±0.0088

TABLE 3.7 – Compare with the others using ATE metric on KITTI Odometry dataset.

Noting that not all works in the literature provide results using this metric. Therefore,
the list of methods may differ from the one presented in Table 3.6. Nevertheless, the
proposed approach demonstrates superior performance compared to existing methods in
the literature, even when using this different metric.

Visualization

The plot shown in Figure 3.12 compares the pose estimation results of the HDVO
model (blue trajectory) with the ground truth pose estimation labels (orange trajectory).

As illustrated in this figure, the HDVO method’s estimated trajectory is quite close
to the ground truth, suggesting that the HDVO model is one of the state-of-the-art visual
odometry models. This visualization provides strong evidence of the effectiveness of the
HDVO approach.

3.8.5 Masked HDVO

Experiments for the multi-mask system

To demonstrate the advantage of the multi-mask system, both the depth estimation
results (Tab. 3.8) and visual odometry results (Tab. 3.9) are shown on both real and vir-
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Figure 3.12 – Estimated trajectories for sequences 09 and 10 on the KITTI Odometry
dataset.

tual data. In this part, the STC mask and the LAM mask both improve depth prediction
accuracy and camera pose prediction accuracy. The improvement is more significant in
the simulation data, Virtual KITTI2. And the STC mask has a better effect than the LAM
mask, which also suggests that removing the occlusion areas is more important. The multi-
mask system is obtained by combining the STC mask and the LAM mask. For these three
sequences, the multi-mask system has the best result. The results on the depth estimation
task and the visual odometry task all have significant improvements with the multi-mask.
These results suggest that both the occlusion mask and homogeneous texture mask are
important for the photometric minimization loss optimization.

Besides the quantitive results, the visualization of the visual odometry is also shown.
Fig. 3.13 shows the comparison of the localization results with different masking stra-
tegies. The results of four different conditions (no mask, LAM mask, STC mask, and
multi-mask) are shown. A x− z dimension view (bird’s eye view), is shown. This visual
comparison clearly suggests that the proposed masking strategy is efficient and essential
for visual odometry.

Ablation study : LAM mask for the visual odometry

Tab. 3.10 displays the visual odometry results with varying percentages of masked
pixels from the homogeneous texture. There is a slight improvement with the homoge-
neous texture mask. This suggests that the homogeneous texture areas affect the accuracy
of the dense direct method. And the VO results with the LAM mask are not sensitive to
the setting parameter (i.e. the masked percent), which is also an advantage of the LAM
mask.

Ablation study : STC mask for the visual odometry



3.8 – 3.8.5 Masked HDVO 101

Data Type
Mask type

Depth Error Metrics
abs rel rel sqr rmse rmse log

Real seq09

Baseline 0.2827 10.4134 8.414 0.369
LAM mask 0.2535 8.2864 7.538 0.347
STC mask 0.1042 1.2005 3.934 0.200
multi-mask 0.0665 0.4731 3.305 0.146

Real seq10

Baseline 0.4019 14.8759 9.528 0.456
LAM mask 0.3388 11.1628 8.387 0.418
STC occlu 0.1587 1.9037 4.051 0.273
multi-mask 0.0840 0.4262 2.804 0.175

Virtual seq20

Baseline 0.7648 84.2296 62.1419 0.6397
LAM mask 0.3273 34.7354 63.2385 0.5206
STC mask 0.3298 19.9154 64.7536 0.4740
multi-mask 0.1284 8.8084 59.4475 0.3545

Data Type
Mask type

Depth Accuracy Metric
τ < 1.25 < 1.252 < 1.253

Real seq09

Baseline 86.89 91.53 94.03
LAM mask 86.91 91.69, 94.26
STC mask 91.29 95.43 97.33
multi-mask 93.37 97.20 98.65

Real seq10

Baseline 82.49 88.11 91.38
LAM mask 83.18 88.80 92.13
STC occlu 87.23 92.33 95.13
multi-mask 91.13 95.74 97.91

Virtual seq20

Baseline 78.75 84.38 87.56
LAM mask 79.81 86.98 90.35
STC mask 79.20 86.60 90.29
multi-mask 83.12 91.16 94.67

TABLE 3.8 – Experiments of the depth to show the effect of the proposed multiple masks.

Tab. 3.11 first shows the different VO results with different error measurements in the
STC mask. This table records the results of KITTI seq 09 and VKITTI2 seq 20. ‘Base’ is
the occlusion mask obtained by comparing the errors between the warped image and the
original image. Both results on two different datasets suggest that the BR, which considers
local areas on each pixel, is a better error measurement, and the L1 loss, which only
considers single intensity on each pixel, is not a good choice. And the comparison between
the STC mask and the traditional baseline occlusion mask suggests that the proposed
method is better for finding the possible occlusion areas.

For the details of the brightness- robust BR measurement, Tab. 3.12 shows the results
of different local patch sizes in the BR and the results with different percentages of masked
pixels. As mentioned in Sec. 3.5.1, the actual masked pixels percent is less than the given
percent. The STC mask requires the local patch size in the brightness robust measurement
to be large enough (i.e., >= 21 × 21) to maintain good VO performance. And the VO
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Data Type
Mask type

Camera Pose Error Metric

terr(%) rerr

(deg/100m) RPEtran (m) RPErot (deg)

Real seq09

Baseline 2.77 0.68 0.024 0.039
LAM mask 2.41 0.71 0.024 0.037
STC mask 2.68 0.81 0.024 0.038
multi-mask 1.54 0.45 0.021 0.032

Real seq10

Baseline 1.89 0.56 0.016 0.042
LAM mask 1.52 0.47 0.016 0.040
STC occlu 1.66 0.71 0.016 0.040
multi-mask 1.48 0.32 0.015 0.038

Virtual seq20

Baseline 13.90 3.75 0.066 0.061
LAM mask 5.29 0.87 0.045 0.017
STC mask 1.68 0.76 0.006 0.014
multi-mask 0.95 0.46 0.005 0.013

TABLE 3.9 – Experiments of visual odometry to show the effect of the proposed multiple
masks.

% terr rerr

1 1.89 0.71
5 1.86 0.70
10 1.86 0.70
20 1.86 0.70

% terr rerr

30 1.87 0.70
40 1.87 0.70
50 1.88 0.70
60 1.88 0.70

TABLE 3.10 – Visual odometry results using the LAM mask with varying percentages
of masked pixels. Results are recorded with KITTI odometry error metrics on KITTI
sequence 09.

