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Abstract

The current trend in electric autonomous vehicles design is based on pre-existing models
of cities which have been built for cars. The carbon footprint of cities cannot be
reduced until the overall requirement for vehicles is reduced and more green and
pedestrianized zones are created for better livability. However, such green zones cannot
be scaled without providing autonomous mobility solutions, accessible to people with
reduced mobility. Such solutions need to be capable of operating in spaces shared
with pedestrians, which makes this a much harder problem to solve as compared
to traditional autonomous driving. This thesis serves as a starting point to develop
such autonomous mobility solutions. The work is focused on developing a navigation
system for autonomous vehicles operating around pedestrians. The suggested solution
is a proactive framework capable of anticipating pedestrian reactions and exploiting
their cooperation to optimize the performance while ensuring pedestrians safety and
comfort.

A cooperation-based model for pedestrian behaviors around a vehicle is proposed. The
model starts by evaluating the pedestrian tendency to cooperate with the vehicle by a
time-varying factor. This factor is then used in combination with the space measurements
to predict the future trajectory. The model is based on social rules and cognitive studies
by using the concept of the social zones and then applying the deformable virtual zone
concept (DVZ) to measure the resulting influence in each zone. Both parts of the model
are learnt using a data-set of pedestrians to vehicle interactions by manually annotating
the behaviors in the data-set.

Moreover, the model is exploited in the navigation system to control both the velocity
and the local steering of the vehicle. Firstly, the longitudinal velocity is proactively
controlled. Two criteria are considered to control the longitudinal velocity. The first is a
safety criterion using the minimum distance between an agent and the vehicle’s body.
The second is proactive criterion using the cooperation measure of the surrounding
agents. The latter is essential to exploit any cooperative behavior and avoid the freezing
of the vehicle in dense scenarios. Finally, the optimal control is derived using the
gradient of a cost function combining the two previous criteria. This is possible thanks
to a suggested formulation of the cooperation model using a non-central chi distribution
for the distance between the vehicle and an agent.
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A smooth steering is derived using a proactive dynamic channel method for the space
exploration. The method depends on evaluating the navigation cost in a channel (sub-
space) using a fuzzy cost model. The channel with the minimum cost is selected, and a
human-like steering is affected using a Quintic spline candidate path between channels.
Finally, the local steering is derived using a sliding mode path follower.

The navigation is evaluated using PedSim simulator under ROS in pedestrian-vehicle
interaction scenarios. The navigation is tested with different pedestrian density and
sparsity. The proactive framework managed to navigate the vehicle producing smooth
trajectories while maintaining the pedestrians’ safety and reducing the travel time in
comparison with traditional reactive methods (Risk-RRT).
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Résumé

La tendance actuelle dans la conception des véhicules électriques autonomes est basée
sur des modèles préexistants de villes qui ont été construits pour les voitures. L’empreinte
carbone des villes ne peut être réduite tant que les besoins globaux en véhicules ne
sont pas réduits et que davantage de zones vertes ne soient créées pour une meilleure
habitabilité. Cependant, Le nombre de ces zones ne peuvent être augmentées sans fournir
des solutions de mobilité autonomes et accessibles à tous. De telles solutions doivent
être capables de fonctionner dans des espaces partagés avec les piétons, ce qui rend
ce problème beaucoup plus difficile par rapport à la conduite autonome traditionnelle.
Comme point de départ pour développer de telles solutions, cette thèse pose des jalons
pour développer de telles solutions et se focalise sur la navigation pour les véhicules
autonomes à proximité des piétons. La solution proposée est un cadre proactif capable
d’anticiper les réactions des piétons et d’exploiter leur coopération pour optimiser la
performance tout en assurant leur sécurité.

Dans un premier temps, un modèle de comportement des piétons est proposé. Le
modèle commence par évaluer la tendance des piétons à coopérer avec le véhicule
par un paramètre dépendant du temps. Cette tendance est ensuite utilisée combinée
à des mesures spatiales pour prédire la trajectoire future. Le modèle est basé sur des
règles sociales et des études cognitives en utilisant le concept de zones sociales. Il
intègre ensuite le concept de zone virtuelle déformable (ZVD) pour mesurer l’influence
résultante dans chaque zone. Les deux parties du modèle sont entrainées grâce à un
corpus de données vidéos annoté où des piétons interagissent avec un véhicule.

Dans un second temps, La vitesse et les manœuvres du véhicule sont étudiées. Première-
ment, deux critères sont considérés pour contrôler la vitesse longitudinale. Le premier
est un critère de sécurité qui utilise la distance minimale entre un agent et le châssis
du véhicule. Le second est un critère proactif qui utilise la mesure de coopération des
agents environnants. Ce dernier est indispensable pour exploiter tout comportement
coopératif et éviter le gel du véhicule dans des scénarios denses. Enfin, le contrôle
optimal est dérivé en utilisant le gradient d’une fonction de coût combinant les deux
critères précédents. Ceci est possible grâce à une formulation suggérée du modèle de
coopération utilisant une distribution Chi non centrale pour la distance entre le véhicule
et un agent.
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Un cadre de canaux dynamiques et proactifs est suggéré pour la manœuvre locale. La
méthode dépend de l’évaluation du coût de navigation dans un canal (sous-espace) à
l’aide d’un modèle de coût flou. Le canal avec le moindre coût est sélectionné et une
transition douce est réalisée à l’aide d’une spline Quintique entre les canaux. Enfin, la
control local est calculé à l’aide d’un contrôleur de mode glissant.

La navigation est évaluée à l’aide du simulateur PedSim sous ROS dans des scénarios
d’interaction piéton-véhicule. La navigation est testée avec différentes densités et
parcimonie de piétons. Le cadre proactif a produit des trajectoires de véhicules fluides
tout en maintenant la sécurité des piétons et en réduisant le temps de trajet par rapport
aux méthodes réactives traditionnelles (Risk-RRT).
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Introduction 1
Autonomous driving systems have the potential to transform cities planning and urban
lifestyle. Autonomous Vehicles (AVs) can reduce human losses and injures caused
by traffic accidents, and they are accessible equally to all (families, elderly, infirm).
Furthermore, they are predicted to reduce the harmful emissions by optimizing travel
times. However, these driver-less vehicles cannot be fully integrated into our daily lives
without the capability to navigate safely and efficiently around vulnerable road users.
Studying the interaction between vehicles and pedestrians is becoming increasingly more
interesting with the growing influence of the "Shared Space" concept in city planning.
Shared spaces introduce extra constraints and challenges to the navigation task. Insuring
both pedestrians’ and passengers’ comfort and safety while navigating efficiently is a
highly challenging task, especially in a shared, dynamic and dense environment.
This thesis is mainly focused on developing a robust navigation system suitable for close
interactions with pedestrians in an unstructured environment (no markings on the floor,
no traffic signs, etc). The proposed solution is a proactive navigation framework which
exploits the cooperative nature of human behavior. Thus, enabling the autonomous
vehicle to engage in the environment as an active agent and to deploy natural and legible
driving patterns.

In this chapter, we present the motivation behind this work and the general context on
automated vehicles, their advantages and challenges. The main problem addressed in
this thesis is presented. Furthermore, the general framework of the proposed method
is explained. Finally, the main contributions of this thesis along with the manuscript
outline are detailed.
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1.1 Motivation: Future Cities and Autonomous Vehicles

The quality of urban life is negatively affected by the increasing levels of road traffic and
congestion. High inner-city traffic levels produce both air and noise pollution, along
with a less safe neighborhood environment and reduced sense of local communities
[Env04]. Consecutively, cities around the world started converting large spaces into
green and pedestrian-friendly zones to improve the quality of air and the quality of life
in general [MV21]. We can see examples of such initiatives across the world such as the
pedestrianization of the Times Square, NYC in 2014 (Fig. 1.1).

Fig. 1.1.: Pedestrianization of the Times Square, NYC

This approach achieves a reduction in overall vehicle traffic which is a major cause of
greenhouse gas emissions. However, the size to which cities can expand these green
zones is limited due to lack of transport options for goods and people with reduced
mobility, such as the elderly, families and the infirm. This is compounded by the fact that
the elderly population is expected to double over the next 20 years in Europe [Boo20].
Shared spaces are presented in city planning as a solution to this issue. They are consid-
ered a way to balance mobility requirements and economic growth, while respecting
the environment and providing an improved quality of urban life [Ham08]. This is a
new design concept that is spreading across the world and changing the way cities look
and function. Such shared spaces can be seen in London’s Oxford Circus ’X-crossing’1

and Exhibition Road (Fig. 1.2), or Sonnenfelsplatz square in Graz, Austria [Hoe11], to
mention a few.

1http://news.bbc.co.uk/2/hi/8337341.stm
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Fig. 1.2.: Turning London’s Exhibition Road into a shared space

The transition from the traditional road structure and the vision of open, pedestrian-
friendly city spaces is becoming a reality. Specially with more cities joining the green
initiatives and plans. This year only, 50 new cities joined the European Commission’s
Green City Accord2, including the city of Grenoble where this research is based. The
goal is reducing harmful gas emissions by 55% by 2030 as compared to its levels in 1990,
with the vision of promoting smart cities where people and robots (including AVs) can
interact in daily life [Ccr20]. These green cities are not a mere vision for the far future
but are becoming a near reality, specially with the new announced projects and planning
trends. The city of Paris, for example, recently released its vision for 20303 to transform
the famous Champs-Élysées area to a greener pedestrian-friendly area (Fig. 1.3), with
the Place de la Concorde to be ready in less than 3 years from now (by 2024). However,
current AVs are not ready to operate in these green, pedestrian-friendly cities.

Classical autonomous vehicles navigation is adapted to simple, structured and predictable
environments. When encountering an obstacle, these vehicles either stop or a collision
is avoided by handling control back to drivers. Furthermore, the current incumbents in
the automotive industry are designing AVs which mostly operate on road infrastructure,
sparsely interacts with pedestrians and follows stipulated traffic rules. On top of not
closely interacting with pedestrians, these systems relay heavily on the traditional road
structure, which makes it incapable of operating unstructured spaces. However, with this
increased push towards greener and more livable spaces it becomes even more imperative
to develop models of autonomous mobility for shared spaces with pedestrians.

2https://ec.europa.eu
3https://hubinstitute.com
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Fig. 1.3.: An aspect of the 2030 Champs-Élysées vision by Philippe Chiambaretta & Co

This vision of the future pedestrian-friendly cities is the main motivation behind this
work and the french ANR project HIANIC 4. The project addresses the different problems
related to autonomous driving in a shared space. As a part of the project, this work
is focused on the navigation aspect to develop a socially compliant, efficient and safe
navigation system for AVs. With the goal of being capable of navigating the shared
pedestrian-friendly spaces which are anticipated to grow over the coming years.
To address autonomous driving in this thesis, let’s start with an overview of autonomous
driving systems, their categories, latest advancements and ongoing challenges.

1.2 Autonomous Driving Systems

Autonomous mobility has many advantages over traditional mobility solutions. One of
the main advantage autonomous solutions can bring to society is the improved road
safety. Studies show that 94% of road accidents are attributed to human factor [Adm18].
They are also expected to reduce harmful gas emission by 60% by optimizing travel times
and energy consumption therefore dampening traffic waves [Ste+19; ET21]. Moreover,
autonomous mobility can positively impact the environment by reducing the overall
requirement for privately owned vehicles. This is according to a study in Germany which
showed that autonomous shared mobility could help dispense of around 85% of the
current vehicles on the roads [Hei+17].

All these promising prospects have created a flourishing market and pushed automakers
and stack-holders in the field to introduce new autonomous driving technologies. The

4Human Inspired Autonomous Navigation In Crowds, https://project.inria.fr/hianic/
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first autonomous driving technologies date back to the 1970s when the anti-lock braking
system was introduced [Gal19]. This type of technology is known as ADAS which
stands for Advanced Driver-Assistance Systems. The past 50 years have witnessed major
advancement in ADAS technologies. The newly developed systems took advantage of
the wide range of available sensors and perception algorithms to estimate not only
the vehicle’s state, but also to estimate and understand the state of the surrounding
environment. Some ADAS systems are only designed to warn or inform the driver to
take a corrective action, such as lane departure warning. Whereas, other ADAS can
directly take partial or full control over a sub-system in the vehicle, like the automatic
emergency braking system [Zie+17].

Based on the degree of autonomy, autonomous driving systems are classified to 6 levels
as shown in Fig. 1.4. Systems of levels 0-2 are considered driver’s support features
where the driver is responsible of monitoring the system performance. In level 0, the
human driver is responsible of all the aspects of the driving task (i.e. no autonomy). In
this level the driving is enhanced by warnings such as the blind spot warning but the
driver is mainly responsible of steering/braking to maintain safety. In Level 1, the driver
assistance system can provide steering OR acceleration/braking actions support to the
driver such as the lane centering system or the adaptive cruise control system. When
the ADAS provides both steering AND acceleration/braking assistance, the system is
considered of level 2. Therefore, a system providing both lane centering and adaptive
cruise control at the same time is considered of level 2. On the other hand, systems of
levels 3-5 are considered automated driving features, where the driver does not need
to be continuously engaged when these features are in action. In levels 3 and 4, the
system can take full control of the vehicle but only when specific conditions are met.
The main difference between these two levels, is that in level 3 the driver must be ready
to take over when requested to intervene by the system. Finally, level 5 provides a
full-time control of the vehicle under all conditions that can be managed by a human
driver. [Int18]

1.2.1 Latest Development and Current Challenges

Despite the ongoing developments and achievements in the automotive industry, the
current technologies are still not ready for mass deployment or higher levels of autonomy.
Many autonomous driving companies had promised the public with fully autonomous
vehicles by 2020, from General Motors to Googl’s Waymo, Toyota and Tesla. However,
when it comes to autonomous driving, the community had greatly underestimated the
complexity of the driving task in a variety of environments and scenarios.
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Fig. 1.4.: The 6 levels of autonomy in driving systems

Most autonomous driving technologies on the market today are offering up-to level
2 or 3 autonomy. However, several fatal crashes involving these levels have been
reported in the past years5. We can identify a large spectrum of challenges related
to autonomous vehicles control, perception or navigation depending on the working
scenario and environment [Yaq+20]. In the context of this work, let’s identify the main
challenges and milestones on the way to full autonomous navigation in shared spaces
with pedestrians:

• Planning Challenges: It is highly challenging to find a valid path in a dynamic
human-populated and unstructured space, while ensuring safety and efficiency.
One main reason is the coupled nature of the human-vehicle planning imposed by
the shared space. Ignoring this cooperation between the two parties can lead to the
freezing of the vehicle and not just in highly dense spaces. The study in [Mav+21]
argues that this problem can occur even with one human interactions if the agent
is navigating in close proximity. This makes the coupled behavior problem a
core concern and not just a limit problem. This coupled behavior results in
complex, non-convex planning objective functions. This computational complexity
starts becoming obvious even in a simple collision avoidance cooperative objective,
such as the one in [TP20] where the problem is tackled locally. Since tools for
global non-convex multi-objectives analysis do not exist, then frameworks such as
RRT[RSL11] are expected to fail in such scenarios, as well.

• Behavioral Challenges: One of the biggest challenges in navigating shared spaces
is understanding human behavior, specially around vehicles. Despite the huge body
of research on human motion modeling in crowds [Rud+20], modeling human
behavior and reactions in close proximity with autonomous vehicles remains an
open research question. Moreover, the vehicle should abide by human expectations

5Tesla’s level 2 crash, Level 3 accidents
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by deploying a behavior similar to that of experienced drivers, or what is referred
to as producing legible motion [MTK18; Sto18]. The vehicle should also produce
natural driving patterns, which means that it should be able to blend in the
environment as an active and not just a responsive agent.

• Evaluation Challenges: Evaluating the navigation performance and qualifying a
navigation systems in shared spaces is not a straightforward task. The challenges
arise when evaluating the performance both in simulations and in real-world
experiments. Firstly, the limitations of the currently available spared spaces sim-
ulators make testing and validating the navigation in simulations more limited.
The study in [FL20] shows that the available crowd simulators suffer from a
limited performance due to unrealistic assumptions of the real-world such as be-
havior homogeneity and agents omniscience. Additionally, the issue of simulating
autonomous vehicles around crowds is still not addressed in most simulators.
Whereas, setting up real-world experiments to evaluate the navigation around
humans is highly challenging. It is even more challenging in the case of an au-
tonomous vehicle that can be potentially harmful. In addition to the simulation
or testing environment challenges, the evaluation methods, criteria and metrics
should be well-defined and adapted to the particular targeted case of shared spaces
social navigation [Mav+21].

• Societal and Legislative Challenges: A main issue in the field of autonomous
driving is that the technology is in general more advanced that the regulatory
processes. These legislative challenges are even more prominent for the case
of navigating in close proximity with pedestrians [Bar+17]. Furthermore, the
social acceptability of autonomous vehicles, specially around pedestrians, is a major
concern in the community. A recent study in [Jin+20] summarized the main points
that affect the social acceptability. According to the study, multiple factor which
are not related to the navigation performance can affect the social acceptance.
Such factors include the performance-to-price value, the ease of use and the
environmental impact. However, the main identified factors contributing to the
social acceptability are navigation performance related such as the perceived risk,
the safety concerns and the compatibility with social norms. Meaning that a robust,
safe and socially-aware navigation system is the key to the social acceptability and
to raising the public trust of autonomous vehicles.

We focused here on the challenges related to the navigation behavior of the vehicle, as it
is the core subject of this thesis. However, the task of full autonomous driving in shared
spaces faces furthermore challenges related to the sensory and perceptive system of the
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vehicle for example. More on the perception challenges for autonomous vehicles can be
viewed in [LI20; Ros+19; KJD18; Shi+17].

1.3 Targeted System And Problem Definition

The targeted system in this thesis is an automated vehicle equipped with the necessary
sensory system for pedestrian identification and tracking. The vehicle’s perception system
can make advantage of the wide range of available sensors from LiDARs to cameras,
to achieve the pedestrian tracking task. An example of an instrumented automated
vehicle is shown in Fig. 1.5 with the automated Renault Zoe we use in out laboratory
experiments.

Fig. 1.5.: The automated Renault Zoe vehicle

As illustrated in Fig. 1.6, the vehicle information pipeline starts with the raw sensor
information to localize the vehicle and to identify and track the dynamic objects (which
are the pedestrians in our case). This is followed by the prediction of the agents behavior
and the environment dynamics. The previous predictions are used to plan an appropriate
vehicle path and the necessary vehicle control commands (longitudinal velocity and
steering angle) are generated. The highlighted modules on the figure represent the parts
included in the scope of this thesis. Meaning that the pedestrian tracking is provided as
a system input.