Type terr rerr

Base 3.74 1.21
L1 3.47 1.15

L1&SSIM 3.26 0.83
BR 1.81 0.68

Type terr rerr

Base 4.77 1.54
L1 4.07 1.49

L1&SSIM 4.07 1.48
BR 3.46 1.30

TABLE 3.11 – Visual odometry results using different error measurements in STC mask.

performance is stable when the local patch size is large enough. But the computation cost
also increases with the increase of the local patch size. 21 − 25 pixels local patch size is
a suitable choice for the brightness robust measurement in the STC mask. For the percent
of masked pixels, the best result is obtained when setting masked pixels to 75% (about
50% of actual masked pixels). After that, the odometry error increases quickly.
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Figure 3.13 – Visual odometry trajectories with different loss masks.

Size terr rerr

7× 7 2.19 0.79
15× 15 1.84 0.68
21× 21 1.81 0.68
25× 25 1.82 0.68
31× 31 1.82 0.69

% terr rerr

1 1.88 0.70
10 1.82 0.68
20 1.81 0.66
30 1.80 0.65
50 1.71 0.62

% terr rerr

60 1.58 0.57
70 1.46 0.50
75 1.42 0.53

77.5 4.11 4.34
80 45.89 11.05

TABLE 3.12 – Visual odometry results using STC mask with different Brightness Robust
(BR) local patch sizes, as well as with different percent of masked pixels, are shown.
Results are recorded with KITTI odometry error metrics on KITTI sequence 09.

Comparison of masked HDVO and state-of-the-art methods

To show the advantage of the proposed masks, the proposed masked DDM visual
odometry method and the current state-of-the-art algorithms on visual odometry are com-
pared.
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Tab. 3.13 shows the localization results using the KITTI odometry metrics (Geiger et
al., 2012). These results all suggest that the traditional dense direct method (DDM) with
the proposed multi-mask system can achieve competitive performance with the state-of-
the-art methods, and it realizes new SOTA results on sequence 10.

Year Method
seq.9 seq.10

terr rerr terr rerr

model-based
2015 ORB (Mur-Artal et al., 2015) 15.30 0.26 3.68 0.48
2017 ORBSLAM2-stereo (Mur-Artal & Tardós, 2017) 0.85 0.26 0.56 0.24
2015 DSO-stereo (Engel, Stückler, & Cremers, 2015) 41.04 14.47 1.34 0.42

end-to-end
2017 SfmLearner (Zhou et al., 2017) 17.84 6.78 37.91 17.80
2018 Geonet (Z. Yin & Shi, 2018) 43.76 16.00 35.60 13.8
2019 Wang (R. Wang et al., 2019) 9.30 3.50 7.21 3.90
2019 Li (Y. Li et al., 2019) 8.10 2.81 12.90 3.17
2020 TrianFlow (W. Zhao, Liu, Shu, & Liu, 2020) 6.93 0.44 4.66 0.62
2021 TAPE (X. Li et al., 2021) 6.72 2.60 8.66 3.13
2021 F2FPE (X. Li et al., 2021) 2.36 1.06 3.00 1.28

hybrid
2018 DVSO (N. Yang et al., 2018) 0.83 0.21 0.74 0.21
2019 UnOS (Y. Wang et al., 2019) 5.21 1.80 5.20 2.18
2020 D3VO (N. Yang et al., 2020) 0.78 × 0.62 ×
2020 DFVO (Zhan et al., 2020) 2.07 0.23 2.06 0.36
2022 HDVO (Z. Liu, Malis, & Martinet, 2022) 0.87 0.28 0.87 0.46

Proposed method 0.76 0.41 0.42 0.24

TABLE 3.13 – State-of-the-art results with KITTI metrics terr, rerr on seq 09, 10.

Tab. 3.14 shows the localization results using ATE metric (Zhou et al., 2017). Com-
pared with those works recording the ATE metric, the proposed multi-mask system helps
DDM to realize new state-of-the-art results.

All of these above results can demonstrate the advantage of the proposed multi-mask
system. It helps the baseline method achieve state-of-the-art performance.

Fig. 3.14 shows the estimated trajectory with the proposed method, which shows a
good matching with the ground trajectory.

3.8.5.1 More Comparisons in Different Scenes

In this part, experiment results are reported to demonstrate that the DDM with the
proposed multi-mask system not only works well on vehicle-captured datasets, but can
also improve the visual odometry accuracy for drone-captured videos.

Tab. 3.15 and Tab. 3.16 show the visual odometry results on the EuRoC MAC and Mi-
dAir drone datasets separately. In the MidAir dataset, some frames have severe occlusion
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Year Method
seq.9 seq.10
ATE ATE

model-based
2015 ORB full (Mur-Artal et al., 2015) 0.0140±0.0080 0.0120±0.0110
2015 ORB short (Mur-Artal et al., 2015) 0.0640±0.1410 0.0640±0.1300

end-to-end
2017 SfmLearner (Zhou et al., 2017) 0.0160±0.0090 0.0130±0.0090
2018 Geonet (Z. Yin & Shi, 2018) 0.0120±0.0070 0.0120±0.0090
2018 Vid2depth (Mahjourian et al., 2018) 0.0130±0.0100 0.0120±0.0110
2019 Com Col (Ranjan et al., 2019) 0.0120±0.0070 0.0120±0.0080

hybrid
2019 UnOS (Y. Wang et al., 2019) 0.0120±0.0060 0.0130±0.0080
2022 HDVO (Z. Liu, Malis, & Martinet, 2022) 0.0109±0.0068 0.0105±0.0088

Proposed method 0.0109±0.0064 0.0099±0.0089

TABLE 3.14 – State-of-the-art results with ATE metric on KITTI seq 09, 10.

Figure 3.14 – Estimated trajectories on KITTI sequence 09 and 10.

problems when the drone is close to the forest or the hill in the MidAir dataset. And there
are larger homogeneous texture areas (e.g. the sky, the lake) in this dataset. Therefore, the
improvement with the multi-mask system is more significant in this dataset.

Seq ID MH_03 MH_05 V 1_03 V 2_02 Mean
Baseline 0.0061 0.0049 0.0095 0.0093 0.0075

Multi-mask 0.0052 0.0029 0.0049 0.0078 0.0052

TABLE 3.15 – Visual odometry results with ATE metric on EuRoC MAV dataset.
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Seq ID Sunny00 Sunny01 Sunny02 Mean
Baseline 0.1069 0.1375 0.0757 0.1067

Multi-mask 0.0082 0.0164 0.0073 0.0319

TABLE 3.16 – Visual odometry results with ATE metric on Mid-Air dataset.

Visualize multi-mask

Fig. 3.15 showcases the effectiveness of the proposed masks on two datasets. The
black areas in the images represent the masked pixels. The proposed masks include the
LAM homogeneous texture mask, which removes homogeneous textures like the sky,
highlight, and shadow areas, making photometric minimization loss converge to zero. The
STC occlusion mask removes occlusion areas, which can cause confusion for matching.
The multi-mask system is created by removing all masked pixels from both these masks,
resulting in a cleaner loss.

(a) The raw image

(b) The LAM homogeneous texture mask

(c) The STC occlusion mask

(d) The multi-mask

Figure 3.15 – Mask examples from sequence 20 of Virtual KITTI2 dataset and sequence
09 and 10 of the KITTI Odometry dataset (from the left to the right).

The homogeneous texture mask only masks the sky, highlight, and shadow areas while
retaining significant areas like the traffic lane. This allows for removing the obscured
loss caused by these textures. The occlusion mask successfully masks the most probable
occlusion areas, such as the edge areas of objects, which are the incorrect losses.

Overall, the proposed masks help to improve the accuracy of the depth map. These
masks can be applied to a variety of datasets and can be robust for different scenarios.
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3.8.6 Semantic masks for HDVO

Quantitative results

In this experiment, Tab. 3.17 shows quantitative visual odometry results with and wi-
thout the semantic mask on photometric minimization loss. According to Chapter 3, the
semantic mask can help to remove noisy pixels in photometric minimization loss. This
experiment result suggests that the semantic mask can improve the performance of the
hybrid dense direct visual odometry. The semantic mask can reduce the translation error
by 27.3%, the rotation error by 32.8%, and the ATE by 55.3%. The semantic mask can
improve the performance of the hybrid dense direct visual odometry significantly.

Method terr rerr ATE
no mask 2.53 1.16 31.40

semantic mask 1.84 0.78 14.05

TABLE 3.17 – Quantitative results of the hybrid dense direct visual odometry with and
without semantics on the KITTI odometry dataset sequence 09.

Qualitative results

Fig. 3.16 shows the qualitative results of the hybrid dense direct visual odometry with
and without semantics on the KITTI odometry dataset. The first row shows the input

Images

Semantics

Semantic LAM mask

Semantic STC mask

Semantic mask

Figure 3.16 – Qualitative results of the hybrid dense direct visual odometry with and
without semantics on the KITTI odometry dataset.

images. The second row shows the semantic segmentation results. The third row shows
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the semantic LAM mask. The fourth row shows the semantic STC mask. The last row
shows the combined semantic mask. The black pixels in the semantic mask are the pixels
that are removed by the semantic mask. The white pixels in the semantic mask are the
pixels that are kept by the semantic mask. The semantic mask can remove the noisy pixels
in the photometric minimization loss.

The visualization of semantic segmentation results suggests that the state-of-the-art
semantic segmentation model can segment images well without fine-tuning on a new da-
taset. Then, the semantic LAM mask shows that the homogeneous texture mask becomes
cleaner than the previous LAM mask, which benefits from the semantic segmentation re-
sults. The semantic STC mask shows that the occlusion area can also be found well with
the semantic segmentation result instead of RGB intensities. And semantic STC occlusion
mask is cleaner than the previous STC mask. Finally, the combined semantic mask can
identify both the occlusion area and the homogeneous texture area well.

3.8.7 HDVO with test-time training framework
In order to demonstrate the superior performance of the test-time training for visual

odometry, a comparison was conducted with the baseline approach, deep hybrid visual
odometry (Z. Liu, Malis, & Martinet, 2022). The baseline model underwent training on
KITTI odometry dataset sequences 00-08 and was evaluated on sequences 09-10. Meanw-
hile, the proposed method was pre-trained on either KITTI depth image dataset or Scene-
Flow simulation dataset. The visual odometry results are reported in Tab. 3.19 and Tab.
3.21.

The proposed method has shown superior performance in visual odometry when com-
pared to the baseline approach. This suggests that the test-time training method is effective
for the visual odometry task and that training on the target visual odometry dataset is not
necessary. Furthermore, the proposed method, which was pre-trained on simulation data
(SceneFlow), outperformed the baseline approach that was trained on KITTI odometry vi-
deo sequence 00-08. This indicates that the proposed network is robust and can generalize
well even with a large data domain.

Two experiments are presented, where the depth networks were pre-trained on two
still image datasets, KITTI depth and SceneFlow, representing separate domains of the
real world and simulated scenes.

Ablation study of sequential test-time training

To support the theory analysis of sequential test-time training, experiments were
conducted to compare the visual odometry results (Absolute Trajectory Error) across dif-
ferent video clip lengths. The findings suggest that the video clip should be kept short
and the best results were obtained when the length of the sequential test-time training
(seqTTT) was about 50 frames in the KITTI odometry dataset, as illustrated in Fig. 3.17.
It is worth noting that a longer clip length for seqTTT does not necessarily result in better
visual odometry Absolute Trajectory Error (ATE).

Test-time training from the still-image to video data
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Figure 3.17 – Ablation study for the number of video frames of the sequential test-time
training, which is evaluated on KITTI odometry sequence 09.

This experiment evaluates the performance of the test-time training hybrid visual odo-
metry from the still-image to video data. It pre-trains the depth network on the still-image
dataset, and then performs the test-time train on the video-based visual odometry data-
set. The depth and camera pose results (Tab. 3.18 and Tab. 3.19) are obtained to evaluate
the impact of test-time training on the KITTI odometry 11 video sequences. The depth
annotations of the Lidar data of sequence 03 are not provided in this dataset.

The results demonstrate that test-time training (TTT) improves the depth and camera
pose estimation compared to the baseline. Sequential TTT performs even better than the
standard image-level TTT. However, it is important to note that some depth metrics may
not consistently show better results than image-level TTT. This may be because the depth
is evaluated with sparse Lidar depth annotations and not global dense depth labels.

Test-time training from the simulation data to the real-world data

This experiment evaluates the test-time training hybrid visual odometry from the si-
mulation data to the real-world data. Here, a popular simulation dataset, SceneFlow, is
used for pre-training, then the hybrid visual odometry model is optimized with test-time
training on the real-world dataset, KITTI odometry. The experiment results on KITTI
odometry video sequences 00, 02, 04, 06, 08, 10 are shown in Tab. 3.20 and Tab. 3.21.