Problem Definition: Consider a navigation space C ∈ R2 which does not contain any
special markings, signals or driving rules. All areas in the space are open equally to
the pedestrians and the vehicles. Moreover, the space imposes low speed limits of the
navigating vehicles. This speed is limited to Vmax = 20km/h, as this the maximum
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Fig. 1.6.: Information flow diagram in an autonomous driving system

allowed speed for vehicles circulating shared spaces6.
Consider a set of N ∈ N pedestrians {aj}j≤N in the space. The positions and the
velocities of each pedestrian are provided by the perception system as {Xj(t)}j≤N ∈ C,
{Vj(t)}j≤N ∈ R2, respectively. The pedestrians navigate towards their goal destinations
{Gj}j≤N while abiding by the social norms and avoiding collisions with other agents.
Assuming an autonomous vehicle of dimensions L×W needs to navigate through the
shared space C to reach a final destination GV ∈ R2 according to a global path provided
by a higher level path planner.
Find the vehicle’s lower level control commands which are the longitudinal velocity
control v(t), and the steering angle δ(t) such that the following criteria are met:

• Success: The vehicle succeeds in navigating the shared space and reaches its goal
GV within an infinite time TF ∈ R+.

• Safety: The vehicle navigates the space while avoiding collisions with the pedes-
trians.

• Efficiency: The resulting trajectory is efficient in terms of optimizing the traveled
time and the traveled distance.

• Naturalness: The vehicle navigates the space actively while cooperating and
exchanging trajectories with the surrounding agents, i.e. the freezing of the vehicle
is avoided.

• Comfort: The vehicle produces a legible behavior and navigate while maintain-
ing the comfort of the surrounding pedestrians, and the comfort of its possible
passengers.

• Scalability: The proposed solution should meet the previously mentioned criteria
in interactions with both high and low pedestrian densities.

6Article R.110-2 du code de la route, www.audiar.org
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1.4 Proposed Solution: A Proactive Social Navigation
Framework

The suggested solution is a proactive social navigation framework. The system is based
on the idea of the coupled navigation behavior between the pedestrian and the vehicle
in shared spaces. The system takes into account the cooperative nature of human
behavior and exploits it to explore new navigation options, and navigate the shared
space "proactively".

Proactive behaviours are natural behaviours applied by drivers in everyday scenarios.
Expert drivers interact, cooperate and influence other road users to navigate in an
optimal manner. Applying this kind of proactivity in autonomous driving systems is key
to a natural and socially acceptable behaviour. Moreover, the advantages of a proactive
navigation is particularly prominent in dense pedestrians-vehicle interaction scenarios.
A reactive controller cannot consider the cooperation of the pedestrians in the scene
and their reactions to the vehicle. This leads to over penalizing the vehicle’s navigation
options. Subsequently, the reactive controller would have a poor performance in such
scenarios [VMO17a], leading to suboptimal navigation solutions or even the freezing of
the vehicle in some cases.

Although the term "Proactivity" is not used explicitly in the literature very often, the
concept is considered in several applications. These applications include tasks which
require influencing the work space. To cite a few Example, this can be a leader/follower
task such as the work in [Clo+06], or minimizing the social effect of the navigation
policy in [FS14a]. In this work, the proactivity is considered as an invitation to the
pedestrians to cooperate with the vehicle and change their planned paths. Meaning that
the system does not merely awaits for an obstacle-free path to emerge in the shared
navigation space. The proactive system takes an action (proaction) to produce such
obstacle-free paths in an anticipated future horizon.

Finally, the suggested proactive navigation framework components and information flow
are illustrated in Fig. 1.7. The proposed system starts by estimating the cooperation
of the pedestrians in the scene, or how much would they be willing to compromise
their trajectories with the vehicle. Based on the cooperation level estimation the future
navigation behavior of each agent in predicted. Following this step, a decision is made
on the magnitude and direction of the proactive action. The decision is made using the
pedestrian behavior estimation and prediction information, as well as, the current state
of the navigation space. This step can be viewed as selecting a general direction of the
navigation within the shared space. Based on the decided proactive action, the global
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path of the vehicle is modified locally and the exact longitudinal and lateral control
commands are derived to follow the planned trajectory. The selected longitudinal-lateral
control architecture is a cascading architecture where first the longitudinal control is
derived using a stand-alone system, then the output of this system is used to compute
the lateral control (more on the control architecture is provided in 2.5).

Fig. 1.7.: Suggested proactive navigation system components and information flow

1.5 Contributions

The main contributions of this thesis are the following:

A first implementation of a complete proactive navigation system. The following
system components are integrated and a complete proactive navigation system is imple-
mented. This is, to our knowledge, the first attempt to formulate, implement and test a
proactive navigation system around pedestrians.

• A cooperation-based behavioral model for pedestrians around vehicles. The
proposed model is a 2-layer behavioral model using social concepts. In the first
layer the cooperative behavior of a pedestrian is estimated and modeled by a
time-varying factor. In the second layer, this cooperation factor is used in combina-
tion with the space state measurements and the vehicle influence to predict the
pedestrian behavior. Chapter 3

• A method for proactive longitudinal velocity control. The longitudinal velocity
is controlled by exploiting the cooperative nature of pedestrian behavior. The
control is derived by influencing the pedestrians proactively to maximize their
cooperation, while maintaining their safety. Chapter 4

• A proactive navigation cost model. The model can be used to measure the cost
of navigating through a specific sub-space. The model is based on the travelled
distance cost in combination with a fuzzy logic based pedestrian disturbance cost.
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The model is exploited in the manoeuvring system but can be used independently
and integrated into other pre-existing systems. Chapter 5

• A proactive dynamic channel method for manoeuvring pedestrian crowds.
The proposed method integrates multiple concepts and frameworks to build a
proactive manoeuvring system. The system is based on exploring the different
navigation options in the space (channels) and selecting the optimal channel with
the least navigation cost. The exploration of the space channels is done using
a segment of the global path. Whereas, the selection of a channel is done with
the previous cost model. The transition between the channels or the local path
modification is done using a human-like transition function. Moreover, a sliding
mode controller is suggested to perform the path following. Chapter 5

The testing and evaluation of the proactive navigation around pedestrians under
ROS7

• The formalization of the evaluation metrics necessary for performance val-
idation in shared spaces. The metrics necessary for performance evaluation
around pedestrians are presented. The algorithm for each metric calculation is
provided and the success/fail criteria for the case of autonomous vehicle navigation
is discussed. Chapter 6

• The collection of a pedestrian-vehicle interaction dataset. An experiment of
pedestrian-vehicle interaction is performed and the pedestrian tracking information
is collected on-board of the vehicle. The experiment provides data on pedestrian
behavior in a shared space with a vehicle and their reactions to both aggressive
and yielding driving patterns. The collected data is used in this work for model
validation and as reference for performance evaluation. Chapter 7

7The Robot Operating System, https://www.ros.org/
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1.6 Manuscript Outline

This manuscript starts in Chapter 2 with a general background on the different com-
ponents of a proactive and socially-aware navigation system. The chapter provides a
general overview, whereas, the more detailed background and related works on each
sub-system are found in the corresponding chapters.

Part II: Proactive Navigation Framework

In this part, the three components of the proactive navigation system shown previously
in Fig. 1.6 are discussed in a similar order:
In Chapter 3 the behavioral modeling of pedestrians around autonomous vehicles is
discussed. The proposed cooperation-based model is presented and evaluated. The
chapter further entails the presentation of a pedestrian-vehicle interaction dataset.
In Chapter 4 the proactive longitudinal velocity control of the vehicle is discussed. The
proposed control method is calibrated and tested in a simulated pedestrians-vehicle
interaction using the previously developed pedestrian behavioral model.
In Chapter 5 the steering control of the vehicle is discussed. The proactive dynamic
channel method for space exploration is presented and the corresponding steering control
is derived. The calibration and analysis of the proposed system is also provided.

Part III: Implementation and Validation

In this part, the three components presented in the previous part are integrated to test
and validate the entire system performance:
In Chapter 6 the performance metrics used to validate the different performance aspects
of a navigation system around pedestrians are presented and discussed.
In Chapter 7 the proactive navigation system is integrated and tested in a simu-
lated shared space environment under ROS. The performance is analysed in differ-
ent pedestrian-vehicle interaction scenarios, and the navigation is evaluated using the
previously defined performance metrics.

Finally, in Chapter 8 a global conclusion is derived on the work presented in this thesis.
The main contribution are summarized. Furthermore, A discussion on the potential
future avenues and prospects of this thesis is given.
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Background and Related Work 2
Building a proactive and socially-aware navigation system is a multidisciplinary challenge.
This chapter gives a background on the different components required for such systems.
These components include understanding the interaction between the navigating robot
and its surrounding environment, how is this new understanding used in the navigation
and the corresponding planning and control aspects. We start by placing this work in
the global framework of human-robot interaction and explaining how does this serve as
a starting point to establish the desired socially-aware navigation policy. The chapter
further entails a background on proactive navigation and modeling dynamic shared
spaces. Finally, a background on the verification of autonomous navigation systems is
given, with a focus on our special case of vehicle navigation in shared spaces.

2.1 From Human-Robot Interaction to Social Vehicle
Navigation

Studying robotic systems which require an interaction with a human agent to perform a
task is critical for applications in many emerging fields, ranging from simple domestic
applications to industrial applications and tasks in more undetermined environments
such as search and rescue operations. Studies have shown that human reactions to
machines are different from their reactions to other humans when performing the same
task [HRJ04]. This feature was the motivation for several studies aiming to understand
HRI. The main challenge in HRI applications is the fact that its a multidisciplinary task,
requiring developments in perception, AI, psychology and robotics.

Traditional robotic navigation systems were not viewed as HRI systems. The navigation
task was approached in a purely mathematical way to find the shortest path to a goal
point, for example, or to avoid static and dynamic obstacles [ZLC18; ABM11; FSL07a].
However, with the evolution of the field, robotic applications became increasingly
more present in human populated environments and the limitations of the previously
developed navigation methods became more prominent. Stakeholders in the field started
classifying navigation problems around humans as HRI applications under the category
of social navigation. Social Navigation (or socially-aware navigation) are navigation
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methods developed specifically for human populated environments. Meaning that the
navigation framework includes extra layers to deal with interpreting human intention,
decision making and producing human-like behaviors which are socially-acceptable
[Kru+13]. The term itself includes a wide range of applications and can be interpreted
in different ways based on what is considered "socially acceptable". However, some
ground rules are established in the community to give a minimum qualification for a
robot behavior to be considered socially-aware [RSL15].

Social navigation is a HRI problem whether the goal is to perform a task with a minimal
effect on the surrounding environment or to engage the surrounding agents in a desired
manner. In other words, whether the interaction with humans during the navigation
is preferred or not, it is present, and any navigation solution that does not consider
this interaction, is ill-defined. In some navigation applications the HRI aspect of the
task is very prominent and clear, such as evacuation or guidance tasks where there is
a leader-follower situation with the robot being the former. Here the interaction is a
straightforward main piece of the puzzle, similar to previously studied types of HRI.
This does not remain the case in other navigation applications, such as navigation in
spaces shared with pedestrians, where the goal is to reach a destination with an optimal
trajectory regardless of the other agents in the space. In such applications, the HRI
becomes an underlying layer that governs the dynamics of the space and drives the
solution to our puzzle. The navigation space and time both become common resources
between the robot and the other human agents in the environment. Understanding HRI
in this case means understanding how these resources are pooled and shared, and how
can these processes be manipulated to optimize the navigation task. In such case, and in
the specific application of autonomous vehicles we study PVI as a sub-category of HRI
(Fig. 2.1).

Understanding PVI enables us to develop autonomous vehicles which are capable of
navigating urban and pedestrian populated environments such as busy city centers,
shared spaces, parking lots, etc. The benefits of PVI research can also be extended to any
mobile robot navigating a pedestrian space, such as airports, universities and shopping
malls, for example. However, different adaptations are required for PVI case not only
due to the size of the vehicle, but also due to the different social rules and human
reactions in the case of a vehicle.

Finally, to move from general HRI to a social framework for navigation among human
crowds, two concepts should be taken into account: cooperation and proactivity. The
former two terms are qualities of any social interaction, therefore, navigating socially
cannot be established without them [JSM20]. Cooperative means that the navigation is
viewed as a shared task, and the burden of the task falls equally on both parties (the
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Fig. 2.1.: PVI as a sub-category of HRI

robot and the human). This concept on its own, opened the door to more sociable and
efficient robotic navigation systems [KA17]. Proactivity, on the other hand, is a quality
of the agent performing the cooperative navigation.

PVIs (and more generally HRIs) can be split into two main categories: reactive inter-
actions and proactive interactions. Neuroscientists define reactive agents as the agents
who "learn during their lifetime how to react to environmental stimuli", while proactive
agents are more evolved inductive agents which "are able to make generalizations about
learned stimuli, and to react to new stimuli based on these generalizations" [SMT20]. In
robotics, reactive translates to the type of systems which can interpret their surround-
ing environment and take actions only as a response to an external influence. While
proactive robotics are those able to anticipate the evolution of the environment and take
actions without a proceeding influence (Fig. 2.2). Furthermore, in proactive interactions
the robot can take an initiative that influences the surrounding agents, similarly to how
an experienced conscious being would behave.
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Fig. 2.2.: Reactive vs. proactive actions

In the problem of navigation around humans, some solutions took the reactive approach
such as the works studying the dynamic obstacle avoidance problem [FSL07b; SW14].
However, treating all the surrounding agents as dynamic obstacles that should be avoided
has its limitations and drawbacks, specially in more dense and complex spaces [LS13].
To account for this aspect without moving to a proactive approach, some works solve
the navigation problem by following an optimal leader through the space [Ste+16a;
SN08; Jun+16]. In this case the robot remains a reactive agent following another more
experienced and more proactive agent. The goodness of such solutions depends on
finding a group of agents with aligned goals or sub-goals, selecting the best agent to
follow, and on the experience of the selected agent. All these factors limit the feasibility
and scope of such approaches, and the evolution towards proactive robotics becomes
inevitable for social navigation frameworks.

2.2 Proactivity in the Literature

Proactivity translates to creating or controlling a situation when performing a task,
and not just reacting to pre-existing situations. Motivated by the rowing number of
applications HRI applications, researchers recently started exploring proactive robotic
behavior. The study in [Gar+17] discussed providing a Tibi mobile robot with proactive
capabilities to establish an engagement with people through verbal and non-verbal cues.
The study concluded that providing the robot with the ability to take initiative improved
the overall human-robot communication, provided that the robot abides to the social
norms. Even thought the study is applied to an application which is not navigation
specific, the insights of this work on the importance of proactivity in social robotics
can be extended to socially-aware navigation. Few works in the literature targeted the
navigation task around humans proactively. One approach is presented in [FS14b] where
the Extended Social Force Model (ESFM) is exploited in a proactive kinodynamic planner.
The proposed planner aims at minimizing the robot disturbance to other pedestrians (or
its social work). The proactivity here is prominent in considering the robots effect on its
environment and propagating the pedestrian state accordingly. This study demonstrates
the advantages of having a proactive behavior in the social planner, over a reactive
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one. Although the system is only tested in low-density interaction, the results and
insight provided by the method are a motivation to implement proactive behaviors in
more socially-aware navigation system. In a more recent study, the work in [JSM20]
proposed a proactive-cooperative planner with a switching strategy to pass to a reactive
planner depending on the interaction situation. The proposed method integrated Model
Predictive Control (MPC) and the ESFM with Collision Prediction. The method was
only tested in a constrained one-pedestrian interactions. However, the idea of having a
decision making system to switch from proactive to reactive behavior is quite inspiring
and can be exploited in developing social navigation systems.

Finally, works on proactive robotic behavior in the literature are very few and limited.
However, the studies which discussed proactive behavior, or more specifically proactive
navigation, all demonstrate the advantages and importance of deploying robotics proac-
tively. This has been a major motivation for us to develop a proactive and socially-aware
navigation system for autonomous vehicles around pedestrians.

Working towards proactive robotics is working towards more "intelligent" or advanced
robotics with a more human-like abilities. Moreover, in the case of safety-critical robotic
application, such as autonomous vehicles, proactive behavior can be regarded as a
necessity and not just an extra improvement. Although this is a new direction in the
community, but several opinions argue in favor of this necessity. In a recent article on
"Intuition Robotics" by Natalie Hoke titled "5 Times Our Cars Should Proactively Interact
with Us"1, the writer argues the importance of proactive vehicle behavior for the case
of in-car voice assistance. According to the study in [Sem+19], 78% of participated
drivers where in favor of more proactive voice assistance interventions. This was the
result of a poll after a 50 minutes test drive. Furthermore, Lance Eliot2 argues that
today’s reactive AVs drive (at best) similarly to novice teenage drivers. He suggests a
very simple example scenario of a driver arriving at a traffic light when the light turns
yellow. In this situation some novice drivers might not consider the consequences of
their actions and brake regardless of the situation. However, more experienced drivers
would act proactively and consider their effect on other road agents. This might lead
them to deciding to cross the yellow light if they notice that the driver behind them
is too close and doesn’t seem to be slowing down, for example. In such case, if an
autonomous vehicle stops to follow the traffic rules and a human driver crashes into
the vehicle from behind, the automakers would blame the human driver. Where in fact
this is a matter of over-reactive behavior on the Autonomous Vehicle (AV)’s side and
a lack of proactivity. Imagine another example of an AV trying to insert into a busy

1https://blog.intuitionrobotics.com/5-times-our-cars-should-proactively-interact-with-us
2https://lance-eliot.medium.com/proactive-defensive-driving-for-driverless-cars-missing-link-must-

have-88530f19a92d
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round-about on a Monday morning (Fig. 2.3a). An over-reactive behavior would lead
the AV to keep freezing on the roundabout entry, blocking not just its passengers but
the whole traffic flow. Whereas, an experienced driver would act proactively finding
the appropriate moment to insert himself. A similar scenario can be imagined when
navigating human crowds as driving through a busy campus (Fig. 2.3b), for example.

(a) Busy roundabout, photo by bloomberg.com (b) Campus top-shot, photo source [Yan+19]

Fig. 2.3.: Examples of situations requiring proactive behavior

In the following, we move to talking about the main challenges in developing the differ-
ent components of a proactive navigation system. From the challenge of understanding
pedestrian behavior in section 2.3 to the navigation system structure and the different
planning and control challenges in section 2.4.

2.3 Perceiving Intentions For Proactive Decision Making

Perceiving and understanding intentions is a major challenge in any HRI problem,
including PVI. In the case of PVI, the main interest is to model the human behavior
during an interaction with the vehicle (Fig. 2.4). The vehicle (or the robot in general)
should be able to infer the underlying intention behind a human action in order to
respond in an appropriate human-like manner. HRI research resulted in several works
on modeling human intention using their movement [Wan+13; Sha12]. This is based
on the hypothesis that humans move according to goal-oriented policies [FR11]. The
advancement in sensors and perception enabled robotic systems with improved scene
understanding capabilities. Robots became capable of using body posture and gaze
detection to interpret engagement and even human feelings, as the works in [MKV20;
Xu+19; LT19] to mention a few. However, the problem of understanding human
behavior cannot be solved globally and solutions are context and environment oriented.
For example, the same action made by a pedestrian should be interpreted differently in
the case of an adult as compared to a child. Furthermore, the same person might respond
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differently to the same stimuli made by a robot in a lab environment as compared to a
vehicle on the street. Therefore, the previous works cannot be applied directly to the
case of PVI. The new environment outside the lab doors and the different dimensions of
a vehicle requires separate treatment.