Firstly, these results suggest that the test-time training method improves the simulation
data pre-trained hybrid visual odometry significantly. Secondly, the results suggest that the
sequential TTT strategy performs best. And these results are also competitive compared
with the hybrid visual odometry which is directly on real-world data.
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SeqID TTT
Depth Error Metrics(lower) Depth Accuracy Metric(%)(higher)

abs rel rel sqr rmse rmse log τ < 1.25 < 1.252 < 1.253

00
✗ 0.0753 0.4788 3.2412 0.1730 92.35 96.16 97.88

TTT 0.0752 0.4773 3.2346 0.1728 92.37 96.16 97.88
SeqTTT 0.0752 0.4826 3.2153 0.1723 92.41 96.18 97.89

01
✗ 0.0912 1.5150 6.1106 0.2118 92.19 95.82 97.60

TTT 0.0911 1.5124 6.1000 0.2117 92.23 95.83 97.60
SeqTTT 0.0901 1.4851 6.0236 0.2109 92.41 95.83 97.59

02
✗ 0.0580 0.3114 2.6845 0.1184 95.81 98.23 99.16

TTT 0.0578 0.3088 2.6755 0.1182 95.83 98.24 99.16
SeqTTT 0.0572 0.2982 2.6403 0.1177 95.88 98.24 99.16

04
✗ 0.0693 0.5052 3.6008 0.1342 94.89 98.00 98.92

TTT 0.0689 0.5000 3.5820 0.1338 94.94 98.00 98.92
SeqTTT 0.0669 0.4767 3.4986 0.1319 95.14 98.02 98.92

05
✗ 0.0834 0.6121 3.5515 0.1873 90.87 95.15 97.39

TTT 0.0833 0.6118 3.5463 0.1872 90.89 95.15 97.39
SeqTTT 0.0833 0.6284 3.5379 0.1870 90.95 95.16 97.39

06
✗ 0.1009 1.5527 5.8067 0.2198 90.35 95.18 97.29

TTT 0.1005 1.5412 5.7804 0.2195 90.42 95.18 97.29
SeqTTT 0.0988 1.4892 5.6525 0.2186 90.72 95.16 97.28

07
✗ 0.0746 0.4762 3.1128 0.1704 92.35 95.96 97.81

TTT 0.0747 0.4810 3.1108 0.1704 92.36 95.96 97.81
SeqTTT 0.0760 0.5245 3.1198 0.1708 92.36 95.96 97.81

08
✗ 0.0848 0.7652 4.0976 0.1988 91.22 95.25 97.18

TTT 0.0846 0.7602 4.0841 0.1985 91.25 95.26 97.19
SeqTTT 0.0847 0.7527 4.0368 0.1980 91.33 95.27 97.19

09
✗ 0.0675 0.5040 3.3834 0.1520 93.79 97.08 98.48

TTT 0.0673 0.5004 3.3751 0.1518 93.80 97.09 98.48
SeqTTT 0.0669 0.4872 3.3448 0.1515 93.83 97.09 98.49

10
✗ 0.0771 0.4422 2.8378 0.1682 92.33 96.26 98.10

TTT 0.0769 0.4414 2.8302 0.1680 92.35 96.27 98.11
SeqTTT 0.0768 0.5115 2.8574 0.1692 92.41 96.25 98.08

TABLE 3.18 – Depth evaluation results for the test-time training from still-image to video
data.

3.9 Conclusion
In this section, a new stereo hybrid visual odometry (StereoHDVO) method is propo-

sed, which is designed to be robust and reliable. The method is based on the stereo depth
estimation network and the dense direct visual odometry (DDVO) approach. The Ste-
reoHDVO is designed to address the limitations of traditional visual odometry methods
and achieve better accuracy. The stereo depth estimation network is more robust than mo-
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SeqID TTT
Camera Pose Error Metric(lower)

terr(%) rerr

(deg/100m) RPEtran (m) RPErot (deg)

00
✗ 3.56 1.52 0.035 0.065

TTT 3.52 1.50 0.035 0.064
SeqTTT 3.32 1.39 0.035 0.064

01
✗ 10.12 1.83 0.217 0.123

TTT 10.09 1.81 0.217 0.122
SeqTTT 9.96 1.78 0.217 0.121

02
✗ 4.05 2.20 0.063 0.062

TTT 3.97 2.15 0.063 0.062
SeqTTT 3.57 1.93 0.062 0.060

03
✗ 4.51 3.70 0.037 0.050

TTT 4.42 3.64 0.037 0.050
SeqTTT 3.96 3.32 0.035 0.048

04
✗ 3.50 3.95 0.049 0.069

TTT 3.37 3.88 0.048 0.068
SeqTTT 2.64 3.54 0.044 0.063

05
✗ 4.46 1.83 0.030 0.049

TTT 4.41 1.81 0.030 0.049
SeqTTT 4.20 1.72 0.029 0.048

06
✗ 4.26 2.20 0.035 0.041

TTT 4.17 2.16 0.035 0.041
SeqTTT 3.64 1.88 0.034 0.039

07
✗ 2.86 1.57 0.024 0.046

TTT 2.82 1.56 0.024 0.046
SeqTTT 2.53 1.46 0.023 0.045

08
✗ 3.25 1.54 0.034 0.045

TTT 3.21 1.51 0.034 0.045
SeqTTT 2.99 1.40 0.034 0.044

09
✗ 2.47 1.82 0.034 0.048

TTT 2.44 1.79 0.034 0.048
SeqTTT 2.01 1.35 0.018 0.041

10
✗ 2.27 2.00 0.023 0.048

TTT 2.24 1.97 0.023 0.048
SeqTTT 2.01 1.32 0.023 0.045

TABLE 3.19 – Visual odometry evaluation results for the test-time training from still-
image to video data.

nocular networks, and DDVO method is optimized using global image intensities, which
makes it more reliable and robust. The StereoHDVO has been published in (Z. Liu, Malis,
& Martinet, 2022).
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seqID TTT Depth Error Metrics Depth Accuracy Metric
abs rel rel sqr rmse rmse log τ < 1.25 < 1.252 < 1.253

00
✗ 0.1658 4.9154 5.2438 0.2397 90.55 95.27 97.03

TTT 0.1442 3.7824 4.7039 0.2211 91.23 95.70 97.36
SeqTTT 0.1185 2.1272 4.2252 0.2164 91.20 95.54 97.23

01
✗ 0.1569 3.6756 8.0197 0.2750 87.84 93.90 96.35

TTT 0.1433 3.1990 7.7684 0.2608 88.76 94.35 96.64
SeqTTT 0.1224 2.5743 7.3465 0.2404 90.47 95.01 96.96

02
✗ 0.0920 1.3181 3.8623 0.1566 93.97 97.49 98.63

TTT 0.0809 0.9311 3.5089 0.1413 94.63 97.88 98.91
SeqTTT 0.0750 0.6905 3.2939 0.1329 95.04 98.06 99.01

03
✗

TTT No label available
SeqTTT

04
✗ 0.1095 1.4876 4.8488 0.1761 91.34 96.51 98.01

TTT 0.0982 1.1318 4.5293 0.1639 92.08 96.98 98.38
SeqTTT 0.0959 1.0378 4.4151 0.1628 92.67 96.96 98.29

05
✗ 0.1651 4.5391 5.4327 0.2477 89.53 94.56 96.69

TTT 0.1459 3.5851 4.9031 0.2294 90.18 94.98 97.01
SeqTTT 0.1185 1.9678 4.3023 0.2159 90.44 95.08 97.10

06
✗ 0.2011 6.4907 7.5232 0.2796 87.71 94.08 96.45

TTT 0.1777 5.2747 7.0128 0.2604 88.58 94.59 96.83
SeqTTT 0.1496 3.7575 6.4927 0.2453 89.56 94.97 96.96

07
✗ 0.2100 7.2782 5.5129 0.2589 89.83 94.66 96.69

TTT 0.1864 6.1665 4.9813 0.2396 90.60 95.12 97.04
SeqTTT 0.1532 4.1315 4.4043 0.2252 91.03 95.31 97.18

08
✗ 0.2156 6.9627 6.6160 0.2932 87.86 93.33 95.60

TTT 0.1875 5.6046 6.0142 0.2701 88.83 94.01 96.14
SeqTTT 0.1505 3.4666 5.2479 0.2429 89.68 94.57 96.57

09
✗ 0.1154 2.3646 4.7140 0.1976 91.96 96.36 97.90

TTT 0.0994 1.6901 4.2581 0.1789 92.73 96.82 98.23
SeqTTT 0.0878 1.1359 3.9569 0.1680 93.21 97.04 98.38

10
✗ 0.2542 9.6267 6.0670 0.2936 88.90 93.93 96.08

TTT 0.2185 7.8458 5.4104 0.2674 89.91 94.67 96.66
SeqTTT 0.1550 3.8829 4.4014 0.2294 90.60 95.25 97.15

TABLE 3.20 – Depth evaluation results for test-time training from the simulation data to
the real-world data.

To further enhance the robustness of the method, new masking strategies are proposed
for the optimization of the HDVO. The STC mask and the LAM mask are rule-based
methods designed to address occlusion and homogeneous texture problems. They show
robust performance on different datasets and scenarios, while keeping the computation
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seqID TTT Camera Pose Error Metric

terr(%) rerr

(deg/100m) RPEtran (m) RPErot (deg)

00
✗ 4.01 1.59 0.041 0.067

TTT 3.94 1.57 0.040 0.067
SeqTTT 3.66 1.55 0.039 0.068

01
✗ 10.94 2.31 0.241 0.144

TTT 10.42 2.20 0.232 0.139
SeqTTT 10.20 2.08 0.227 0.132

02
✗ 3.82 1.94 0.060 0.061

TTT 3.70 1.87 0.059 0.060
SeqTTT 3.40 1.73 0.058 0.060

03
✗ 3.58 2.10 0.036 0.048

TTT 3.63 2.03 0.036 0.047
SeqTTT 3.30 1.78 0.034 0.047

04
✗ 1.71 3.36 0.046 0.065

TTT 1.83 3.29 0.045 0.061
SeqTTT 1.36 2.94 0.042 0.056

05
✗ 2.93 1.06 0.033 0.045

TTT 2.87 1.04 0.033 0.045
SeqTTT 2.70 1.05 0.030 0.044

06
✗ 2.48 0.83 0.044 0.036

TTT 2.15 0.84 0.042 0.038
SeqTTT 1.95 0.99 0.039 0.042

08
✗ 3.01 1.14 0.038 0.044

TTT 2.91 1.11 0.038 0.044
SeqTTT 2.62 1.02 0.036 0.043

07
✗ 3.12 1.37 0.029 0.045

TTT 3.02 1.40 0.028 0.045
SeqTTT 2.75 1.36 0.025 0.044

10
✗ 2.43 1.61 0.032 0.050

TTT 2.38 1.51 0.030 0.049
SeqTTT 2.31 1.52 0.028 0.048

TABLE 3.21 – Visual odometry evaluation results for test-time training from the simula-
tion data to the real-world data.

efficient. These masks are obtained using simple steps, which makes the computation
efficient and practical. More details of these mask methods have been published in (Z. Liu,
Malis, & Martinet, 2023).

However, because of the lack of semantics, the occlusion mask and homogeneous tex-
ture mask are easy to be affected by dynamic objects, brightness discrepancies, etc. The
semantic segmentation results are introduced to improve the STC occlusion mask and
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LAM homogeneous texture mask. The semantic masks have shown significant quantita-
tive and qualitative improvement for visual odometry results.

Additionally, a test-time training optimization method is proposed for the HDVO me-
thod. This method optimizes deep learning part of hybrid visual odometry in the inference
stage. The results show an improvement in accuracy on all testing video sequences. This
approach shows that optimizing both deep learning and model-based methods in the infe-
rence stage can improve the accuracy and robustness of visual odometry.

In summary, the hybrid dense direct visual odometry method, along with the occlusion
and homogeneous texture masks, semantic masks, and test-time training optimization, has
shown improved performance in visual odometry.
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Conclusion
This thesis focuses on visual perception and localization problems which are the core

of autonomous driving applications. There are two critical autonomous driving objectives
inside, i.e., build visual representations and localize the autonomous vehicle. The former
has taken advantage of the data-based approaches, i.e., deep learning networks, which
provide superior visual perception ability. The latter is still dominated by model-based
approaches which are more robust in different data domains and show better localiza-
tion performance. The good performance of model-based approaches is highly based on
the prior information, such as the depth which can be well estimated by data-based ap-
proaches. Therefore, this thesis is built on a hybrid visual odometry approach to combine
the advantages of both model-based and data-based approaches.

Firstly, the performance of these model-based and data-based approaches is deter-
mined by their optimization methods. The model-based visual localization methods can
converge efficiently with approximated second-order optimization methods. The data-
based deep learning networks are difficult to converge efficiently. The optimization theory
of model-based and data-based approaches is first reviewed, which shows that they share
the same optimization foundations. The optimization theory also shows that the second-
order optimization methods are more efficient than the first-order optimization methods.
Therefore, this thesis proposes a new efficient deep learning optimizer, which is based
on the traditional Gaussian-Newton optimization method. This new optimizer is more ef-
ficient than the state-of-the-art first-order and approximated second-order deep learning
optimizers. Furthermore, the photometric minimization loss is a common tool in visual
depth estimation and direct visual odometry methods. In model-based direct visual odo-
metry, the photometric minimization loss is also optimized by the efficient second-order
optimization method (ESM). However, in deep learning optimization, the photometric mi-
nimization loss is difficult to optimize because of the occlusion, brightness discrepancies,
and homogeneous textures. Therefore, this thesis proposes a new efficient optimization
method for the photometric minimization loss based on ESM. This ESM-based photo-
metric minimization method shows better convergence results for the depth estimation
network.