Fig. 2.4.: Understanding intentions in PVI scenarios inside a shared space

Recent studies in the field addressed the problem of intention prediction in the case of
PVI. Several works targeted the problem of pedestrian intention estimation around urban
roads, and more specifically addressed the crossing intention at signalized crosswalks
[Rid+18a]. Data-driven approaches had a major share in the used methods as they can
combine our knowledge about human behavior with other visual and spatial information,
such as the works in [Has+15; Völ+16; Ras+19; CMF19; AA20]. According to [SF09]
a visual information of the pedestrian such as gaze or body movement detection is
imperative to predict the intention. While a more recent study in [DT17b] argues that
the detection of explicit body or gaze communication between the pedestrian and the
vehicle is not significant in the intention prediction process. Their study showed that this
type of communication only occurs when a social or a safety rule was violated, and that
the main driver of the pedestrian motion is the behavior of the vehicle itself. Finally, all
the previous works and most recent studies address the problem of pedestrian intention
estimation in structured urban scenarios. Therefore, understanding pedestrian intention
in unstructured spaces shared with vehicles remains an open question on the cutting
edge of today’s research to develop socially-aware autonomous driving systems.

2.3 Perceiving Intentions For Proactive Decision Making 37



2.4 The Navigation Task in Shared Spaces

The problem of autonomous navigation becomes increasingly challenging in environ-
ments including interactions with vulnerable road users (pedestrians, bikers, etc.)
[Ado16; Bel+19]. These scenarios present the challenge of navigating in a dynamic en-
vironment governed by specific social rules. In pedestrian-vehicle interaction scenarios,
the navigation policy should take into account the agents comfort and acceptance of the
autonomous vehicle on top of the strict safety measures.

The navigation and control system is in charge of performing the path planning and
computing the low level controls of the vehicle (acceleration and steering) using the
output of the perception systems, as shown in Fig. 2.5.

Fig. 2.5.: The autonomous vehicle system components

2.4.1 Global path planning

The first component of the navigation and control system is the global path planner.
Global planning is focused on finding the best route to the long term goal. This is done
by using a prior knowledge of the space (maps) along with the accumulated sensor data.
The global planner doesn’t usually deals with the smaller sized dynamic obstacles such
as pedestrians and bikers, this is left instead to the local planner and control system.
Global path planning is a standing field of research with several algorithms developed
over the years from A* to RTT and different generic and data-driven algorithms [CS19].
We will not further explore the topic of global path planning as the scope of this research
targets the local planning and control aspects.
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2.4.2 Decision making

The decision making is the layer in charge of establishing a behavior policy for the
vehicle based on the perceived situation and the surrounding agents intentions. This
is key to defining the driving patterns and the social gestures of the vehicle, therefore,
it is essential for the social navigation framework. When vehicles navigate structured
environments such as highways or urban roads, the related traffic rules help guide
the decision making system. Traffic signals, floor markers, sidewalks and pedestrian
crossings are all indicators to how the driving pattern should be. However, shared spaces
usually lack such indicators. This combined with the uncertainty in pedestrian behavior
prediction makes the decision making process in shared spaces much more challenging.
Some works in robotics try to tackle this problem by using a context oriented multi-policy
decision making process [Cun+20]. In a first step, the system identifies the navigation
context and then the corresponding policy is selected. In the case of autonomous vehicles
navigation , this works well in situations where it is possible to identify the navigation
context, such as lane-change or parking [Cun+15; Gal+17]. The same technique is used
for navigating shared zones with pedestrians with human-sized robots. The context is
mostly identified based on the existence of a pedestrian-free path where the robot makes
a decision with a stop-or-go behavior, or with a follower behavior [MFO16]. However,
this limits the performance in more dense spaces where the bigger sized vehicle cannot
simply follow a pedestrian or keep stopping.

2.4.3 Local path planning and control

Local path planning allows the system to adapt the previously planned global path to
the perceived dynamics of the environment. The goal is to find the best feasible path to
drive the vehicle through the dynamic space from the current to the goal configuration.
While finding a feasible path for the vehicle is proven to be NP-complete problem, the
research community focused on solving the problem approximately or partially rather
than trying to find a global solution [Pad+16]. The local planning can use the sensory
information to either to build a local map and re-plan a local path or to modify the
previously planned global path. This path is then passed to a path tracker responsible
for providing the necessary vehicle controls to follow the planned path. Alternatively,
both the local planner and the path tracker can be replaced by a single sensor-based
controller. Therefore, we get three different categories of solutions to the planning and
control problem, as shown in Fig. 2.6.

The first two categories both use the same global planning and control techniques and
differ in the way the local path is produced.
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(a) Plan → Re-plan → Control

(b) Plan → Adjust → Control

(c) Plan → Control

Fig. 2.6.: Three different methods for using planning and control in autonomous navigation
systems

The local planners used in the first category are based on finding an optimal path in
a local map generated using the sensory information (Fig. 2.6a). These planners are
usually based on search-based methods such as Dijkstra and D* algorithms (or their
variations) and sampling-based methods such as the RTT algorithm. A significant body
of research is devoted to optimizing these methods for dynamic and fast changing
environments which led to new algorithms such as D* Lite, Anytime Dynamic A* (AD*)
and several others [LL18]. These new algorithms improved the performance specially in
more dense and dynamic environments. However, the performance in these methods
remains limited due to the necessity of planning, then generating a local map and
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re-planning and finally computing the vehicle controls through a path follower or a
path stabilizer. This led to the development of alternative methods of planning where
no local map is generated and no search or sampling is required. Instead, the local
path is generated by locally modifying segments of the global path using the sensory
information (Fig. 2.6b). The most famous and well studies method for local path
modification is the Timed Elastic Bands (TEB) method. TEB was first introduced almost
a decade ago in [Roe+12], and has been improved and implemented in many works
over the years [SXV20; Sun+21]. In TEB the path is modified by solving a non-linear
least square optimization problem while taking into account both the non-holonomic and
the kinodynamic constraints. A main advantage of TEB and similar path modification
approaches is that it provides a balanced trade-off between avoiding local dynamic
obstacles and producing a goal oriented motion.

The third and final category of systems introduce a one step local planning and control
system when the vehicle controls are provided directly using the sensory information
without the need to build a local map or search for a local path (Fig. 2.6c). These
techniques also modify the global path, but the modification happens directly on the
level of the vehicle control. Such techniques are a necessity specially with the growing
need for efficient navigation systems suitable for highly dynamic environments where
fast-reactive and even proactive behaviors are needed. Sensor-based control techniques
are used in a wide range of robotic applications and can work with any type of perception
system (visual sensors, proximity sensors, LiDAR, etc.) [CN21]. One example of such
methods which are used for navigation in dynamic spaces are potential-based algorithms.
This includes nature-inspired techniques which depend on drawing a movement driven
by a group of fields or forces, such as the potential fields [Kha80] and the Deformable
Virtual Zone (DVZ) [ZLT94] algorithms. In the potential field approach, every object in
the environment produces an attractive or a repulsive force and the motion of the system
is driven towards the goal destination as a result of these forces. On the other hand,
DVZ method is based on surrounding the body of the robot with a virtual zone which
gets deformed due to external intrusions of dynamic and static obstacles, and the robot
is driven in the direction minimizing this deformation. The Although these methods are
fast and efficient, their main drawback is the problem of convergence towards a local
minima [Vic+17].

Local planning and control systems and their integration with the proactive and socially-
aware navigation framework are explored in more detail in Chapter 4 and Chapter
5.
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2.5 Longitudinal–lateral Vehicle Control Architectures

The navigation problem reduces to finding two system controls: the longitudinal and the
lateral. The longitudinal control aims at finding the acceleration or speed control (v) to
accomplish the specified system’s task. For example, if the task is navigating a dynamic
human-populated environment, this means finding the longitudinal control to reach a
goal point while avoiding collisions and maintaining the surrounding agents safety and
comfort. Whereas, if the task is agent following, for example, the longitudinal control
problem can be formulated as a reference speed tracking problem. On the other hand, the
lateral control is controlling the steering angle of the system (δ). If the targeted system
is based on re-planning or local path modification (see Fig. 2.6), then the lateral control
problem reduces to following a previously planned path. Whereas, if the local planning
and control are merged in one system, such as sensor-based control systems, then the
lateral control aims at finding the exact steering commands to perform the targeted
task (reach goal, for example) while avoiding static and/or dynamic obstacles. The
longitudinal and lateral control systems can be designed in one of the three architectures
shown in Fig. 2.7.

Fig. 2.7.: Longitudinal–lateral Control Architectures

Early works on vehicle control designed a decoupled control architecture, where the
longitudinal and the lateral controls were addressed in two separate independent systems
[HTV95; GL94]. Since the two independent systems architecture simplifies the task,
many works in robotics focused on studying decoupling approaches [ABO99; BL01].
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However, the decoupling of the two controls can be straightforward in some cases,
such as when using a kinematic vehicle model in low velocities [Thu+04]. Therefore,
even recent works which manly assumes zero-slip vehicle models used the decoupled
architecture to solve the navigation problem [BMM05; Zha+12].

Many works used the decoupling while using the longitudinal control as an input to
designing the lateral control system. This cascading control architecture was used to
solve the path planning or tracking problem while assuming a constant longitudinal input
[Pas+14; Dom+16; MT00]. This architecture was also used to design a stand-alone
longitudinal control system, then cascade it with a lateral control system which considers
the coupled nature of the two, such as the system architecture in [AOB14]. Similarly,
the cascading architecture can be used such that the lateral control is computed in
an independent system, then used an an input to compute the longitudinal control
[Urd+07].

On the other hand, a combined control architecture can be used to consider the
coupled dynamics or to design a single longitudinal-lateral control system [LH99]. This
structure is commonly used in trajectory tracking control applications in the presence of
sliding and slippery surfaces [Fan+05], or in higher speed applications. The combined
architecture can also be used in shared control scheme to produce both the longitudinal
and lateral assistance commands, such as the work in [NSB16]. Moreover, Velocity
Obstacle (VO) based methods, such as Probabilistic Velocity Obstacle (PVO) [FSL07b],
can also be classified under the combined longitudinal-lateral architecture.

Finally, in this work, a cascading longitudinal–lateral vehicle control architecture is
used. This architecture is selected since having two sub-systems simplifies the planning
task. Working with low vehicle velocities within shared spaces, allows using a kinematic
vehicle model which facilitates designing two control systems instead of one coupled
system. Moreover, using the cascading architecture where the longitudinal control is
provided as an input to the lateral control system produces more natural and speed
adapted steering maneuvers.

2.6 Validation of Autonomous Navigation Systems in
Shared Spaces

The process of evaluating and validating an autonomous navigation system translate
to making sure the system is functional, efficient and above all safe in all possible
working scenarios. This is essential for any system and specially robotic systems that
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can potentially be harmful due to the size of the robot and its proximity to humans.
Autonomous vehicles navigating shared spaces with vulnerable road users fall in this
category of systems with a very high potential risk. It is therefore essential to validate
their performance before letting such a system share a space with pedestrians in a fully
autonomous way. The most important aspect in the validation process is validating the
safety of the navigation system.

This issue of motion safety is a key aspect in any mobile robot application. Researchers
in robotics started taking a special interest in studying and formalizing motion safety
standards with the increasing number of applications for robots in safety critical environ-
ments [Fra07]. There are multiple sources of motion safety failure for an autonomous
systems. The failure can be a hardware failure such as a fault in the braking system. It
can also accrue due to a perception error, where the perception system leads to an incor-
rect assumption about the environment. This brings to mind the accident that happened
with Tesla’s autopilot in 2016 on a highway in Florida, USA. The perception system of
the autopilot mode failed to identify a white tractor-trailer on the highway and instead
drove in full speed assuming that the path is free of any obstacle which led to the death
of the driver [YT16]. Furthermore, the safety motion failure can occur due a software
failure. This can either be a software bug or a reasoning error by taking the wrong
decision or by encountering a scenario without a valid behavior policy [FK12]. It is
critical to validate all the previously mentioned aspects to run the system autonomously
around pedestrians. However, for the purpose of this work, we are focused on validating
the reasoning and software failures associated with the navigation algorithm and the
control system.

The validation process in shared spaces is much more challenging than any other
structured environment. The more free and open nature of the shared space creates a
wide range of possible working scenarios to test and validate. While in more structured
environment, such as a highways, the structure of the space itself and the strict driving
roles limits the number of possible user cases. Furthermore, working in proximity with
humans with variable ages and physical abilities increases the validation difficulty. The
validation process should account for all possible interaction scenarios with pedestrians.
This includes all the different interaction types (frontal, lateral, etc.) with all the
different possible velocities, accelerations, goals and even space properties than can exist
in a shared space. The validation should also include the variable patterns for human
behavior and even unmodeled and unpredicted behavior patterns.
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2.6.1 Performance Validation Methodology and Criteria

The process of performance validation for an autonomous vehicle in a shared space starts
with the Testing Cases Identification. This aim to design a set of tests and identify the
parameters and the conditions in each test case. Firstly, the set of testing environments
should be identified. This includes the static shared space and its characteristics, such
as the entering/exiting points of the space, the shape of the space and the possible
pedestrian attraction points or gathering spots. Secondly, the set of parameters of
interest to be varied in each environment should be identified. Each parameter should
be assigned a range of possible values and a limited set of testing values within that
range. For example, if the parameter of interest is the speed of a pedestrian in the
space, the possible range of values can be assigned based on the known limits of human
speed which does not exceed 13m/s for the top world athletes [GN11]. While the set of
testing values can be chosen closer to the range of expected normal people’s speed in
shared spaces. The number of identified testing environments, testing parameters and
the size of the selected testing sets will result in the number of required test cases. The
identification of the size and nature of the testing set is highly dependant on experience
and reasoning. Any case that can accrue in the end application and that was not taken
into consideration in the testing set can be a high source of risk.

The second step is the design of the actual tests to be ran in each test case scenario.
Each test consists of a performance metric along with a success/failure criterion and
performance quality measure. The set of tests should be sufficient to encounter for both
the application purpose and all its possible effects on the environment. In our case for
AVs navigating shared spaces the purpose of the application will result in metrics for
travel time, number of collisions, trajectory smoothness, etc. On the other hand, the
designed tests should also account for the possible effect of our AV on the surroundings,
such as the comfortableness of the nearby pedestrians and the passengers within the
AV.

After the testing cases have been identified and the performance tests have been designed
the actual testing can begin, and the tests in each of the identified cases should be
repeated for a sufficient number of tries for the results to be qualified. This leads us to a
very important requirement in the validation process: a reliable testing environment.
The used testing environments, the design and the implementation of the appropriate
performance metrics is explored in detail in Chapter 6 and Chapter 7.
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2.7 General Context and Notations

In the following we show the general notation and models used for both the vehicle and
the pedestrians in the shared space across this thesis:

2.7.1 Coordinate Frames

Let (O, X⃗G, Y⃗ G) be the Global Cartesian Coordinates map frame. Three additional
local coordinate frames are used in this work: two vehicle-centered frames (Fig. 2.8),
and one pedestrian-centered frame (Fig. 2.9). The first is the the vehicle’s local
Cartesian Coordinates frame (OR, X⃗V , Y⃗ V ), where OR is the center of the rear wheels
axes of the vehicle and XV⃗ is in the direction of the longitudinal velocity of the vehicle
V⃗ V . Similarly, (Oi, X⃗i, Y⃗ i) is the pedestrian local Cartesian frame of a pedestrian i

where Oi is the 2D center of mass of the pedestrian and X⃗i is in the direction of the
pedestrian velocity vector V⃗ i. The second local vehicle-centered frame is a Frenet frame
attached to the vehicle’s path [Fre52]. This frame is defined by the tangential and
normal vectors at a certain point of the reference curve. In the case of degenerate curves,
the tangential is defined in parallel to the curve.

Fig. 2.8.: Vehicle-centered local frames

In the following: the symbols Xg, Xv, Xi and XFC denotes the coordinates of a point
X expressed in the global frame, the vehicle frame, the pedestrian i frame (i ∈ N+) and
the Frenet frame of a curve C respectively.
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Fig. 2.9.: Pedestrian-centered local frame

2.7.2 System Model

Pedestrians Model

A pedestrian is modelled as a point in the 2D plane. The position of a pedestrian j at
time t is XjXjXj(t) = [xj(t), yj(t)]T and its velocity is VjVjVj(t) = [vxj (t), vyj (t)]T . The pedestrian
space occupancy or the footprint of a pedestrian in the 2D plane is considered circular
with a radius Rped (Fig. 2.9). We can define the footprint of a pedestrian j at time t and
position P g

jP g
jP g
j with the function ffp:

ffp : R2 → R2

ffp(x;P g
jP g
jP g
j , Sp) = (x−P g

jP g
jP g
j )T Sp(x− P g

j )− 1
(2.1)

where Sp is the shape matrix defined as:

Sp = 1
R2

ped

[︄
1 0
0 1

]︄
(2.2)

Vehicle Model

Navigating among pedestrians imposes low velocities and acceleration limits on the
vehicle. In this case, the vehicle is modelled using the kinematic bicycle model with a
zero slip assumption [Pol+17]. The position of the center of mass of the vehicle and its
orientation at time t is XVXVXV (t) = [xv(t), yv(t)]T and θ(t) respectively. The steering angle
is δ(t) and the longitudinal velocity and acceleration controls are v(t), a(t) respectively.
The vehicle’s body is assumed to be a rectangle of length L and width W .
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The differential bicycle model of the vehicle can be written at its center of mass in the
global coordinates frame as follows:

Xg
VẊg
VẊg
V
̇ (t) =

[︄
v(t) cos θ(t)
v(t) sin θ(t)

]︄
(2.3)

θ̇(t) = v(t)
L

tan δ(t) (2.4)

For control purposes the vehicle’s model can also be written in the Frenet frame of a
path C. This is done using:

• The lateral displacement and the traveled arc length (el and s in Fig. 2.8 respec-
tively)

• The heading error angle between the vehicle and the tangential vector to the path:
θ̃ = θ − θC

Assuming κ(s) is the curvature of the path C, the vehicle model can be written at OR as
follows [CSB96]:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ṡ = vcos(θ̃) 1
1−elκ(s)

el̇ = vsin(θ̃)

θ̇̃ = θ̇ − vcos(θ̃) κ(s)
1−elκ(s)

v̇ = a

(2.5)

The vehicle’s footprint is approximated with the outer Löwner-John ellipse of the
rectangle [Joh14] as shown in Fig. 2.10. This ellipse can be written in the local vehicle
frame as:

X ′2

a2 + Y ′2

b2 = 1 (2.6)

and (X ′, Y ′) can be written in the global frame as:

X ′ = (xg − xg
v) cos(θ) + (yg − yg

v) sin(θ) (2.7)

Y ′ = −(xg − xg
v) sin(θ) + (yg − yg

v) cos(θ) (2.8)

and the ellipse dimensions (a, b) can be derived from the length and width of the vehicle
(L, W ) as:

a =
√

2
2 L, b =

√
2

2 W (2.9)

48 2 Background and Related Work



Finally, the footprint of the AV can be expressed in quadratic form using the function ffp

(Eq. 2.1) as:
ffp(x;P g

VP g
VP g
V , SV ) = (x−P g

VP g
VP g
V )T Sp(x−P g

VP g
VP g
V )− 1 (2.10)

with the shape matrix SV :

SV = 1
a2b2

[︄
b2 cos2(θ) + a2 sin2(θ) (b2 − a2) cos(θ) sin(θ)
(b2 − a2) cos(θ) sin(θ) b2 sin2(θ) + a2 cos2(θ)

]︄
(2.11)

Fig. 2.10.: The vehicle footprint Löwner-John ellipse approximation

2.8 Conclusion

In this chapter we broadly explored the concept of PVI as a sub-category of HRI. As
well as, the concept of proactive behavior and its application to the field of robotics and
more specifically autonomous navigation. The main behavioral, planning, control and
evaluation challenges related to the shared spaces navigation was generally presented.
Finally, the models and notations used to describe the autonomous vehicle and the
pedestrians across this thesis were detailed.