Secondly, environment representations usually contain geometric, semantic, and to-
pological representations. Because depth geometric representation is the essential prior
knowledge for the hybrid visual odometry approach, this thesis explores building depth
representation. To keep the security of the autonomous vehicle, the depth representation
should be robust and accurate. According to the previous works, stereo solutions show
more robust performance than monocular solutions. Therefore, this thesis has explored
superior stereo networks to improve the accuracy and robustness of stereo depth estima-
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tion. The problems of stereo networks mainly lie in several aspects : the high training
cost, the unbalanced data distribution, and the limited network structure. Firstly, a pose-
supervised stereo network is proposed to solve the difficulty of obtaining ground truth
depth annotations. The depth estimation results show better depth results compared to
monocular networks. This method also promises the training cost is acceptable for real-
world applications. Then, an adaptive stereo network is proposed to solve the unbalanced
disparity distribution in different stereo images. To be specific, this stereo network intro-
duces a monocular sub-network to predict an adaptive disparity initialization which helps
to adaptively build the stereo matching cost volume for different stereo images. Finally, a
new stereo matching paradigm, the one-stage 3D stereo network, is proposed to improve
the accuracy and efficiency of the depth estimation networks. The one-stage stereo net-
work overcomes the matching information loss caused by the resolution downsampling.
And two-stage 2D-3D networks need to constrain each stage’s objective. In contrast, the
one-stage 3D network only constrains the final disparity prediction by fusing the feature
extraction and matching into one-stage implicitly. This network outperforms the state-of-
the-art monocular and stereo depth estimation networks.

Thirdly, based on the superior prior information of the depth representation and effi-
cient optimization methods, a stereo hybrid dense direct visual odometry (Stereo HDVO)
method is proposed. The Stereo HDVO focuses on robust and accurate visual odometry.
It has a robust deep stereo network and a dense direct visual odometry module. The dense
direct visual odometry (DDVO) approach is a more robust model-based approach compa-
red with the feature-based visual odometry method. The DDVO approach uses the image
global information instead of sparse feature points, which allows it to be stable when
there are dynamic areas and fast motions. The HDVO is optimized by minimizing the
photometric minimization loss of the adjacent temporal frames. However, the photometric
minimization loss suffers the occlusion area, brightness discrepancies, and homogeneous
texture area, which affects the convergence of this loss. Besides improving the optimiza-
tion method as in the first chapter, another solution is to remove the noisy loss values in
photometric minimization loss. Therefore, a masked HDVO is proposed to improve the
localization accuracy and reduce localization errors. The noisy matching in photometric
minimization loss is summarized as occlusion area, homogeneous texture area, and dy-
namic objects. The occlusion area and homogeneous texture area are first modeled with
rule-based methods. For the occlusion area, there are temporal occlusion and stereo occlu-
sion. This thesis proposes a stereo-temporal consistency (STC) method to identify reliable
non-occlusion areas. For the homogeneous texture area, a new method is developed based
on the assumption that the pixels of the local homogeneous texture patch have similar
intensities as the average intensity of this local patch. A local average max (LAM) mask
is proposed based on this assumption. Finally, the dynamic objects usually need to be
modeled by high-level semantic information. To capture the occlusion noise caused by
dynamic objects, a semantic STC occlusion mask is proposed, which finds the occlusion
pixels based on semantic segmentation results. Furthermore, the high-level semantic in-
formation can also improve the ability of the LAM homogeneous texture mask. The noise
in the LAM mask can be well removed by considering the semantic segmentation results.



Conclusion 117

Finally, the semantic STC mask and the semantic LAM mask are combined to form the
semantic mask. The semantic mask can be used to modify the photometric minimization
loss. Moreover, the HDVO involves deep learning methods which suffer poor generali-
zation ability in the new data domain. Considering that the HDVO can be optimized in a
self-supervised way in the training stage, the test-time training framework is introduced
to improve the accuracy of the HDVO. The test-time training framework is based on the
assumption that the network will converge to better parameters by optimizing the network
once in the testing stage with the same self-supervised loss in the training stage.

Limitation and perspective
The new methods of this thesis have shown significant contributions to optimization,

visual perception, and visual odometry. However, there are still some limitations of the
proposed methods that should be discussed.

Firstly, a new adaptive Gaussian-Newton optimizer for deep learning networks is
proposed. But this optimizer can not achieve a quadratic convergence, there are seve-
ral approximations in the proposed optimizer to save memory and computation costs. For
the efficient optimization method of photometric minimization loss, only the last layer
of image warping can have a quadratic convergence according to the theory of efficient
second-order method. Due to the absence of ground truth parameters in the hidden layers
of deep neural networks, the efficient second-order method can not be used.

Secondly, the pose-supervised stereo network and the adaptive stereo network are pro-
posed to reduce the dependence on the annotations and provide a robust depth estimation
solution. However, it still can not solve the problem of the 2D-3D stereo networks. For
example, the 2D-3D stereo networks can not achieve the global optimal of both the fea-
ture extraction and the stereo matching. Finally, a new one-stage 3D stereo network is
proposed to overcome the problem of two-stage stereo networks. Although the one-stage
3D stereo network has more advantages than two-stage 2D-3D stereo networks, it also
suffers high computation costs of the 3D convolutions. A more light-weighted one-stage
3D stereo network is still an open problem.

Thirdly, the hybrid dense direct visual odometry method is proposed and improved.
However, there are still several main limitations of the HDVO. The HDVO method suffers
the high computation costs of the deep learning networks, which limits the faster real-
time application. This is a common problem of deep learning networks. How to reduce
the computation cost and keep reliable performance is still challenging.

For the problems of occlusion area, homogeneous texture area, and dynamic objects,
the rule-based methods are used to model these problems. These rule-based methods are
robust for different data domains. However, their performance is limited without high-
level semantic information. The semantic STC mask and semantic LAM mask are pro-
posed to improve the performance of the rule-based methods by introducing semantic
segmentation results. The STC mask and LAM mask still do not have the ability to learn
high-level semantics.
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Finally, the test-time training framework is proposed to improve the accuracy of the
HDVO. However, the test-time training framework is based on a given assumption. This
assumption is not always true in the new data domain. The test-time training framework
is also a trade-off between accuracy and real-time performance. The test-time training
framework will increase the computation cost of the HDVO.

This thesis begins with the optimization theory on both model-based and data-based
methods. Then, new optimization, visual perception, and odometry methods are proposed
centering with “hybrid dense direct visual odometry”. These new techniques also give
rise to new research directions. The main implications and perspectives of this thesis are
summarized as follows :

Firstly, the proposed AdaGaussian optimizer is a generic optimizer for deep lear-
ning. It can be used in any deep learning network. And the success of the AdaGaussian
optimizer also shows the shared features between model-based optimization and data-
based optimization. More works can be explored to reduce the gap between model-based
and data-based methods optimization methods. The most significant difference between
model-based optimization and data-based optimization is that data-based optimization,
i.e., deep learning, needs to optimize numerous parameters. Therefore, quadratic conver-
gence is difficult to achieve in deep learning optimization. Exploring approximations of
model-based optimization methods for deep learning optimization is a promising direc-
tion.

Secondly, the current state-of-the-art deep stereo networks are mostly based on two-
stage 2D-3D structure, which has many problems to be solved. Some problems can not
be avoided in two-stage 2D-3D networks. Instead, this thesis presents a new paradigm
for stereo depth estimation. It is a one-stage 3D stereo network and has impressive per-
formance. More works can be explored to improve the performance of the one-stage 3D
stereo network further. There are several interesting directions. Firstly, besides the stereo
depth estimation task, the one-stage 3D stereo network can be used in other stereo or
multi-view tasks. Secondly, a smaller and faster one-stage 3D stereo network is an attrac-
tive direction, which can be used in more real-time applications. Thirdly, the pre-training
of deep learning networks is a common way to improve the performance of deep learning
networks. The one-stage 3D network can also be pre-trained on large-scale video data-
sets which is also a kind of 4D data. Exploring the potential of the video data pre-trained
one-stage 3D stereo network is interesting.

The most important implication of this thesis is that the HDVO shows the large po-
tential of the hybrid artificial intelligence method fusing data-based and model-based me-
thods. Firstly, the HDVO method can be applied to more downstream visual tasks, such
as visual SLAM, and visual navigation. Secondly, the multi-mask method for photome-
tric minimization loss of the HDVO shows significant performance improvement for the
HDVO. This indicates that the loss mask is critical for the photometric minimization loss-
based optimization. However, the quantitive evaluation for the loss mask is still an open
problem because of the absence of ground truth mask annotations. More works can be ex-
plored to evaluate the loss mask. Thirdly, this thesis only explores a pose-supervised way
to train the deep learning network of the HDVO. There are also other training strategies
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to be explored for the hybrid method. The performance of the HDVO highly depends on
the optimization. Therefore, a better structure to train the HDVO is an attractive direction.
Fourthly, this thesis explores using semantic information to modify the multi-mask for the
HDVO. However, it is also interesting to build semantic representations in the HDVO. For
example, the 3D semantic representation will avoid the problem of occlusion area in 2D
space. The semantic representation can also be used to solve the brightness discrepancies
problem of image intensities in the HDVO. Finally, motived by the iterative optimization
of the camera pose in model-based dense direct visual odometry, the iterative optimization
of the predicted depth of deep learning networks is also possible. This way avoids introdu-
cing new network parameters. And this kind of optimization is performed on the test data
domain. This avoids the domain gap between training data and testing data, improving
the generalization ability of the HDVO.
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Appendix

A Gaussian-Newton Optimization Methods
To understand Gaussian-Newton optimization, this appendix introduces different va-

riants : Forward Compositional (FC), Inverse Compositional (IC), and Efficient Second-
order optimization Method (ESM).

The Gaussian-Newton optimization method and ESM have been introduced in Sec.
1.3.3 and Sec. 1.3.4. Next, FC and IC are introduced, and the model parameters are up-
dated with the Jacobian matrix J(x). J(x) is the Jacobian matrix of the generated image
Î from the current image. The Jacobian matrix J(x) should be computed in each itera-
tion, which is time-consuming. Therefore, the Inverse Compositional (IC) was proposed,
which only computes the Jacobian matrix J(x) of the ground truth image once (Klose,
Heise, & Knoll, 2013).

A.1 Forward Compositional
In the Forward Compositional method, the cost function is formulated as follows.

x = arg min
x=x+∆x

∑
p∈P
∥I(p)−W(W(I, x), ∆x)(p)∥2 (A.42)

where I is the ground truth template image. W(W(I, x), ∆x) is the generated image. x
is the optimal model parameters.

The parameters of the model are updated by adding the incremental parameters.

x′ = x + ∆x (A.43)

Then, using the first-order Taylor series expansion of W(W(I, x), ∆x) on ∆x, there
is

l =∥I−W(W(I, x), ∆x)∥2

≈∥I− [W(I, x) + J(x) ·∆x]∥2 (A.44)

where J(x) is the Jacobian matrix of the generated image W(I, x) relative to the
current model parameters x.

Derivation on both sides of Eq. A.44 yields

∆x = −
(
J(x)T J(x)

)−1
· J(x)T (I−W(I, x)) (A.45)

where ∆x is the update of the model’s parameters.
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Figure A.18 – Inverse compositional.

A.2 Inverse Compositional
In the Inverse Compositional method, the cost function is formulated as follows.

x = arg min
x=x+∆x

∑
p∈P
∥W(I, ∆x)(p)−W(I, x)(p)∥2 (A.46)

where x is also the optimal parameters.
Different from the FC method, the IC method computes both the generated image

Î = W(I, x) from the current image I as well as the generated image Î = W(I, ∆x)
from the ground truth template image I.

The original aim of the photometric minimization loss as Eq. A.46, is to find the
parameters to transform the current image I to the ground truth image I. In the FC method,
this process is achieved by two steps, x and ∆x, as shown in Eq. A.42. However, in the
IC method, the aim is to transform the current image I to the new ground truth image Î.
The update of the parameters for the ground truth image is ∆x each iteration. In other
words, the generated image Î from the current image can use ∆x−1 to be transformed to
the ground truth image I. This process is illustrated in Fig. A.18.