In the following chapters, we explore in detail the problems of understanding human
behavior and proactively controlling the vehicle within a shared space.
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Part I

Proactive Navigation Framework

“Treat a man as he is and he will remain as he is. Treat a man as he can and
should be and he will become as he can and should be.”

– Ralph Waldo Emerson





Understanding Pedestrian
Behavior Around Vehicles

3
Developing autonomous vehicles capable of navigating safely and socially around pedes-
trians is a major challenge in intelligent transportation. This challenge cannot be met
without understanding pedestrians’ behavioral response to an autonomous vehicle, and
the task of building a clear and quantitative description of the pedestrian to vehicle
interaction remains a key milestone in autonomous navigation research. This chapter
includes the model developed for predicting pedestrian behavior in shared spaces with
an autonomous vehicle. The proposed model is based on estimating the cooperation
of a pedestrian in interaction with the vehicle. This cooperation estimate is then used
to predict the short-term trajectory of the pedestrian. Firstly, the chapter presents the
formulation of the pedestrian behavior prediction problem and the related work in the
literature. Secondly, a background is given on the main tools and concepts used to
build the model. Finally, the proposed model is presented in section 3.4 along with
the estimation of the model parameters in section 3.6. The Analysis of the pedestrian
behavior prediction results using the proposed cooperation-based model is found in
section 3.9. Furthermore, this chapter includes an experiment of pedestrian-vehicle
interaction in a shared space. The data of pedestrian and vehicle trajectories is collected
during the experiment to further tune and validate the proposed model. The description
of the experiment, the collected data and its analysis is presented in section 3.5 of this
chapter.

3.1 Problem Definition

Shared spaces introduce new dimensions to the navigation task making it an interdisci-
plinary challenge, which requires a study of the interaction between the vehicle and its
conscious surrounding. Understanding and anticipating pedestrian behavior is crucial
for the proactive navigation frame (Fig. 3.1)

The problem of pedestrian behavioral modeling is summarized as follows: Assuming
a shared space with M pedestrians and a vehicle, where both the vehicle and the
pedestrians follow the models proposed in 2.7. Knowing the state of the space (i.e.
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Fig. 3.1.: Pedestrian behavioral modeling as part of a global work scheme for proactive
navigation

Pedestrian positions and velocities), what is the reaction of a pedestrian to a specific
driving pattern of the vehicle:

Knowing the state of the space: {XjXjXj(t), VjVjVj(t)}1≤j≤M : t ∈ [t0, t1]

Given a vehicle behavior: XVXVXV (t1), VVVVVV (t1)

∀i ≤M :

Find: XiXiXi(t) ∀t ∈ [t1, t1 + Th]

where Th is the prediction time horizon.

3.2 Related Work

Understanding how humans explore a complex environment has been a topic of spatial
cognitive studies for decades [MG76]. Researchers built on these concepts to develop
physical-based models for agents navigation around other dynamic agents and static
obstacles. The main two types of models are Social Force Model (SFM) [HM95] and
the Cellular Automata (CA) Models [NS92]. SFM models the agents in the space of
interest as particles moving according to a driving force. This force is the outcome of
all forces resulting from the individual interactions in the space. On the other hand,
CA models the space as a set of cells and the agents can move between cells based
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on a probability of choosing a specific cell. This probability is usually computed using
predefined navigation rules. Many works built on top of these two models over the years
to optimize the performance based on experience [Far+17; Zha+17], or to consider
different types of agents and environment [Zho+21]. Most of the recent studies started
optimizing the model for a specific scenario or environment rather than trying to find
one global model for pedestrian navigation [CFD21; IA17]. Several studies presents
pedestrian positions prediction models through a Kalman Filter (KF) or a Particle Filter
(PF) [MTM15; Ber+04; Rid+18b]. Moreover, many works developed Machine Learning
based models for the aim of motion prediction. This can be achieved using Markov
Decision Process Motion Prediction (MPDMP), such as the model presented in [Vas16].
Other works based their predictions on Gaussian Processes (GP), such as the models
proposed in [DT17a; VMO17b; Ful+08].

With the advancements in AV systems, the case of shared spaces started getting more
attention in the recent years, to include the interactions with vehicles and cyclists in
the model [AS20; Che+21]. However, there is an obvious lack of literature on studying
human-vehicle interaction, cooperation and social rules, compared to that of human-
robot interaction in general [GS07]. While the former falls under the same category,
it is important to consider the particularity of the situation when working with an
autonomous vehicle governed by its special properties and social conventions.

Some recent works have tackled the challenge of understanding and modeling the
behavior of pedestrians around an autonomous vehicle. [Ran+19] formulates a model
for pedestrians interaction based on social and psychological traits. This is done by
assigning a dominance percentage to each pedestrian in an interaction scenario. The
main limitation of this approach is basing the model on pedestrian-pedestrian interaction
and assuming that it applies to pedestrian-vehicle interaction. However, the use of
the social and psychological traits to build the model is inspiring and we construct
our pedestrian behavioral model in a similar manner. A different method to model
pedestrian-vehicle interaction is based on extending the classical SFM. The work in
[Pré21] presents a SFM extension to include the vehicle effect in a ROS-based simulation
environment. Moreover, [YOR18] also extends the glssfm by adding a repulsive force
specific to the vehicle’s influence. This resulted in a promising model, simulating several
interaction scenarios in a shared space, however it was not validated on real-life data.
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3.3 Background

The pedestrian-vehicle interaction model in a shared space is built using special inter-
action zones. The concept is based on dividing the space around the pedestrian into
special areas specific to describing him/her interaction with other pedestrians or with
the vehicle. These pedestrian areas are defined using the concepts of the social zones
from Proxemics theory. Whereas, the intensity of the interactions within these zones is
described using the deformable virtual zone method (DVZ).

3.3.1 The Pedestrian Social Zones

The concept of the pedestrian social zones was introduced in robotics from social
behavior and psychological studies on the human management of space, or what is called
Proxemics theory [RSL15]. The theory is based on the observations that individuals try
to maintain certain distances from others during social interactions [Hal66]. Therefore,
a socially-aware robotic system navigating among humans should respect these distances
to maintain human safety and comfort. The theory defines different types of zones
relative to individual interactions, group interactions or human-object interactions. To
study pedestrian behavior in shared spaces we require two types of pedestrian zones:
one related to pedestrian-pedestrian interaction, and one related to pedestrian-vehicle
interaction.

For modeling the interactions between the pedestrians, the concepts of the personal and
intimate zones are used. The personal zone (zone P in Fig. 3.2) is a space around
the pedestrian in which any human intrusion would cause discomfort. Such zones are
used in pedestrian force-based models (such as glssfm) to activate the repulsive force of
pedestrian influence, for example. The intimate zone (zone N in Fig. 3.2) is usually
contained in the personal zone. It is also related to pedestrian-pedestrian interactions
but represents a much lesser tolerant to intrusion than the personal zone. On the other
hand, to model the interactions between the pedestrians and the vehicle, different zone
dimensions and adaptations are required. This is a result of the increased size and
possible danger of a vehicle as compared to human-sized robots. Therefore, inspired by
the concept of the personal zone, we introduce the cooperation zone, which is a new
zone specific to the pedestrian’s interactions with a vehicle (zone C in Fig. 3.2). As a
pedestrian tends to clear the personal zone from human intrusion, (s)he tends to clear
the cooperation zone of any vehicle intrusion.

Different works consider different shapes for the the previous zones around a pedes-
trian. These shapes vary from concentric circles or ellipses to other asymmetric shapes
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dependant on personal factors such as the walking speed or the dominant side of the
pedestrian [Gér+08]. In this work, concentric circular shapes are considered for all the
zones.

Fig. 3.2.: The Deformation of the cooperation zone due to vehicle intrusion

3.3.2 Deformable Virtual Zone Method

The DVZ method was first introduced by R. Zapata in 1994 [ZLT94] and it has been
used since to model systems’ maneuvers in both 2D and 3D spaces [CZ01; Amo+11;
BMM06]. The idea is to surround the system under study with a virtual zone, and any
body entering that zone will cause a deformation. Then, the system can be driven in
the direction minimizing this deformation or changing it in a desired way. The system
is first surrounded by an undeformed glsdvz. The shape of this zone corresponds to the
optimal obstacle free case. The intrusion of obstacles is expressed by two scalars: the
deformation quantity and the deformation mean angle.

By applying this concept to the previous personal and cooperation zones, we can express,
for each pedestrian, the intrusion of other pedestrians and the intrusion of the vehicle
respectively.

Assuming a pedestrian i at a position (xi, yi) with a heading θi. Let Γi = (Oi, Xi, Yi) be
pedestrian i local coordinates frame which is given by:

Γi = T i
GΓG (3.1)

where ΓG is the global coordinates frame and T i
G is a transformation matrix given by

a rotation θi and a translation [xi, yi] as shown in Fig. 3.3. Let RP and RC be the
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Fig. 3.3.: Example of the deformation radius of the personal zone due to pedestrian intrusion
at two angle α1 and α2

radius of the circular personal and cooperation zones centered at the pedestrian position
XP = [xp, yp]. Then the undeformed glsdvz radius at angle α:

dh(α) =

⎧⎨⎩RP for the personal zone

RC for the cooperation zone
(3.2)

and the deformed DVZ radius for both zones is given in the local frame Γi by:

d(α) =

⎧⎨⎩C(α) if C(α) < dh(α)

dh(α) Otherwise
(3.3)

where c(α) is the distance between the pedestrian i and the personal zone of the closest
pedestrian at the angle α for the pedestrian zone (Fig. 3.3), and the distance between
the pedestrian and the vehicle’s body at angle α for the cooperation zone.

Hence, the deformation of the cooperation zone due to vehicle intrusion (zone IV in Fig.
3.2) is written as:

Ii
V (t) = 1

2π

∫︂ 2π

α=0

RC − d(α, t)
RC

dα (3.4)

where d(α, t) is the deformation radius at angle α and time t. Moreover, the cooperation
zone weighted deformation angle is defined as:

Θi
V (t) =

1
2π

∫︁ 2π
α=0 (RC − d(α, t)) αdα

Ii
V (t)

(3.5)
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Finally, in a similar manner, Ii
P (t) and Θi

P (t) are defined as the deformation of the
personal zone and the deformation angle respectively, of an agent i due to pedestrian
intrusion:

Ii
P (t) = 1

2π

∫︂ 2π

α=0

RP − d(α, t)
RP

dα (3.6)

Θi
P (t) =

1
2π

∫︁ 2π
α=0 (RP − d(α, t)) αdα

Ii
P (t)

(3.7)

3.4 Model Description

Cooperation has been shown to be a natural behavior in human societies on different
scales [BR82], [Now06], and the task of navigating in a shared space can be viewed
as a cooperative task, as it involves pooling and sharing of resources (space and time)
between the pedestrians and the vehicle.

The proposed method deals with the navigation task as a cooperative task between the
vehicle and the pedestrians and models the pedestrian behavior in a two-step process:

• The cooperation behavior of the pedestrian is described with a time-varying factor
during the interaction with the vehicle.

• The future trajectory of the pedestrian is predicted based on its level of cooperation
and the state of the surrounding space.

3.4.1 Pedestrian-Vehicle Cooperation Modeling

The cooperation of a pedestrian in a glspvi scenario is defined as the tendency of the
pedestrian to modify his optimal trajectory around the vehicle to facilitate its navigation.
Fig. 3.4 shows an example of the cooperative behavior levels where an agent is navigating
around a vehicle from start to goal according to the green dashed path. In Fig. 3.4a the
agent is considered uncooperative as the planned path is the optimal shortest path which
assumes that the vehicle will move out of the way. On the other hand, in both Fig. 3.4b
and Fig. 3.4c the optimal path is modified due to the existence of the vehicle. However,
in case b the agent assumes some cooperation on the vehicle’s side, therefore, the agent
is considered somewhat cooperative. Whereas, in case c the planned path drives the
agent completely out the vehicle’s way and does not assume any cooperation on the
vehicle’s side. Therefore, the agent Fig. 3.4c is considered to be highly cooperative.
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Fig. 3.4.: Example of the cooperative behavior annotation.

To model this cooperative behavior, a Cooperation Factor (CF) is assigned to each agent
a throughout an interaction CFa(t). A larger CF indicates a more cooperative behavior
from the vehicle’s point of view, and vise versa.

The cooperation model of an agent a is designed as follows:

CFa(t) = fc(P a
cfP a
cfP a
cf (t)) (3.8)

where fc is a first order linear function:

fc : [0, 1]4×1 → [0, 1]
x ↦−−−−→Ax + B

(3.9)

A ∈ R1×4, B ∈ R. the cooperation model input parameters of agent a (P a
cf ) are the

following:

P a
cfP a
cfP a
cf (t) =

[︃
P[a,veh](t),Da(t), Ia

P (t), V a
m(t)

VP max

]︃T

(3.10)

• P[a,veh](t): the probability of collision of agent a with the vehicle. The method for
calculating the probability of collision is discussed in Chapter 4.

• Da(t): the relative occupancy of the cooperation space surrounding the agent:

Da(t) =
N∑︂

j=1
da

j ×
R2

ped

R2
C

(3.11)

da
j =

⎧⎨⎩1 if ||P a
jP a
jP a
j ||2 ≤ RC

0 Otherwise
(3.12)

with Rped the pedestrian footprint radius, N the total number of pedestrians in
the scene, and P a

jP a
jP a
j the position of pedestrian j expressed in the local frame of

pedestrian a. ||.||2 is the L2 Norm.

• Ia
P (t): the deformation of the personal zone of the agent defined in (3.6)
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• V a
m(t)

VP max
: the relative preferred speed of the agent. VP max the maximum possible

speed of a pedestrian in the shared space. V a
m(t) is the average speed of the

pedestrian a since the start of the interaction at time t0:

V a
m(t) = 1

t− t0

∫︂ t

τ=t0
Va(τ)dτ ∈ [0, VP max] (3.13)

Our choice of input parameters can be viewed as a time-varying extension to the case of
a human-vehicle interaction, and a new adaptation of the motion parameters proposed
in [Guy+11] for modeling pedestrian dominance. The choice of P[a,veh](t) is based
on the straightforward correlation between a cooperative behavior of a pedestrian in
interaction with a vehicle and the estimated threat of the situation. Moreover, Ia

P (t)
represents the social concepts on the tendency of humans to maintain their personal
zone clear of interference [RSL15] using the concept of the DVZ method [ZLT94]. In the
same time, Da(t) and V a

m(t)
VP max

are scaled representations of the parameters proposed in
[Guy+11].

Deriving the model parameters

The model parameters: Φ = [A, B] (in (3.9)) are found by using a number of recorded
interactions between a group of pedestrians and a vehicle. First, a manual annotation is
performed where a mean cooperation value is assigned to each agent in each simulation
depending on the agent’s behavior. This is done by observing the agent’s trajectory and
knowing each agent’s goal destination in the simulation; one of the four descriptions is
selected:

• Uncooperative (UC) Agent: The agent took the optimal path to the goal point,
without cooperating with the vehicle.

• Somewhat Cooperative (SC) Agent: The agent modified the optimal path, assuming
some cooperation on the vehicle’s side.

• Highly Cooperative (HC) Agent: The agent modified the optimal path, taking most
of the burden in the pedestrian-vehicle cooperation task.

• Unidentified: cannot assign a clear cooperation description to the specific interac-
tion case.
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After discarding the unidentified cases, a mean cooperation value over the simulation
period ([t0, t0 + TF ]) is assigned to each agent:

CFm(a) = 1
TF

∫︂ t0+TF

t=t0
CFa(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.25 if agent a is UC

0.50 if agent a is SC

0.75 if agent a is HC

(3.14)

These annotations are used as the ground truth for the mean value of the cooperation
factor profiles. However, if only this criteria is used the optimization problem will
clearly be under-constrained. This is because a time-varying profile of the cooperation
is extracted using a single value (the mean value of the function). Therefore, the
problem is further constrained by exploiting the fact that in each scenario the agents
exhibiting similar behaviors (i.e. similar trajectory variations) are assigned similar
nominal values. Meaning that the optimal CF model should result in highly correlated
profiles for agents with similar mean cooperation values in one simulation, and similarly,
highly uncorrelated profiles for agents with contradicting cooperation behaviors (HC
and UC).

Finally, the pedestrian-vehicle cooperation model is obtained by finding the optimal
value for the model parameters Φ such that they minimize both J1(Φ) and J2(Φ):

• J1 is the term minimizing the error between the average value of the cooperation
factor and the ground-truth annotations:

J1(Φ) =
M∑︂

s=1

⎡⎣A(s)∑︂
a=1
||CFm(s, a)− 1

T

∫︂ t0(s)+TF (s)

t=t0(s)
fc(P a

cf (t), Φ)||2

⎤⎦ (3.15)

with M being the total number of simulations, and A(s), [t0(s), t0(s) + TF (s)] the
total number of agents and the period of a simulation s.

• J2 is the term that minimizes the Cross-Correlation (CC) error between the identi-
cally annotated profiles and maximizes it between the contradicting annotations
in one simulation:

J2(Φ) =
M∑︂

s=1

A(s)∑︂
k=1

A(s)∑︂
l=1

RCC [CFk, CFl]λ(k, l) (3.16)
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where RCC [CFk, CFl] is the cross-correlation factor between the cooperation
factor profiles of agents (l, k):

RCC [CFk, CFl] =
∫︁ t0+T

t=t0
CFk(t) ∗ CFl(t)√︂∫︁ t0+T

t=t0
CFk(t)2 ∗

∫︁ T
t=0 CFl(t)2

(3.17)

and:

λ(k, l) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if k ̸= l and CFm(k) = CFm(l)

1 if k ̸= l and CFm(k) = inv(CFm(l))∗

0 Otherwise

(3.18)

∗HC = inv(UC), UC = inv(HC)

3.4.2 Cooperation-Based Pedestrians Trajectory planning model

The main idea behind the model is that the trajectory of an agent can be predicted by
knowing: the state of the space surrounding the agent, the influence of the vehicle, and
how cooperative this particular agent is.