In this way, the update of the model parameters will become

x′ = x + ∆x−1 (A.47)

Same as the FC method, the first-order Taylor expansion of the W(I, ∆x) on ∆x is
computed

l =∥W(I, ∆x)−W(I, x)∥2

≈∥[I + J(x) ·∆x]−W(I, x)∥2 (A.48)

Derivation on both sides of Eq. A.48 yields

∆x = −
(
J(x)T J(x)

)−1
· J(x)T (I−W(I, x)) (A.49)







Méthodes Hybrides
d’Intelligence Artificielle pour les

Applications de Navigation Autonome

Ziming LIU

Résumé
La navigation autonome est une tâche difficile qui a un large éventail d’applications dans le
monde réel. Le système de navigation autonome peut être utilisé sur différentes plateformes,
telles que les voitures, les drones et les robots. Ces systèmes autonomes réduiront considéra-
blement le travail humain et amélioreront l’efficacité du système de transport actuel. Certains
systèmes autonomes ont été utilisés dans des scénarios réels, comme les robots de livraison
et les robots de service. Dans le monde réel, les systèmes autonomes doivent construire des
représentations de l’environnement et se localiser pour interagir avec l’environnement. Diffé-
rents capteurs peuvent être utilisés pour atteindre ces objectifs. Parmi eux, le capteur caméra
est le meilleur choix entre le coût et la fiabilité. Actuellement, la navigation autonome vi-
suelle a connu des améliorations significatives grâce à l’apprentissage profond. Les méthodes
d’apprentissage profond présentent des avantages pour la perception de l’environnement. Ce-
pendant, elles ne sont pas robustes pour la localisation visuelle où les méthodes basées sur des
modèles ont des résultats plus fiables. Afin d’utiliser les avantages des méthodes basées sur les
données et sur les modèles, une méthode hybride d’odométrie visuelle est étudiée dans cette
thèse. Tout d’abord, des méthodes d’optimisation efficaces sont essentielles pour les méthodes
basées sur les modèles et les méthodes basées sur les données qui partagent la même théo-
rie d’optimisation. Actuellement, la plupart des réseaux d’apprentissage profond sont encore
formés avec des optimiseurs de premier ordre inefficaces. Par conséquent, cette thèse propose
d’étendre les méthodes d’optimisation efficaces basées sur les modèles pour former les réseaux
d’apprentissage profond. La méthode Gaussienne-Newton et les méthodes efficaces de second
ordre sont appliquées pour l’optimisation de l’apprentissage profond. Deuxièmement, la mé-
thode d’odométrie visuelle basée sur un modèle repose sur des informations préalables sur la
profondeur, l’estimation robuste et précise de la profondeur est essentielle pour la performance
du module d’odométrie visuelle. Sur la base de la théorie traditionnelle de la vision par ordina-
teur, la vision stéréo peut calculer la profondeur avec l’échelle correcte, ce qui est plus fiable
que les solutions monoculaires. Toutefois, les réseaux stéréoscopiques 2D-3D actuels à deux
niveaux présentent des problèmes d’annotations de profondeur et d’écart entre les domaines de
disparité. En conséquence, un réseau stéréo supervisé par la pose et un réseau stéréo adaptatif
sont étudiés. Toutefois, les performances des réseaux en deux étapes sont limitées par la qua-
lité des caractéristiques 2D qui construisent le volume de coût de l’appariement stéréo. Au lieu
de cela, un nouveau réseau stéréo 3D en une étape est proposé pour apprendre les caractéris-
tiques et l’appariement stéréo implicitement en une seule étape. Troisièmement, pour assurer
la robustesse du système, le réseau stéréo et le module d’odométrie visuelle directe dense sont
combinés pour créer un module hybride stéréo (HDVO). L’odométrie visuelle directe dense
est plus fiable que la méthode basée sur les caractéristiques, car elle est optimisée à partir des
informations globales de l’image. HDVO optimise une fonction de coût photométrique. Cepen-
dant, ce coût souffre de perturbations provenant des zones d’occlusion, des zones de texture
homogène et des objets dynamiques. Cette thèse étudie la suppression de ce type de perturba-
tions à l’aide de masques binaires. Pour améliorer ces masques, nous utilisons les résultats de
la segmentation sémantique. Enfin, nous avons exploré une méthode d’entraînement test-temps
afin de généraliser le réseau à un nouveau domaine de données.

Mots-clés : Optimisation efficace, Estimation de la profondeur ; Odométrie visuelle ; IA hybride ;
Navigation autonome ; Vision par ordinateur ; Robotique

Abstract
Autonomous driving is a challenging task that has a wide range of applications in the
real world. The autonomous driving system can be used in different platforms, such as
cars, drones, and robots. These autonomous systems will reduce a lot of human labor
and improve the efficiency of the current transportation system. Some autonomous
systems have been used in real scenarios, such as delivery robots, and service robots.
In the real world, autonomous systems need to build environment representations and
localize themselves to interact with the environment. There are different sensors can
be used for these objectives. Among them, the camera sensor is the best choice be-
tween cost and reliability. Currently, visual autonomous driving has achieved signif-
icant improvement with deep learning. Deep learning methods have advantages for
environment perception. However, they are not robust for visual localization where
model-based methods have more reliable results. To utilize the advantages of both
data-based and model-based methods, a hybrid visual odometry method is explored
in this thesis. Firstly, efficient optimization methods are critical for both model-based
and data-based methods which share the same optimization theory. Currently, most
deep learning networks are still trained with inefficient first-order optimizers. There-
fore, this thesis proposes to extend efficient model-based optimization methods to train
deep learning networks. The Gaussian-Newton and the efficient second-order methods
are applied for deep learning optimization. Secondly, the model-based visual odometry
method is based on the prior depth information, the robust and accurate depth estima-
tion is critical for the performance of visual odometry module. Based on traditional
computer vision theory, stereo vision can compute the depth with the correct scale,
which is more reliable than monocular solutions. However, the current two-stage 2D-
3D stereo networks have the problems of depth annotations and disparity domain gap.
Correspondingly, a pose-supervised stereo network and an adaptive stereo network are
investigated. However, the performance of two-stage networks is limited by the qual-
ity of 2D features that build stereo-matching cost volume. Instead, a new one-stage 3D
stereo network is proposed to learn features and stereo-matching implicitly in a single
stage. Thirdly, to keep robust, the stereo network and the dense direct visual odometry
module are combined to build a stereo hybrid dense direct visual odometry (HDVO).
Dense direct visual odometry is more reliable than the feature-based method because
it is optimized with global image information. The HDVO is optimized with the pho-
tometric minimization loss. However, this loss suffers noises from the occlusion areas,
homogeneous texture areas, and dynamic objects. This thesis explores removing noisy
loss values with binary masks. Moreover, to reduce the effects of dynamic objects,
semantic segmentation results are used to improve these masks. Finally, to be gen-
eralized for a new data domain, a test-time training method for visual odometry is
explored. These proposed methods have been evaluated on public autonomous driving
benchmarks, and show state-of-the-art performances.

Keywords: Efficient optimization; Depth estimation; Visual odometry; Hybird AI; Autonomous
driving; Computer vision; Robotics
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