The trajectory planning model is of the form:

VaVaVa(t + 1) = fT (VaVaVa(t),PmPmPm(t)) (3.19)

VaVaVa =
[︄

Va

∠VaVaVa

]︄
(3.20)

where ∠XXX indicated the orientation of the vector XXX, VaVaVa(t + 1) and VaVaVa(t) ∈ R2 are the
predicted and current velocity of agent a respectively, and fT is a C1 smooth function:

fT : RN → [0, VP max]× [0, 2π]
X ↦ −→ fT (X)

(3.21)

and the model input parameters or the motion parameters are the following:

PmPmPm(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CFa(t).Ia
V (t)

CFa(t).Θa
V (t)

[1− CFa(t)] .Θa
goal(t)

[1− CFa(t)] .Da
goal(t)

Ia
P (t)

θa
P (t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.22)
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• Ia
V , Θa

V : the deformation parameters of the cooperation zone of agent a due to
vehicle intrusion (found in (E.6) and (E.8))

• Ia
P , Θa

P : the deformation parameters of the personal zone of agent a due to
pedestrian intrusion (found in (3.6) and (3.7))

• Da
goal, Θa

goal: the distance and the orientation of agent’s a goal point. Assuming
Ga

aGa
aGa
a(t) is the position of the agent’s goal point written in the local frame of the

agent, then:

Da
goal(t) = ||Ga

aGa
aGa
a||2 (3.23)

Θa
goal(t) = ∠Ga

aGa
aGa
a (3.24)

• CFa: the cooperation factor of the agent.

Multiplying the parameters resulting from the vehicle’s influence (IV , ΘV ) by the
cooperation factor in the first two inputs refers to the fact that the more cooperative
the agents are, the more their trajectories are influenced by the vehicle. Similarly,
the less cooperative the agents are, the more their trajectories are influenced by the
goal destination. Hence, the destination parameters (Θa

goal, Da
goal) are weighted by

the inverse of the cooperation factor in the third and fourth inputs. The remaining
inputs present the effect of the surrounding pedestrians and the change in the agent’s
cooperation.

3.5 Pedestrians-Vehicle Interaction Data Generation: for
Parameters Estimation and Model Verification

Collecting real-life pedestrian trajectory data is essential to model and understand
pedestrian navigation behavior. Pedestrian datasets have been widely used in the
literature to train, calibrate and verify pedestrian motion models. Multiple datasets of
pedestrian interactions exist in the literature such as the Stanford university campus
drone dataset [Rob+16], and the New York Grand Central Station dataset [ZWT12].
However, there is an obvious lack in pedestrian data collection for the case of shared
spaces with vehicles. Pedestrian-vehicle interaction data is required to model pedestrian
motion in shared spaces and to describe the vehicle’s influence on a pedestrian or a group
of pedestrians. The VCI CITR is the only dataset recently made public, which provides a
set of pedestrian trajectories in a shared space with a golf-cart vehicle [Yan+19]. The
dataset includes a top-view trajectories of a group of volunteers navigating a parking
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lot in four interaction scenarios: frontal crossing, back crossing, lateral and bi-lateral
crossing. The scenarios in the dataset include two driving modes. In the yield mode, the
vehicle stops giving the priority to the pedestrians. While in the aggressive mode, the
vehicle keeps accelerating taking over the pedestrians. However, more diverse driving
patterns and the interactions with a real-sized vehicle is required to accurately model
pedestrian behavior in shared spaces. To verify the suggested pedestrian cooperation
model and to analyse pedestrian behavior in shared space, we designed a pedestrian-
vehicle interaction experiment and collected the corresponding trajectory data.

3.5.1 Experimental Setup and Data Collection

The experiment took place at the parking lot of the LS2N lab on the École Centrale de
Nantes campus (Fig. 3.5c). The experiment involved 17 volunteers (lab members and
students):

• 2 female volunteers

• 15 male volunteers

• 1 male volunteer with reduced mobility

The volunteers in the experiment interact with a Renault Fluence vehicle with a driver
behind the wheel (Fig. 3.5a). The data is collected on board of the vehicle using a
perception system consisting of: 4 Camera, 1 Velodyne (VLP-16), 1 IMU and 1 GPS
(Fig. 3.5b). The experiment is comprised of 5 different interaction scenarios: Frontal,
Back, Frontal-Back, Lateral, Bi-lateral and Shared Space scenarios. The definition of the
pedestrian-vehicle interaction scenarios is based on the interaction angle as shown in Fig.
3.6. The scenario called "Shared space" is simply a mixture of more than one interaction
scenario (frontal crossing with lateral crossing, for example). The interactions included
pedestrian groups, pedestrians in motion and standing pedestrians. Each volunteer is
given a start and goal point in the space and is asked to move in a free and natural way.
The driver is asked to move to a goal point as well with one of two driving patterns:
an aggressive driving pattern and a more yielding driving pattern where the priority is
given to the pedestrians.

3.5.2 Data Processing and Statistics

The total scenarios acted in the experiment and the number of interactions tested in
each scenario are shown in Tab. 3.1.
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(a) (b)

(c)

Fig. 3.5.: (a) The Renault Fluence vehicle used in the experiment (b) The perception system
used for the data collection (c) Top-view of the parking lot

The resulting trajectories in the recorded interactions are visualized in detail in Appendix
A.

Vehicle statistics

The behavior of the vehicle in the collected data is divided into two main modes:
aggressive driving and a yield driving. The driving pattern of the vehicle in each mode
can be described by knowing the speed, heading and acceleration limits during the
various interactions. Furthermore, recent studies emphasises the link between the
behavior of the vehicle at the minimum approach distance, and the pedestrian safety
[Yim+20].

Assuming an interaction between a vehicle and N pedestrians, recorded over a period of
[t0, t0 + TF ], and assuming (xv(t), θv(t), vv(t), av(t)) to be the position, heading, speed
and acceleration of the vehicle at time t respectively, then the vehicle’s behavior main
parameters relative to studying PVI are the following:
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(a) PVI angle = ±90o for Lateral Crossing

(b) PVI angle = ±180o for Frontal and Back Crossing

Fig. 3.6.: PVI scenarios based on the interaction angle

Interaction Scenario
Number Of Interactions

Aggressive Driver Yielding Driver
Frontal Crossing 5 4
Back Crossing 1 1

Frontal-Back Crossing 1 1
Lateral Crossing 3 2

Bi-Lateral Crossing 2 1
Shared Space 2 3

Tab. 3.1.: Number of interaction scenarios in the experiment

• Average and max vehicle speed:

V̄ V = 1
TF

t0+TF∑︂
t=t0

vv(t) (3.25)

V max
V = maxt0≤t≤t0+TF

vv(t) (3.26)

• Average and max vehicle acceleration:

āV = 1
TF

t0+TF∑︂
t=t0

av(t) (3.27)
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amax
V = maxt0≤t≤t0+TF

av(t) (3.28)

• Average MAD to a pedestrian:

dmin = 1
N

N∑︂
i=1

di
min : di

min = min
t0≤t≤t0+TF

D(v, i, t) (3.29)

where D(v, i, t) denotes the distance between the vehicle and pedestrian i at
time t and di

min is the vehicle’s min approach distance to pedestrian i during the
interaction.

• Average vehicle’s speed and acceleration at min approach distance. let ti
dmin be

the time of the minimum approach to pedestrian i:

ti
MAD = {t ∈ [t0, t0 + TF ] : D(v, i, t) = di

min} (3.30)

then the average speed and acceleration at MAD are:

VMAD = 1
N

N∑︂
i=1

V i
MAD : V i

MAD = vv(ti
MAD) (3.31)

aMAD = 1
N

N∑︂
i=1

ai
MAD : ai

MAD = av(ti
MAD) (3.32)

The statistics of the previous parameters in the recorded data is summarized in Tab. 3.2
for both the aggressive driving and the yield driving interactions. The statistics shows the
Mean, Maximum (Max), Median and Standard Deviation (Std. Dev.) of each value.

The vehicle’s speed in the collected data is within the limit of the speed in a shared space
(< 5.5m/s). The values of the average speed and acceleration of the vehicle does not
differ much between the aggressive mode and yield mode. However, the distinction
between the two modes is reflected more in the distribution of the vehicle’s max speed
and max acceleration during the interaction, where higher values are observed is the
aggressive case. The driving pattern difference is also reflected in the vehicle acceleration
at the minimum approach distance to a pedestrian. This can be noticed in Fig. 3.7, where
in the yield mode the acceleration of the vehicle at the minimum approach distance is
always limited (< 0.45m/s2). Whereas in the aggressive mode the vehicle can experience
higher acceleration values for a number of pedestrians in each interaction.
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Parameter Behaviour Mean Max Median Std. Dev.
Avg. Speed Aggressive 1.54 2.58 1.47 0.52

(m/s) Yield 1.20 2.14 1.15 0.54
Max. Speed Aggressive 3.33 5.58 2.89 1.27

(m/s) Yield 2.79 4.54 2.60 1.26
Avg. Acceleration Aggressive 0.30 0.54 0.29 0.13

(m/s2) Yield 0.22 0.45 0.20 0.14
Max. Acceleration Aggressive 2.08 4.70 1.71 1.35

(m/s2) Yield 1.20 2.61 0.94 0.87
Min. Approach Distance Aggressive 1.89 17.78 0.68 3.24

(m) Yield 1.43 10.26 0.94 2.05
Min. Approach Speed Aggressive 1.89 4.68 1.60 1.16

(m/s) Yield 1.65 4.35 1.61 1.10
Min. Approach Acceleration Aggressive 0.18 1.19 0.11 0.20

(m/s2) Yield 0.14 0.44 0.88 1.30
Tab. 3.2.: Vehicle statistics in the collected PVI data

Fig. 3.7.: Histogram of the vehicle acceleration at the min. approach distance to a pedestrian
in the collected data

More details on the collected vehicle data statistics can be found in Appendix B.

Pedestrians statistics

The pedestrian data is processed in a similar manner to that of the vehicle to compute the
distribution of: the pedestrian average and max speed, the pedestrian average and max
acceleration, and the pedestrian speed and acceleration limits the minimum approach
distance. The values of the previous parameters are shown in Tab. 3.3. Opposite to the
vehicle, the pedestrians experienced slightly higher levels of speed and acceleration in
the yielding mode. By observing the values of the acceleration at the glsmad in more
detail (Fig. 3.8), it is noted that pedestrians experience higher acceleration levels in the
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aggressive mode for the lateral (uni and bi directional). Whereas, they experience higher
acceleration levels in the yielding mode for the frontal and back crossing interactions.

Parameter Behaviour Mean Max Median Std. Dev.
Avg. Speed Aggressive 0.70 1.33 0.75 0.30

(m/s) Yield 0.70 3.42 0.72 0.35
Max. Speed Aggressive 1.41 3.24 1.36 0.46

(m/s) Yield 1.48 3.83 1.44 0.45
Avg. Acceleration Aggressive 0.94 1.63 0.98 0.26

(m/s2) Yield 0.87 1.90 0.80 0.29
Min. Approach Speed Aggressive 0.63 1.75 0.68 0.44

(m/s) Yield 0.65 3.83 0.68 0.51
Min. Approach Acceleration Aggressive 0.95 1.33 0.45 0.84

(m/s2) Yield 0.99 2.26 0.33 0.23
Tab. 3.3.: Pedestrians statistics in the collected PVI data

Fig. 3.8.: Maximum pedestrian acceleration at the min. approach distance to the vehicle in the
collected data

The previous statistics on the collected data will be used in chapter 7 to analyse the
performance of the proactive navigation framework, and to study the effect of the
navigation of the safety and comfort of the pedestrians.

More details on the collected pedestrian data statistics can be found in Appendix B.
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3.6 Model Parameters Estimation

The model parameters are estimated and evaluated using the VCI-CITR1 data-set
[Yan+19] and the previous École Centrale dataset. The considered scenarios in the
VCI-CITR dataset include interactions between a vehicle and a group of pedestrians (7
to 10 in each interaction). The recorded interaction scenarios are frontal crossing and
lateral crossing (uni-directional and bi-directional). These two types present the most
basic interactions of a shared space which still occur frequently in most shared spaces.

The set of scenarios used in this work consists of 22 simulations divided as follows:

• Frontal Crossing: 4 simulations.

• Lateral Crossing: 10 bidirectional, 4 unidirectional with a yield driving mode and
4 unidirectional with a normal driving mode.

Each one of the four previous types is divided into two sets. An estimation set with 75%
of the total number of simulations in each type, and a validation set with the remaining
25%. For the École Centrale dataset, the data is divided based on the driver’s behavior
(aggressive or yield). Then each type is split into 75% for the estimation set and 25% for
the validation set. This is to include the two behaviors in both the estimation and the
evaluation sets.

3.6.1 Pedestrian cooperation model parameters estimation

To estimate the cooperation model parameters: Φ = [A, B] ∈ R1×5 (in (3.9)), the
following steps are performed:

First, using all the PVI scenarios selected from the VCI-CITR dataset (both the estima-
tion and validation sets), a mean cooperation value is assigned to each agent in each
interaction depending on its behavior, as explained in section 3.4.1.

Second, using only the data from the estimation set, a first order linear regression is
used to fit the model in (3.8) to the annotated pedestrian cooperation data. Meaning
that the model parameters are found using only the first optimization criterion, J1 in
(3.15):

Φ′ = arg min
Φ′

J1(Φ′) ∈ R1×5 (3.33)

1Vehicle-Crowd Interaction data-set - CITR lab: https://github.com/dongfang-steven-yang/
vci-dataset-citr
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This optimization problem is solved and the value Φ′ of the model parameters is found
using scikit-learn Python.

The value Φ′ of the parameters is considered as an average estimation. A search for
the optimal value of the modal parameters is performed in a neighborhood of Φ′ using
the cross-correlation based second optimization criterion (J2 in (3.16)). The search
neighborhood is selected to be 20% of the average estimation. Hence, the resulting
search set is:

N (Φ′) =
5∏︂

j=1
[0.8× ϕ′

j , 1.2× ϕ′
j ] : Φ′ = [ϕ′

1, ..., ϕ′
5] (3.34)

Subsequently, the optimal model parameters are:

Φ = arg min
Φ∈N (Φ′)

J1(Φ) (3.35)

The problem in (3.35) is a bounded smooth Nonlinear Optimization Problem (NLP).
Therefore, a derivative-free optimization method is used to solve it. Based on previous
study on the performance of available derivative-free solvers, the TOMLAB solver (Mat-
lab) is selected [RS12]. The selected solver performs searches using a local NLP solver
from starting points chosen by a scatter search algorithm within the bounds N (Φ′).

3.6.2 Cooperation-based trajectory planning model parameters
estimation

The cooperation-based trajectory planning model is estimated using linear regression,
such that:

VaVaVa(t + 1) = fT (VaVaVa(t), Pm(t)) (3.36)

with:

VaVaVa =
[︄

Va

∠VaVaVa

]︄
(3.37)

fT : RN → [0, VP max]× [0, 2π]
X ↦ −→C1X + C2

(3.38)

with: C1 ∈ R2×6, C2 ∈ R2. The model parameters Ψ are optimized to minimize the
error between the predicted trajectory and the ground truth pedestrian trajectories in
the estimation set.

Ψ =
[︄

C1[0] C2[0]
C1[1] C2[1]

]︄
= [Ψ0, Ψ1]T ∈ R2×8 (3.39)
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The model is learnt for short term prediction, such that:

Ψ =
[︃
arg min

Ψ0
JV (Ψ0), arg min

Ψ1
Jθ(Ψ1)

]︃T

(3.40)

where JV and Jθ are the linear velocity and orientation short-term prediction errors
respectively.
Assuming Th is the prediction horizon, [t0(s), t0(s)+TF (s)] is the period of an interaction
s, and tk is the time discretization step, then the number of time iterations in the
interaction is: K(s) = int(TF (s)

tk
).

Let A(s) be the number of pedestrians in an interaction s, and M the total number of
interactions in the estimation set. Moreover, lets call V l,m

real the ground truth value of the
linear velocity for agent m in an interaction l, and V l,m

model its predicted value. Then, the
linear velocity prediction error is written as:

JV (Ψ0) =
M∑︂

s=1

A(s)∑︂
i=1

K(s)∑︂
j=1

Jv(s, i, j; Ψ0) (3.41)

with:

Jv(s, i, j; Ψ0) =
t0+itk+Th∑︂
t=t0+itk

||V s,j
real(t)− V s,j

model(t; Ψ0)||2 (3.42)

Similarly, the orientation prediction error is:

Jθ(Ψ1) =
M∑︂

s=1

A(s)∑︂
i=1

K(s)∑︂
j=1

Jo(s, i, j; Ψ1) (3.43)

with:

Jo(s, i, j; Ψ1) =
t0+itk+Th∑︂
t=t0+itk

||∠V s,j
realV s,j
realV s,j
real(t)− ∠V s,j

modelV s,j
modelV s,j
model(t; Ψ1)||2 (3.44)

Finally, The optimization problem is solved and the value of the model parameters Ψ is
learnt using the scikit-learn2 library in Python.

2https://scikit-learn.org/
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3.7 Models Evaluation

The evaluated model parameters are shown in Appendix G.

3.7.1 Pedestrian cooperation model evaluation

To evaluate the accuracy of the cooperation model, a cross-correlation test is imple-
mented. Where for each pair of agents in each simulation, the cross-correlation factor
between their cooperation profiles is computed.

First, the ground-truth values of the CC factors (RGT ) is obtained using the earlier
annotations as shown in Table 3.4.

Cross-Correlation Factors Ground Truth
Agent Pair Annotation RGT

Similar Behavior (SB): [UC, UC] or [HC, HC] or [SC, SC] 1
Inverse Behavior (IB): [HC, UC] or [UC, HC] 0

Unidentified Cases: [Nan, -] or [-, Nan] Nan
Tab. 3.4.: Obtaining the ground-truth values of the agents CC factors

After discarding the unidentified cases, the CC factors of all the agent pairs (RCC) are
computed using (3.17). These continuous values are then discretized to be compared
with the ground truth values:

Rd
CC [CFk, CFl] =

⎧⎨⎩1 if RCC [CFk, CFl] ≥ 0.5

0 otherwise
(3.45)

and the behavior of the agent pair is predicted to be similar (SB) if Rd
CC = 1, and inverse

(IB) if Rd
CC = 0.

Finally, the confusion matrix [Hos15] is computed as illustrated in Tab. 3.5.

Actual SB Actual IB
Predicted SB True Similar (ts) False Inverse (fi)
Predicted IB False Similar (fs) True Inverse (ti)

Tab. 3.5.: Obtaining the confusion matrix of the predicted CC factors

The accuracy of the model is evaluated using:

Accuracy = ts + ti

ts + fs + ti + fi
× 100% (3.46)
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The result of evaluating the confusion matrices and the accuracy of the model is shown
in Tab. 3.6 for each type of the interaction scenarios in the VCI-CITR data-set, and in
Tab. 3.7 for the École Centrale data-set.

Frontal Crossing Lateral Crossing All Scenarios

Confusion Matrix
41 1
7 4

220 6
64 48

261 7
71 52

Accuracy 85% 79% 80%
Tab. 3.6.: The cooperation model accuracy against the VCI-CITR data-set based on the CC test

Frontal Crossing Lateral Crossing All Scenarios

Confusion Matrix
38 0
7 5

25 4
9 10

63 4
16 15

Accuracy 86% 73% 79%
Tab. 3.7.: The cooperation model accuracy against the École Centrale data-set based on the

CC test

The cooperation model is able to predict the similarities in agents’ behaviors with a good
accuracy in both lateral and frontal crossing scenarios. The prediction accuracy was
lower for the École Centrale data-set’s lateral cases due to the more limited available
sample of agent’s pairs. Noting that the available scenarios in the data-set provided a
small sample of agent pairs with inverse behaviors in the frontal crossing simulations,
which leads to an unreliable evaluation of the accuracy for the frontal crossing cases.

3.7.2 Cooperation-based trajectory planning model evaluation

To evaluate the model, the Mean Square Error (MSE) between the trajectories predicted
by the model and the real trajectories in the validation set is computed. Tab. 3.8
shows the MSE% in the linear velocity and the orientation for each type of interaction
scenarios computed using:

MSE% = 1
M

M∑︂
s=1

1
A(s)

A(s)∑︂
a=1

1
T (s)

T (s)+t0∑︂
tk=t0

||Xa,s
real(tk)−Xa,s

model(tk)||2
||Xa,s

real(tk)||2
× 100% (3.47)

where M is the total number of simulations, A(s), T (s) are the total number of agents
and the period of simulation s respectively. Xa,s

real, Xa,s
model are the real and the model

output values respectively for agent a in simulation s, which is replaced by either the
linear velocity or the orientation.

The model predicts the agents trajectories with a good accuracy for both the linear
velocity and the orientation. A higher orientation MSE value is observed is the frontal

3.7 Models Evaluation 75



Frontal Crossing Lateral Crossing All Scenarios
Linear Velocity 18.42% 22.61% 21.91%

Orientation 2.66% 1.5% 1.69%
Tab. 3.8.: MSE% between the model output and the real trajectories in the validation set

crossing scenarios. Whereas, a higher linear velocity MSE is observed for the lateral
crossing. This is caused by the agents experiencing more frequent orientation variations
in a frontal crossing interaction, and more linear velocity variations in a lateral crossing
interaction.

3.8 Towards A More Generalized Model

One drawback of the proposed pedestrian cooperation model is that the model is
impersonal. Meaning that any two pedestrians existing in the same situation with the
same goal destination will act similarly. Which is an incorrect assumption in real life
situations. Multiple other factors can affect the behaviour of a pedestrian. These factors
can include the age, physical and psychological state of the pedestrian for example
[Dur+16]. Excluding these factors would lead to errors or biases in the trajectory
prediction. To account for these factors, a new parameter is added to the cooperation
model. We call it the Inner Cooperation Factor (ICF) which is unique to each agent.
The ICF replaces the additive parameter B in the cooperation model (3.9) and the
generalized cooperation model is written as:

CFa(t) = f ′
c(P a

cf (t)) (3.48)

where f ′
c is a first order linear function:

f ′
c : [0, 1]4×1 → [0, 1]

X ↦−−−→AX + ICF (t)
with ICF (t0) = B

(3.49)

where t0 is the initial time of the interaction.

During an interaction scenario, the ICF of each detected pedestrian is updated over
consecutive time intervals (Fig. 3.9). First, an initial value is assumed (ICF (t0) = B).
Then, the trajectory of the agent is predicted for a fixed prediction horizon Th using the
cooperation-based trajectory planning model. The predicted trajectory is then compared
with the actual observed trajectory. ICF is updated using a simple gradient descent
method to minimize the trajectory prediction error. The computation of the prediction
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error gradient is straightforward since both the modified cooperation model and the
trajectory planning model are linear. The derivation of the trajectory error gradient in
shown in Appendix D.

Fig. 3.9.: Updating the inner cooperation factor of an agent based on the trajectory prediction
error

3.9 Results Analysis

The cooperation model and the cooperation-based trajectory planning model are imple-
mented to predict the behavior and trajectories of the pedestrians in the evaluation set
of the data. Fig. 3.10 shows an example of the cooperation factor profiles for a group
of agents in one of the lateral crossing scenarios. It can be observed in the figure that
agents 1, 6, 7, 8 show high cooperation factor values towards the end of the simulation
(CF > 0.75) as these agents did not pass in front of the vehicle, but waited for it to pass
instead. Agents 3, 5 show low CF values (CF < 0.3) when passing in front of the vehicle
while it is approaching. On the other hand, agent 2 shows higher CF values than agents
3, 5 as it passed in front of the vehicle earlier in the simulation when it was further away,
hence the passing behavior was also cooperative. Finally, agent 4 would be expected to
have a CF profile more similar to agent 6, but its somewhat stable cooperation may be
attributed to the fact that it experienced less overall acceleration and was further away
from the vehicle than agent 6.

3.9.1 Generalized vs. basic cooperation model

The cooperation-based trajectory planning model is tested with the two proposed ver-
sions of the cooperation model in (3.8) and (3.49). The goal is to show the effect of
incorporating an additional personal parameter (ICF ) in the cooperation model (3.49)
on the trajectory prediction error. The trajectories of the pedestrians in the validation
set is predicted using the model over a T = 10s prediction horizon with both versions of
the cooperation model. In the case of the generalized version, ICF is set to the initial
value similar to the basic model: ICF (t0) = B and updated to minimize the trajectory
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Fig. 3.10.: The cooperation factor profiles of the agents in a lateral crossing scenario

prediction error over Th = 2s time horizon. The MSE% between the predicted and the
ground-truth trajectories is calculated according to (3.47). Tab. 3.9 shows the MSE%
in the linear velocity and the orientation for each type of interaction scenarios with and
without the additional personal parameter (titled ICF, Basic respectively). Fig. 3.11
shows an example of the model output for the trajectory prediction in one of the frontal
interactions with both versions of the cooperation model.
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Interaction Scenario
Frontal Crossing Lateral Crossing All Scenarios
Basic ICF Basic ICF Basic ICF

Linear Velocity 18.42% 17.31% 22.61% 20.35% 21.91% 19.79%
Orientation 2.66% 2.11% 1.50% 0.07% 1.69% 0.44%

Tab. 3.9.: MSE% between the model output and the real trajectories in the validation set
using the basic cooperation model (3.8) (Basic), and the extended version in (3.49)

(ICF)

(a) With the basic cooperation model (3.8) (b) With the modified cooperation model (3.49)

Fig. 3.11.: Trajectory prediction model output in a frontal interaction scenario. Black contour:
Real. No contour: Predicted. X: starting point

The additional online estimated parameter ICF in the generalized cooperation model
helped reduce the prediction error of the cooperation-based trajectory planning model.
A more significant reduction of MSE% is noticed for the orientation estimation specially
for the case of lateral interactions.

More on the model output visualization is found in Appendix C.

3.9.2 Effect of changing the cooperation factor

To visualize the effect of changing the cooperation factor of a group of agents in an
interaction scenario, a reference frontal interaction simulation is generated using the
cooperation model in (3.8). Afterwards, two other simulations are generated using
two modified versions of the cooperation model: one with a 50% increment, and the
other with a 50% decrements of the cooperation factor. Fig. 3.12 shows the three
resulting simulations, where it can be observed that the simulation with an increased
cooperation factor resulted in a more cooperative behavior on the agents side, moving
out of the vehicle’s way. Fig. 3.13 also shows the cooperation factors of the agents
corresponding to the three simulations. Note that even-though an increment/decrement
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on the cooperation model is applied, the cooperation factor is still computed based on
the evolution of the simulation.

Fig. 3.12.: Trajectories in the XY plane of the two simulations generated with
increased/decreased cooperation factor values vs. the original reference simulation

3.10 Conclusion and Prospects

This chapter provides a study on pedestrian-vehicle cooperation through modeling and
data collection. The work in this chapter presents a pedestrian-vehicle interaction
model based on the concept of cooperative navigation, which can be exploited in
autonomous navigation systems to ensure safe and socially-accepted behavior of the
vehicle. The proposed model estimates the pedestrian reaction in two steps. In a first step
a cooperation factor is estimated to present the cooperative behavior of an agent from
the vehicle’s point on view. The suggested cooperation measure is based on personal
factors of the agent (goal and preferred speed) and on the state of the space surrounding
the agent. This state includes both the pedestrian the vehicle influence. After estimating
the pedestrian cooperation, a cooperation-based trajectory prediction can be performed.
The proposed trajectory planning model presents the trade-off in pedestrian planning
between the goal destination’s influence and the vehicle’s influence. This trade-off is
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Fig. 3.13.: The cooperation factors of the agents corresponding to the three simulations in Fig.
3.12. Red: reference simulation, blue: simulation generated with a 50% increment

on CF, green: simulation generated with a 50% decrement on CF.

based on the cooperation of the specific pedestrian. The model developed in this chapter
and the corresponding results were the basis for the following publication:

"M. Kabtoul, A. Spalanzani and P. Martinet. Towards Proactive Navigation: A
Pedestrian- Vehicle Cooperation Based Behavioral Model. IEEE International Confer-
ence on Robotics and Automation (ICRA), May 2020, Paris, France. pp.6958-6964.
hal-02509637"

The cooperation estimation part of the model performs well in scenarios including a
group of pedestrians in interaction with a vehicle, and its output describes the change
in the pedestrian’s behavior using a time-varying factor ranging between zero (highly
uncooperative) to one (highly cooperative). In future works, the ability of the coopera-
tion model to identify groups of agents in dense spaces can be tested. This is because
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the cooperation model is built to maximize the cooperation factor’s cross-correlation
between agents with similar behavior patterns. Therefore, agents in a group would be
expected to have highly correlated cooperation profiles.

The cooperation model is further generalized by adding a personal parameter to the
model. This parameter is unique to each pedestrian and can be evaluated online to
minimize the trajectory prediction error. This is done to account for not considering
other personal factors which cannot be measured directly from the state of the space,
but can affect an individual’s cooperation in real scenarios. In future development of the
model, visual information (age, physical state, .. etc) can be incorporated to the model
trough this parameter.

Additionally, the chapter presented the collected data from a pedestrian-vehicle inter-
actions experiment performed on the site of École Centrale de Nantes. The experiment
included two types of driving behaviors: aggressive and yield driving. The experiment
enriches the limited available pedestrian-vehicle interaction data in the literature, spe-
cially in shared spaces. This is a step towards developing and validating more accurate
pedestrian behavior models around vehicles. Moreover, the statistics provided show an
analysis of pedestrian state in the cases of aggressive and yielding driving. Which can
be used to evaluate the performance of navigation systems by analysing the safety and
comfort of pedestrians against the values provided by our statistics.

Last but not least, using the cooperation-based trajectory planning model, scenarios of
pedestrian-vehicle interaction can be simulated. The model will be used for pedestrian
behavior prediction as part of the proactive navigation framework. The model is tested
and verified using a set of real-life recorded scenarios. To our knowledge, this is the first
attempt to validate a pedestrian-vehicle behavioral model on real data, thanks to the
release of the VCI-CITR data-set and our collected data.
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Proactive Longitudinal Velocity
Control

4
The number of mobile robot applications in human-populated environments has in-
creased significantly in the past years: applications at airports, hotels, hospitals, factories,
etc. This large spectrum of applications motivated researches to put considerable efforts
into the development of trajectory generation methods both for path planning and
trajectory tracking in the presence of dynamic obstacles.

The problem of navigation around pedestrians in addressed in this work using a cascading
longitudinal-lateral control system. The longitudinal velocity control will be used as
an input to the lateral control system presented in the coming chapter (Ch. 5). The
selected architecture allows decomposing the two available degrees of freedom of the
proactive command. Therefore, a stand-alone system for the longitudinal control is
designed to explore the possibility of a proactive influence using only a one degree of
freedom control.

The problem is formulated as an optimal control problem and solved by exploiting
the cooperative nature of human behavior. The proposed control framework drives
the vehicle proactively and safely along a pre-defined global path, while avoiding
the freezing of the vehicle in dense environments. The system is implemented and
tested in pedestrian-vehicle lateral interaction scenario using the previously developed
cooperation-based pedestrian planning model (in Ch.3). The results are analysed and
compared with a reactive method in terms of safety and efficiency.

4.1 Related Work

Many works in the literature targeted the longitudinal control during navigation ap-
plications. The goal is mostly to keep a safe distance from dynamic obstacles in the
environment (vehicles, pedestrians, etc.), to avoid collisions or to maintain a relatively
constant speed with braking in emergency situations.

In early works, the independent longitudinal vehicle control was mostly used in platoon-
ing operations [CG76; Hed+91; GL94; SD90]. In such applications, the common inputs
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of the system would be the desired safety distance and a preferred constant speed. The
longitudinal velocity of the vehicle is controlled to keep the inter-vehicle distancing close
to the desired safety space, within the preferred speed limits. The longitudinal control is
also addressed in works targeting a similar problem to the car-following in a platoon,
which is the vehicle merging [CH99; LH00]. In these cases, the goal is to control the
speed of the vehicle when joining a platoon or a new lane in order to reach the merging
point at the appropriate time moment.
Despite the wide range of works on longitudinal control in platooning, car-following or
merging applications, theses system remain unsuitable for dynamic pedestrian-populated
environment. This is a direct result of the highly reactive and even subservient robotic
behavior that is required in the platooning case.

Works on the longitudinal control are also found in the collision avoidance literature.
The probabilistic framework used for collision and risk assessment is in terms used for
the longitudinal control [Lam+08; KS20]. This is done such that the speed is increased
in more safe environments and decreased or nulled with high probability or risk of
collision. Moreover, probabilistic risk-based trajectory generation methods, such as Risk
Rapidly-exploring Random Trees (Risk-RRT), can also fall under this category [RSL11].
Since the time-based part of the planned trajectory to be followed is computed based
on the estimated collision risk. However, in dynamic or more cluttered environments
such strategies can be highly penalizing to the system and can often lead to the famous
Freezing Robot Problem (FRP) [TK10].

FRP arises when an environment surpasses a certain level of density and complexity.
This happens when the robot planning system deems all the possible navigation possi-
bilities unsafe and freezes in place to avoid collisions. A specific portion of research is
concentrated to solving FRP in dynamic or cluttered environments. However, what can
be noted in general, is that the problem is mostly handled by adjusting the manoeuvring
or the space search methods [Fan+19]. In [Sat+20], for example, the problem is solved
by predicting a potential freezing zone around pedestrians and the velocity command is
derived to steer away from this zone. Meaning that the potential of solving FRP using a
longitudinal controller have not been addressed yet in the literature.

The longitudinal control was not viewed only as a way to avoid collisions but also as
a way to increase the efficiency and safety of the navigation overall [KZ86]. Works on
robot navigation in dynamic environments targeted the longitudinal control as a way
to optimize the navigation time while copping with unexpected events. Examples of
this can been seen in early works on navigating dynamic spaces, such as the fuzzy logic
controller proposed in [Man+97].
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Finally, weather the aim is to solve FRP, maintain safety or improve the navigation
efficiency, we can identify one main limitation in the case of pedestrian-populated
environments: the lack of proactivity. Meaning that the potential of avoiding the FRP or
improving the efficiency by using a proactive longitudinal control to invoke new collision-
free navigation options has not been yet explored in the literature. The advantages of a
proactive longitudinal controller is particularly prominent in dense pedestrian interaction
scenarios. A reactive controller cannot consider the cooperation of the pedestrians and
does not attempt to influence their behavior. This leads to over penalizing the navigation
options. Subsequently, any reactive controller would have a poor performance in such
scenarios [VMO17a], leading to inefficient and unnatural navigation solutions and even
the freezing of the robot in some cases.

4.2 System Model

Reminder: The vehicle and the pedestrians in the scene are modelled as explained in
2.7.2. The linear velocity limit is assumed equal to the speed limit in shared spaces
Vmax = 20km/h = 5.5m/s which justifies the vehicle’s model choice. The position, orien-
tation and velocity of the vehicle are XVXVXV = [xV , yV ]T , VVVVVV = [v, θv]T respectively. On the
other hand, a pedestrian is modelled as a point in the 2D plane. The position of a pedes-
trian j at time t is XjXjXj(t) = [xj(t), yj(t)]T and its velocity is VjVjVj(t) = [vxj (t), vyj (t)]T .

The pedestrians in the scene are assumed to plane their trajectories according to the
cooperation-based trajectory planning model suggested in Chapter 3, as illustrated in
Fig. 4.1.

Fig. 4.1.: The pedestrian’s cooperation-based trajectory planning model
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4.2.1 Minimum pedestrian-vehicle distance

As explained in 2.7.2, the footprints of all pedestrians are circles with radius Rped and the
footprint of the vehicle is the outer Löwner-John ellipse of the rectangular vehicle body.
The minimum distance between a pedestrian j and the vehicle body is approximated
with the minimum distance between the two footprints. As explained earlier the ellipse
of the vehicle’s footprint can be written as:

fv
fp(XXX; SV ) = (XXX −XVXVXV )T Sp(XXX −XVXVXV )− 1 = 0 (4.1)

Similarly the circle of a pedestrian j footprint is written as:

fv
fp(XXX; j, SP ) = (XXX −XjXjXj)T Sp(XXX −XjXjXj)− 1 = 0 (4.2)

where SV , SP are the shape matrices of the vehicle and the pedestrian respectively (in
(2.11) and (2.2)).

Fig. 4.2.: Estimating the closest distance between a pedestrian j and the vehicle’s footprints

Assuming XeXeXe is a point on the ellipse at an angle θp: fv
fp(XeXeXe(θ); SV ) = 0, then the square

distance function between the pedestrian position and this point is:

FD(θ) = (XeXeXe(θ)−XjXjXj)2 (4.3)

for θ ∈ [0, 2π], FD is a non-negative, periodic and differentiable function. Therefore, it
has a global minimum occurring at an angle θp for which the first-order derivative is
zero:

Ḟ D(θp) = 2 (XeXeXe(θp)−XjXjXj)ẊeẊeẊe(θp) = 0 (4.4)

this implies that (XeXeXe(θp)−XjXjXj) is perpendicular to ẊeẊeẊe(θp):

∇ (XeXeXe(θp)−XjXjXj) .∇ẊeẊeẊe(θp) = 0 (4.5)
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and the vector ẊeẊeẊe(θp) is tangent to the ellipse at XeXeXe(θp) (Fig. 4.2).

fv
fp(XeXeXe(θp); SV ) = 0 (4.6)

The coordinates of XeXeXe(θp) cam be obtained by solving equations (4.4) and (4.6). How-
ever, there are no general analytical methods to solve it. Therefore, the solution is
obtained using the Newton-Raphson iterative root-finding algorithm [Ebe06]. Finally,
the closest distance between a pedestrian j and the vehicle is:

Dmin
j = ||XjXjXj −XeXeXe(θp)||2 −Rped (4.7)

4.3 Background

To develop a proactive linear velocity controller, it is important to exploit the cooperation
of pedestrians while maintaining their safety. Ensuring the safety of the pedestrians in
the scene remains the main priority of the navigation system. Invoking more cooperative
pedestrian behaviours is desired providing that it does not compromise the safety at
any time. To estimate pedestrian safety during the navigation, a safety index in defined.
The suggested Safety Index (SI) is a quantitative measure based on a minimal distance
between the vehicle’s body and the pedestrian. Using the concepts of the personal and
the cooperation zones (discussed in Section 3.3.1), the safety index for a pedestrian j at
time t is evaluated as follows:

SIj(t) =
Dmin

j (t)−RP

RC −RP
(4.8)

where: Dmin
J is the minimum distance between the pedestrian j and the body of the

vehicle estimated as explained in 4.2.1, RP is the radius of the personal zone and RC is
the radius of the cooperation zone. As shown in Fig. 4.3, SI takes negative values when
the vehicle enters the personal zone of the pedestrian indicating a failed navigation.
Entering the cooperation zone results in SIj < 1 expressing a possible discomfort of the
pedestrian. A better navigation policy results in larger SI values.

Moreover, to reduce the complexity of the navigation task, a Zone of Vehicle’s Influence
is defined. In the navigation policy, only the cooperation for pedestrians detected within
this zone is taken into consideration. The influence zone proposed in this work is a 180o

zone with the same orientation as the vehicle. The radius of the zone is proportional
to the linear velocity of the vehicle. This ensures a larger influence margin in higher
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Fig. 4.3.: Safety Index (SI) values against the minimum distance between a pedestrian and
the vehicle’s body (Dmin)

velocities. The parameters of the influence zone (center XIXIXI = [xI , yI ]T and radius RI)
are found as follows:

XIXIXI(t) = XVXVXV (t)− LV

2 VVVVVV (t), RI(t) = rmin(1 + u(t)) (4.9)

with: LV the length of the vehicle, rmin ≥ 0, and VVVVVV (t) = [u(t) cos θV (t), u(t) sin θV (t)]T .

Fig. 4.4 shows multiple examples of the influence zone with different velocities of the
vehicle.

Fig. 4.4.: The zone of influence of the vehicle with different vehicle velocities, where a ∈ R+

In the following, the problem of proactive navigation is presented in a pedestrians-
vehicle interaction scenario. The problem is formulated as an optimal control problem
to find the longitudinal velocity control of the vehicle. The solution is then found based
on the pedestrian-vehicle cooperation model.
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4.4 Problem Formulation

The problem of longitudinal velocity control around pedestrians is formulated in a
proactive and social manner. The control we are attempting to find allows the vehicle
(or the robot) to actively engage in the space and not merely react to the surrounding
agents. Moreover, the desired control should not lose its reactive nature but rather build
on top of it. The vehicle is expected to engage in the space exploiting the pedestrian
cooperation, while maintaining their safety.

Given an interaction scenario between a vehicle and N pedestrians, the problem of
longitudinal control is formulated as follows:

System Inputs:

• M ∈ N: M ≤ N is the number of pedestrians detected in the influence zone of the
vehicle

• XP (t) = [X1(t), ..., XM (t)] and VP (t) = [V1(t), ..., VM (t)]: the perceived positions
and velocities of the M pedestrians in the influence zone at time t respectively

• The steering angle of the vehicle is provided from a higher level global planner

Problem: Find the longitudinal velocity control u(t) of the vehicle, such that:

u(t) = min
u(t)∈[−vmax,+vmax]

Jreg (u(t), VP (t), XP (t), XV (t)) (4.10)

Jreg = 1
Th

∫︂ t0+Th

t=t0
J (u(t), VP (t), XP (t), XV (t)) + T (u(t)) (4.11)

where vmax is the speed limit of the vehicle and J is a cost function that aims to maximize
the cooperation of the influenced agents while ensuring their safety:

J = 1
M

M∑︂
j=1

α1 (1− CFj(t))− α2SIj(t) (4.12)

with (α1, α2) ∈ R2
+, and T (u(t)) is a Tikhonov regularization function [Tik43] added to

penalize infinite solutions and prefer solutions with smaller L2 norms:

T (u(t)) = α3||u(t)||22 ; α3 ∈ R+ (4.13)
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4.5 Solving the Control Problem

The solution for the optimization problem in (4.10) derived using the Hamilton–Jacobi–Bellman
(HJB) equation has the form:

u(t) = 1
2Mα3

M∑︂
j=1

α1∂uCFJ (t) + α2∂uSIj (t) (4.14)

the symbol ∂yx is equivalent to ∂x
∂y ; ∀x, y.

The problem is then reduced to finding the gradient of the cooperation factor and the
safety index with respect to the vehicle’s control.

The gradient of the safety index of agent j depends only on the gradient of the distance
to the vehicle Dmin

j (t):

∂uSIj (t) = 1
RC −RP

∂uDmin
j (t) (4.15)

To derive the gradient of the distance, let’s rewrite both the pedestrian’s and the vehicle’s
differential models. Using the same parameter assumptions used in section 2.7.2 for
both the pedestrian and the vehicle, let’s write: XV

u = ∂uXV and Xj
u = ∂uXj . Then, the

gradient of the Euclidean distance can be written as:

∂uDmin
j (t) = ∂XP

Dmin
j (t)∂uXj + ∂XV

Dmin
j (t)∂uXV (4.16)

This can be obtained by knowing the two gradients: ∂uXj and ∂uXV .

• Obtaining ∂uXV : The vehicle’s model is the following:

XV
̇ (t) =

[︄
v(t) cos θ(t)
v(t) sin θ(t)

]︄
(4.17)

θ̇(t) = v(t)
L

tan δ(t) (4.18)

With a partial differentiation of the vehicle’s bicycle model and by adding the
control u(t) = v(t), we get:

d

dt
(∂uXV (t)) =

[︄
cosθ(t)− u(t)sinθ(t)∂uθ(t)
sinθ(t) + u(t)cosθ(t)∂uθ(t)

]︄
d

dt
(∂uθ(t)) = 1

L
tan δ(t)

(4.19)
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Finally, the term ∂uXV is obtained by solving the previous model numerically.

• Obtaining ∂uXj: This term can be evaluated using the pedestrian cooperation-
based trajectory planning model with:

Ẋj(t) = Vj(t) (4.20)

d

dt
(∂uXj(t)) = ∂uVj(t) (4.21)

Similarly to the previous case, ∂uXj is evaluated with a numerical solution of
the previous model, where the term ∂uVj(t) which can be determined using the
cooperation-based pedestrian trajectory planning model (in 3). The following two
gradients can be derived by simple calculations:

∂uVj(t) = F1
(︂
∂uVj(t− 1), CFj(t), ∂uP[j,v](t), ∂uDmin

j (t)
)︂

(4.22)

∂uCFj(t) = F2
(︂
∂uVj(t− 1), ∂uP[j,v](t)

)︂
(4.23)

where: F1 : R3 → R2, F2 : R2 → R are linear functions. The derivation of these
functions is provided in Appendix E.

If we can express the gradient of the probability of collision. Then, the optimal velocity
control u(t) can be computed. This is done by substituting (4.22) and (4.19) in (4.16)
and then in (4.15) we can compute the gradient ∂uSIj(t). Whereas the gradient ∂uCFJ

is obtained from (4.23).

In the following we explore the method for computing the probability of collision and its
gradient.

4.5.1 The Probability Of Collision

The Probability Of Collision (POC) between the vehicle and a pedestrian is the main
parameters expressing the effect of the vehicle’s behaviour on the cooperation of the
pedestrian in the interaction model (as shown in Section 3.4.1). Therefore, the gradient
of the POC is an important factor in deriving the proactive control used to convey a
desired vehicle’s influence.

Most of the methods used to compute the POC between two entities are numerical
and evaluating the gradient is not straightforward [Che+17], which is a drawback in
our case. Therefore, our selected method depends on using an analytical form with a
differentiable function to compute the POC. The method is based on using a probability
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distribution to describe the trajectory of each agent. This is used to derive a probability
density function (PDF) of the Euclidean distance between the two agents. Finally, the
POC is equal to the probability of the distance falling below a threshold minimum
distance.

Given a pedestrian j with a position XjXjXj = [xj , yj ]T ∈ R2 and velocity VjVjVj = (vj , θj) ∈
R2 × [0, 2π], and a vehicle with a position XVXVXV = [xv, yv]T ∈ R2 and velocity VVVVVV =
(vv, θv) ∈ R2 × [0, 2π]. Assuming that each of the position parameters for both the
pedestrian and the vehicle follow a natural distribution with a variance σ2

x(t):

Xj(t) ∼ N (µXj (t), ΣX(t))

with: µXj (t) = [µxj (t), µyj (t)]

XV (t) ∼ N (µXV
(t), ΣX(t))

with: µXV
(t) = [µxv (t), µyv (t)]

Where:

ΣX =
[︄

σx σ2
x

σ2
x σx

]︄
(4.24)

and the symbol µ[X] denotes the mean value of the parameter [X].

Then the distance between two points on the same axis has a natural distribution as
well:

Ex(t) = xj(t)− xv(t) ∼ N (µxj (t)− µxv (t), 2σx(t)) (4.25)

Ey(t) = yj(t)− yv(t) ∼ N (µyj (t)− µyv (t), 2σx(t)) (4.26)

The weighted distance between the pedestrian and the vehicle follows a two degrees of
freedom non-central X distribution [Cha11]:

Z(t) =

√︂
E2

x(t) + E2
y(t)

2σx(t) ∼ X (2, λ(t))

with: λ(t) = D(t)
2σx(t)

where D(t) is the Euclidean distance between the mean values of the positions of the
pedestrian and the vehicle at time t:

D(t) =
√︃(︂

µxv (t)− µxj (t)
)︂2

+
(︂
µyv (t)− µyj (t)

)︂2
(4.27)
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The probability of collision at a time instant tk is computed for a fixed prediction horizon
Th. First, the trajectories of both agents are predicted over the fixed time interval
[tk, Th + tk]. Then, the distribution of the weighted distance between the two agents
(Z) is estimated over this time interval. The probability of collision is estimated as the
probability of the weighted distance Z falling below a minimum limit distance dlim:

P[j,v](tk) = 1
Th

∫︂ tk+Th

t=tk

P(Z(t) ≤ dlim)dt (4.28)

This can be expressed using the cumulative distribution function (CDF) of Z:

P(Z(t) ≤ dlim) = FZ(x; 2, λ(t)) (4.29)

P[j,v](tk) = 1
Th

∫︂ tk+Th

t=tk

FZ(dlim; 2, λ(t)) dt (4.30)

where the CDF of a non central X distribution is:

FZ(x; k, λ) = 1−Q k
2
(
√

λ,
√

x) (4.31)

with QK(a, b) the Marcum Q-function [Mar50]. The previous CDF can be estimated
using Wilson-Hilferty approximation [Abd54] and this is easily implemented using
Python Scipy library1.

Deriving the probability of collision using the previous method allows to compute its
gradient using the probability density function of the distance:

∂uP[j,v](tk) = 1
Th

∫︂ tk+Th

t=tk

∂uλ(t)FZ(dlim; 2, λ) (4.32)

∂uP[j,v](tk) = 1
Th

∫︂ tk+Th

t=tk

1
2σx(t)∂uDmin

j (t)FZ(dlim; 2, λ(t))dt (4.33)

Assuming the variance on the position and the velocity estimation at time tk are σ2
p, σ2

v

respectively. Then:
σx(tk + kts) = σpos + kt2

sσv (4.34)

where k ∈ N+ and ts ∈ R∗
+ is the time step. finally:

∂uP[j,v](tk) = 1
Th

∫︂ tk+Th

t=tk

1
2(σpos + kt2

sσv)∂uDmin
j (t)FZ(dlim; 2, λ(t))dt (4.35)

1https://www.scipy.org/
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We can summarize the steps of computing the probability of collision and its gradient as
follows:

• Predict the mean trajectories of the positions of both the pedestrian and the vehicle
with a constant velocity prediction µXV

, µXj over [tk, tk + Th].

• Predict the position variance σx(t) over [tk, tk + Th] as in (4.34).

• Compute the minimum distance: Dmin
j (t) : ∀t ∈ [tk, tk + Th] using (4.27).

• Compute: λ(t) = Dmin
j (t)

2σx(t) : ∀t ∈ [tk, tk + Th]

• Estimate the CDF of the weighted distance FZ(dlim; 2, λ(t)) : ∀t ∈ [tk, tk + Th]

• Compute the probability of collisions:

P[j,v](tk) = 1
Th

∫︂ tk+Th

t=tk

FZ(dlim; 2, λ(t)) dt (4.36)

• Compute the POC gradient as in (4.35)

Finally, Algorithm 1 shows the steps of finding the optimal proactive control. Note that
all the steps include only fast simple linear calculations. The only heavier calculation is
computing the gradient of the probability of collision in step 6.

Algorithm 1. Proactive Linear Velocity Control

Input: Poses and Velocities of the vehicle [XV , VV ], and the agents in the influence zone:
XP = [X1 . . . XM ]T , VP = [V1 . . . VM ]T

Output: longitudinal velocity control: u(t)

Initialize: ∂uVP ← 0
while M > 0 do

for j ← 1 to M do
Update the gradient of the pedestrians positions: XP

u

Update the gradient of the vehicle’s position: XV
u

Update the gradient of the distance: ∂uDj(t)
Predict the trajectories over future horizon Th

Compute the gradient of POC: ∂uP[j,v](t)
Update the gradient of the security index: ∂uSIj(t)
Update: ∂uCFj(t), ∂uVP (t)
Update the gradient of the pedestrian velocity: ∂uVP

end for
Update the control: u(t) = 1

2Mα3

∑︁M
j=1 α1∂uCFJ (t) + α2∂uSIj (t)

end while
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4.6 Implementation

The test simulations include interactions between the vehicle and a group of pedestrians.
The lateral crossing scenario is selected to test and tune the controller parameters.
This is because in this scenario the steering options are more limited and the main
contribution in the navigation comes from the velocity control. The pedestrians in the
simulations plan their trajectories using the cooperation-based trajectory planning model
with the modified cooperation factor, as illustrated in Chapter 3. In every simulation,
the pedestrians are initialized with random inner cooperation factors (ICF ∈ [0, 1]) and
random goal points within a defined workspace.

On the other hand, the vehicle is modelled as explained in 2.7.2. The vehicle’s steering
angle is provided by a global A∗ planner, while the linear velocity is controlled using the
previous proactive control method. Fig. 4.5 shows the overall structure of the vehicle’s
proactive navigation system. Required pedestrian information include their positions
and velocities which can be provided by the vehicle’s perception system.

Fig. 4.5.: The Proactive Navigation Policy

4.6.1 A reactive method for comparison purposes

The same previous structure is used to run the simulations with a reactive linear velocity
controller. The reactive control is computed using the same method as the proactive one,
with a modified cost function. This modified cost function includes only a reactive term
based on the safety index:

Jreactive(t) = 1
M

M∑︂
j=1
−α

′
2SIj(t) (4.37)

where α
′
2 ∈ R+, M is the total number of pedestrians detected in the influence zone and

SIj is the same safety index defined in (4.8).
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To compare the two methods, the same simulation is ran twice. With the same initial
positions and goals for both the vehicle and the pedestrians. As well as, the same inner
cooperation factors (ICF s) for the pedestrians. The only difference is the local velocity
controller (proactive or reactive).

4.7 Results Analysis

The resulting trajectories from one example simulation is shown in Fig. 4.6. The
simulation includes a lateral crossing scenario between a vehicle and a flow of N = 66
pedestrians. The maximum velocity allowed in the space is 4m.s−1 for the vehicle
and 3m.s−1 for the pedestrians. The ICF s for the pedestrians are assigned randomly
between [0, 1] to simulate variable pedestrian behaviors. The figure shows the resulting
trajectories in the XY plane with the two control modes: proactive and reactive. In each
mode, four different screenshots of the simulation are shown for a better visualization
of its progress. The time interval present in each screenshot is noted on the right of
the figure. The figure clearly shows that in the proactive mode the vehicle successfully
crosses the pedestrians flow by anticipating their cooperation. While in the reactive
mode, the vehicle stops to ensure the safety margins. Once the vehicle stops, the
pedestrians continue their crossing and the reactive mode will not be able to find a valid
solution. This results in the freezing of the vehicle in the reactive mode until the flow of
pedestrians ends.

4.7.1 The Vehicle’s Travel Time

The travel time of an agent (vehicle or pedestrian) is the time required to travel from the
initial position to the goal destination. To compare the travel time between the proactive
mode and the reactive mode in relative terms, we define two parameters. These two
parameters serve as reference travel times. The first parameter is the reference pedestrian
crossing time (TTpeds): the time required for all the pedestrians in the simulation to
complete their crossing without a vehicle interference. This time is measured by running
a reference simulation which contains the same pedestrian configuration, but without
the vehicle. The second parameter is the vehicle’s reference travel time (TTref ): the time
required for the vehicle to reach its final destination without any pedestrian interference.
In the same manner, this time is measured by running a simulation which does not
contain any pedestrians but has the same vehicle initialization and goal.
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Fig. 4.6.: Pedestrian-vehicle lateral crossing simulation (two modes)

Let TT (s) be the travel time of the vehicle in a simulation s regardless of the navigation
mode. Then, we can define two relative travel times for the vehicle in this simulation:

• The vehicle’s travel time relative to its reference travel time:

TT[veh/ref ](s) = TTref (s)− TT (s)
TTref

× 100% (4.38)
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• The vehicle’s travel time relative to the pedestrians’ reference crossing time:

TT[veh/peds](s) = TTpeds(s)− TT (s)
TTpeds

× 100% (4.39)

Using these two relative terms instead of the original vehicle travel time in seconds
(TT (s)), allows us to compare the performance of the proactive and reactive modes
independently of the pedestrians’ configuration in a set of test simulations.

A total of 200 simulations are run (100 pair) with a random initialization. Each pair
consists of the same simulation with a different navigation mode (reactive / proactive).
The number of pedestrians in each simulation is chosen randomly between 30 − 100
pedestrians. The rest of the initialization parameters are also assigned randomly (initial
positions, initial velocities, goals, ICF s). The two previous relative travel times are
computed for every simulation.

Fig. 4.7.A shows the histogram of the vehicle’s travel time relative to its reference travel
time, where the two modes are shown in different colors. TT[veh/ref ] takes negative
values in both modes. Which shows that even the proactive mode slows down the vehicle
or even immobilise it sometimes to cross the pedestrian flow. However, this delay is
much smaller in the proactive case. The proactive mode yields a navigation 10− 50%
slower than the reference crossing. While the reactive mode can results in very high
delays (can be over 250% slower).

Fig. 4.7.: Histogram of the vehicle’s relative travel time. A: TT[veh/ref ], B: TT[veh/peds]

The histogram of the vehicle’s travel time relative to the pedestrians reference crossing
time is shown in Fig. 4.7.B TT[veh/peds] takes positive values for the proactive mode
and negative values for the reactive mode. This means that the proactive mode finds a
solution while the pedestrians are still crossing. Therefore reaching the goal destination
before all the pedestrians have crossed. While in the reactive mode the vehicle is frozen
for some time due to the detection of nearby pedestrians. The important point to notice
here is the range of values existent in the histogram of TT[veh/peds]. In the reactive
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mode, the histogram is extended over a very small range (all values are around −20%).
This shows that there is a high correlation between the pedestrian crossing time and
the vehicle’s travel time in the reactive mode. On the other hand, TT[veh/peds] in the
proactive mode takes a large range of values ([15%, 60%]). This shows that the proactive
mode does not depend on the crossing time of the pedestrian flow. It also shows that the
travel time gain in the proactive mode differs depending on the particular interaction
situation. Because the proactive action is only taken when the safety of the pedestrians
is ensured. In other words, in the proactive mode a solution is always found regardless
of the crossing time of the pedestrian flow. However, a large gain in the travel time
cannot always be ensured. A more detailed analysis of our simulation results show that
the gain in the travel time is larger with larger crowds of pedestrians.

4.7.2 Pedestrians’ safety test

To evaluate the navigation method from a safety perspective, a global performance index
(PI) is defined in a simulation of period T with N pedestrians as:

PI = min
j∈[1,...,N ]

min
t∈[0,T ]

SIj(t) (4.40)

where SIj(t) is the safety index defined in (4.8) for a pedestrian j at time t.

In other words, the performance of the vehicle is judged by the minimum safety margin
it has with a pedestrian over the simulation time (i.e. worst case margin).

Fig. 4.8 shows the histogram of the performance index. PI is evaluated over the same
previous 100 simulations with the proactive mode. The histogram shows that most
PI values are in [0, 1]. This means that in the proactive mode the vehicle enters the
cooperation zone of at least one pedestrian at a certain time. However, the histogram
does not contain any negative values. This mean that the proactive mode maintained the
imposed safety margins and the vehicle did not enter the security zone of any pedestrian.
Therefore, the navigation was successful in terms of safety.

However, the current safety measure uses only the position of the pedestrian with the
assumption of equal safety margins around the pedestrian. This is a strict measure in
comparison with real behaviours of pedestrians. A safety measure that considers the
velocity of the pedestrian along with a different security zone (ellipses instead of a circle
for example [RSL15]) is required for a more realistic estimation.
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Fig. 4.8.: The histogram of the global security index PI

4.7.3 Results with more/less cooperative crowds

In the proactive mode, the linear velocity is optimized to increase the cooperativeness
of the pedestrians in the scene. Therefore, the nature of the crowd should effect the
performance of the proactive navigation.

To investigate the effect of the cooperativeness of the crowd, the internal cooperation
factor (ICF ) parameter is manipulated. By initializing the pedestrians’ ICF s values in
[0.5, 1], a more cooperative crowd is simulated. Whereas, a less cooperative crowd is
simulated by initializing it in [0, 0.5]. In the previous test, the ICF s for the pedestrians
are chosen randomly in [0, 1] to simulate a normal mixed crowd.

200 more simulations are ran in the proactive mode of pedestrians-vehicle lateral crossing
scenario. Combined with the previous tests, this results in a total of 300 proactive mode
simulations: 100 with a normal mixed crowd, 100 with a cooperative crowd and 100
with an uncooperative crowd.

The vehicle’s travel time relative to its reference travel time TT[veh/ref ] is computed
for every simulation. Fig. 4.9 shows the normal distribution fit to the histogram of
TT[veh/ref ] for each type of the simulated crowd. The figure shows that the proactive
mode does depend on the cooperativeness of the simulated crowd. A better performance
is obtained with more cooperative crowds. Whereas, longer time delays can occur with
highly uncooperative crowds.

4.8 Conclusion

This chapter addressed the aspect of longitudinal velocity control or the trajectory follow-
ing within the framework of the proactive navigation. The work explored the possibility
of a proactive behavior without modifying the pre-planned path and by using only the
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Fig. 4.9.: Normal distribution of the vehicle’s relative travel time TT[veh/ref ] in a number of
simulations with different crowd cooperativeness

longitudinal control. The proposed method derives a longitudinal velocity control capa-
ble of navigating dense pedestrian crowds. The method exploits the cooperative social
behavior of pedestrians while ensuring the necessary safety margins. The controller was
tuned and tested in lateral crossing simulations and the method was compared with the
performance of a reactive controller. The development of the method presented in this
chapter and the corresponding conclusions resulted in the following publication:

"M. Kabtoul, P. Martinet and A. Spalanzani. Proactive Longitudinal Velocity Control
In Pedestrians-Vehicle Interaction Scenarios. 23rd IEEE International Conference on
Intelligent Transportation Systems (ITSC, Sep 2020, Rhodes, Greece. pp.1-6. hal-
02944369"

The results showed that even this one-degree of proactive control improves the navigation
performance significantly. The main advantages of the method include: avoiding the
freezing robot problem in dense scenarios, major efficiency gains in terms of the travel
time, navigating socially by incorporating the pedestrian cooperation behavioral model
and maintaining pedestrian safety. This result provides us with a new perspective on
solving the FRP around pedestrians. The capability of using a longitudinal control
to avoid the freezing around dynamic obstacles opens the door to new works and
implementations which do not only focus on solving FRP using path planning and
steering. However, a system which does not modify its local steering to cope with the
dynamic environment would remain highly limited. Although the proactive longitudinal
control on its own is highly beneficial, it is necessary to integrate it with a lateral
control. This would allow to modify the pre-planned global path to drive the system in
appropriate directions based on the dynamic evolution of the space. This lateral control
part of the proactive navigation system is explored in the following chapter.
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Proactive manoeuvring Control 5
Pedestrian-friendly manoeuvring requires an understanding of both pedestrian reac-
tion and intention. Merely safety based reactive manoeuvring can lead to sub-optimal
navigation solutions resulting in the freezing of the vehicle in dense scenarios. More-
over, a strictly reactive method results in an unnatural driving behavior which cannot
guarantee the legibility or social acceptance of the automated vehicle. This chapter is
focused on the lateral control system of the proactive navigation framework. The lateral
control sub-system uses the longitudinal control developed in the previous chapter
(Ch. 4) as a system input in the cascading longitudinal-lateral control architecture.
The work presents a human-inspired manoeuvring method adapted to navigation in
close interaction with pedestrians using a dynamic channel approach. The method
allows to proactively explore the navigation options based on anticipating pedestrians
reactions and cooperation. The navigation is tested in pedestrian-vehicle interactions in
both frontal and lateral scenarios with variable space density and sparsity. The chapter
further entails the evaluation of the simulation results based on the safety and comfort
of the pedestrians, the quality of the vehicle’s trajectory and the time to reach its goal
destination.

5.1 Related Work

Adapting the lateral control to navigate among dynamic and static obstacles is a topic
widely addressed in the literature. Different approaches are used for manoeuvring con-
trol depending on the targeted application from path planning, to local path modification
or sensor based lateral control. When navigating pedestrian populated environments or
dynamic environments, the navigation task is addressed either by adapting a collision
avoidance strategy or a behavior imitation strategy. In collision avoidance solutions, the
aim is to find an obstacle-free path considering both the static obstacle and the dynamic
evolution of the space. Whereas in imitation strategies, the problem of planning or
re-planning is eliminated by imitating the behavior of an agent capable of navigating
the environment.

A great deal of research targeted the lateral control to solve the collision avoidance
problem. As this is considered a main requirement to operate around pedestrians and
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maintain their safety. One Type of the methods developed for pedestrian collision avoid-
ance manoeuvring control is potential fields based algorithms where the steering control
results from a set of artificial potential attractive/repulsive forces. Such techniques
can be found in [FFB19; ZMK21; Sch18], to cite a few. However, the problem of local
minima remains a main concern when using such methods.
Another type of manoeuvring strategies are grid-based algorithms. These methods aim
to finding and following the shortest and safest path between the start and goal points.
Recent works developed these algorithms to be more suitable for dynamic environments,
such as [Fra+20; Aje+20; Bai+21]. These techniques may perform well on roads and
structured environments. However, they remain limited in dynamic and unstructured
environments. As the open nature of such spaces and the huge range of navigation
options risk generating unnatural and illegible vehicle trajectories.
Discrete optimization methods are also applied for collision avoidance manoeuvring
control, such as the methods proposed in [Gra+19; Oli+20; RKS18]. Learning tech-
niques has also shown some potential in the field of autonomous navigation for collision
avoidance as in [Li+20a] or in [BK21]. However, all the previously mentioned collision
avoidance based methods are not suitable to highly dynamic environments. More-
over, these techniques are over-reactive and would fail in more dense spaces where an
obstacle-free path simply does not exist.

A different approach to solving the manoeuvring problem is to adapt an imitation
strategy. Such methods address the planning problem in a highly complex environment
by a leader-follower solution. In such cases the autonomous system does not perform
a search for the optimal path but rather a search for an optimal leader. Then, the
system navigates the space by following this optimal leader through the environment.
Such methods are found in [Mül+08; Ste+16b], for example. Although such have the
problem of the existence and search for the optimal leader, they are still beneficial for
human-sized robot navigation in complex environments. They are highly limited for
autonomous vehicles navigation in shared spaces. This is due to the size difference
between a vehicle and a human, which makes it mostly impossible to follow the same
path as a pedestrian in a dense space. Additionally, a path that is natural and socially
acceptable for a pedestrian, will mostly be not the same for a vehicle.

The manoeuvring problem around humans has also been addressed as a cooperative
problem between the human and the robot. For example, [SFA21] proposed a Human-
Aware Timed Elastic Bands (HATEB) planner which anticipates the cooperative behavior
of humans in navigation tasks. Another method in [Bri+21] also considers the coopera-
tion of a pedestrian in developing a MPC planner based on a recommended sub-goal and
using deep Reinforcement Learning (RL). A different implementation of the cooperation
concept is shown in [Ran+19] where the dominance of e pedestrian in an interaction
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scenario is measured and the navigation policy is adapted to deploy a complementary
dominant behavior. The works on cooperative navigation takes the social aspects of
human motion into account and reduces the over-reactive behavior of the collision
avoidance systems. However, these systems still lack the proactive property of a natural
navigation strategy. Moreover, all the previous works are shown effective in interactions
with few pedestrians and are not suitable to more dense and dynamic spaces.

5.2 Problem Formulation

The problem of the proactive manoeuvring control is translated to finding the steering
commands of the vehicle which guarantee a safe, efficient and natural driving. The
efficiency of the steering comes from exploiting the pedestrian cooperative behavior to
explore non pedestrian-free navigation options and avoid the freezing of the system
in dense scenarios. Moreover, the resulting vehicle path should resemble the driving
patterns performed by experienced drivers to ensure the legibility and social compliance
of the vehicle, or what is referred to as natural driving.

In an interaction scenario between a vehicle and N pedestrians, the problem is formu-
lated as a proactive local path modification as follows:

System Inputs:

• XP (t) = [X1(t), ..., XN (t)] and VP (t) = [V1(t), ..., VN (t)]: the perceived positions
and velocities of the N pedestrians at time t respectively

• v(t): a linear velocity control from the external proactive longitudinal controller

• The global path for the vehicle, provided by a global path planner

Problem: Find the steering control δ(t) of the vehicle, such that:

• δ(t) ∈ [δmin, δmax]

• The resulting path is smooth, natural and legible.

• The resulting path minimizes the deviation from the global path, while maintaining
pedestrian comfort.
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5.3 Background and Global Overview

The previous requirements are met by using a proactive dynamic channel method.
The method is based on exploring the look-ahead navigation space of the vehicle and
partitioning it to a set of possible navigation options (channels). Then a navigation cost
is computed for each option (channel). This cost is based on the travel distance cost to
satisfy the previous efficiency and minimum global path deviation requirements. The
navigation cost is also dependent on the space occupancy and the pedestrian cooperative
behavior, this ensures the previous pedestrian safety/comfort requirement. Then, a
transition path is constructed to drive the vehicle along the selected navigation channel.
This transition path is built to resemble the smooth lane change paths conducted by
experienced drivers. The latter step is to establish a smooth, natural and legible path.
Finally, the steering command is derived to track the previous transition path.

In this section, we provide a background on the different previous techniques and
concepts used to build the suggested manoeuvring framework. This includes autonomous
lane changing and path tracking methods. As well as, a background on fuzzy logic
systems which will be used later to construct the channel cost model.

5.3.1 Fuzzy Logic Systems

Fuzzy logic is a computational method that can be used for decision making, modeling or
control to offer flexibility under uncertainty. The first paper on fuzzy sets was published
by Lotfi A. Zadeh in 1965 [Zad65]. Fuzzy logic can be seen as an extension of the
binary logic, or in Bart Kosko’s words "The binary logic of modern computers often
falls short when describing the vagueness of the real world. Fuzzy logic offers more
graceful alternatives". The difference is that fuzzy logic is based on the "degree of truth"
of linguistic variables, rather than the binary true/false. [KI93]

A fuzzy system has the structure shown in Fig. 5.1. The Rule Base is a set of "If-
Then" rules built based on experience and personal knowledge of the system under
study. To process a numerical (crisp) input to the system: firstly, the input is processed
by a Fuzzifier to be transformed into fuzzy sets, where each set is represented by a
membership function. Then the Inference Engine establishes the best-fit rule from the
Rule Base and generates a fuzzy output. This is in terms treated by the Defuzzifier to
generate an explicit numerical output. [Men95]

Fuzzy logic has many automotive applications as it enables the inclusion of human
assessments in computing problems. Fuzzy logic is used in this work to build a model
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Fig. 5.1.: Fuzzy Logic system overview

capable of estimating the navigation cost in a sub-space based on the state of that
space.

5.3.2 Autonomous Lane Change

Autonomous Lane change is a problem widely studied in the literature since the early 90s
[CT94; HRO97]. Lane change is a manoeuvre which aims to move the non-holonomic
vehicle system between two parallel paths. This can be summarized as follows: generate
the appropriate steering angle so that the vehicle travels the distance between two
lanes along its local lateral axis and aligns itself with the adjacent lane at the end of
the manoeuvre such that a lane keeping task can be resumed safely and smoothly. The
previous lane change problem can be formulated in a temporal frame (Fig. 5.2a) by
defining a finite time period to perform the desired lateral displacement between the
two lanes. The problem can also be formulated in a spacial frame (Fig. 5.2b) by defining
a look-ahead travel distance to perform the desired lateral displacement regardless of
the required time. The latter definition is more appropriate to dynamic spaces as in such
scenarios the displacement time depends on the evolution of the dynamic environment
and cannot be guaranteed.

Many techniques have been developed over the years for the purpose of autonomous lane
change on highways and roads. We explore these techniques to deploy a lane-change-
like manoeuvre between the imaginary channels in the open unconstrained shared
space. The first category of techniques developed for the purpose of lane changing are
optimization methods. These methods depend on a designed cost-function with a set of
constraints, such as the vehicle kinematics and road dimensions [Zho+19]. However, the
optimization problem in this case is multi-objective, non-convex with multiple nonlinear
constraints. Therefore, a global optimal solution cannot always be found in real-time
[Li+20b].
The second category are sampling-based methods [Zen+19]. In such methods, a number
of candidate lane changing paths are sampled and an optimal candidate is selected.
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(a) Temporal Frame

(b) Spacial Frame

Fig. 5.2.: Lane change maneuver

However, these techniques can generate many additional candidate paths that are not
feasible or do not fulfill the safety constraints when navigating in close interaction with
pedestrians. Several other works suggests constructing a lane-change candidate path
analytically [Din+21]. Then using a path following steering controller to generate the
desired vehicle steering commands. This method allows to join the goal lane (or channel
in our case), while guaranteeing the exact transition behavior at all times. One of the
most famously used path candidates for lane changing is the Quintic spline for the lateral
movement with respect to a local Frenet Frame [Li+20c]. A Quintic spline candidate
can guarantee a C2-continuous path and it has the form:

eq(x) = a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0 : {ai}0≤i≤5 ∈ R∗ (5.1)

5.3.3 Path Following

Path following control is generating the lower-level steering control of the vehicle to
follow a pre-defined path. This path can either be a path generated offline a priori, or
online by the local planner. The main performance aspects of a path following system are
the accuracy and the smoothness. The accuracy means maintaining a low displacement
(lateral + heading) from the reference path. Whereas, the smoothness is maintaining
this accuracy without any aggressive steering commands [Pad+16].
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Several techniques are present in the literature for the purpose of path following
[Dom+16]. The survey in [XP20] divides path followers into three main categories. The
first category is Geometric concept based control, where the kinematics of the system is
used to compute the control such as the pure pursuit controller developed in the DARPA
challenge. The main advantage of this category is the simplicity and efficiency at low
velocities. However, such technique does not perform well with high curvature paths.
At higher velocities, the dynamics of the system should also be considered. This leads
us to the second category which uses Feedback control and can be implemented with a
more accurate system model. Such methods include H∞ [Mit+20], adaptive control
[Pou+17] or sliding mode control. The third category of path followers are model
predictive control (MPC) path followers, which add to the previous category a forward
prediction of the system state [Ye+19]. However, MPC path follower are challenging to
implement in real-time, as the optimization may fail and the computation time at each
iteration cannot be guaranteed [May14]. Learning-based approaches has also made
an advancement in path following controllers, such methods can be seen in [Sha+20;
Liu+20].

For the case of path following in a shared space, the imposed low speed limits justifies
using a kinematic based controller. The method selected for the path following in
this work uses a feedback-based sliding mode controller (SMC) [HYH18]. SMC is
selected to follow the Quintic spline during a channel transition as it is robust and
easily implemented in real-time. Furthermore, the closed-loop performance becomes
insensitive to system uncertainties [Bar+18]. SMC is a nonlinear control technique that
drives the target system to a designed surface in the state space, then keeps the system
in a close neighborhood of this surface in a sliding (switching) manner (Fig. 5.3).

Fig. 5.3.: The sliding surface and the two control modes in SMC
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5.4 The Proactive Dynamic Channel (PDC)

Let DP ∈ R+ be the perception range of the vehicle, then space perceived in the direction
of the vehicle or the forward perception space (Fig. 5.4) S is:

S = {||Xv||2 ≤ DP ; Xv ∈ (R+ × R)} (5.2)

and let PG be the global vehicle’s path provided by a higher level path planner:

PG = {(xi, yi) ∈ R2 : i ∈ N+} (5.3)

Fig. 5.4.: The sub-space perceived in the vehicle movement direction

We call a channel every sub-space of S defined by a center point, width, length and
orientation:

CHg
i = {(xi, yi), θi, (Wi, Li)} ∈ {R2, [0, 2π],R2

+} (5.4)

Assuming we wish to partition the space S into a set of channels with a constant channel
width WC , then it can be divided into a set of K channels using the global path PG,
where:

K = 2DP

Wi
(5.5)

The partitioning of the space into a set of K channels is done based on the global path of
the vehicle PG. If pj is the next waypoint on the global path, and (pj , t, n) is the Frenet
frame at this point (FP), then the channels can be written in this Frame as:

CHFP
i = {(±iWC , 0), 0, WC , LC}; i ∈ [0, nint(K

2 )] (5.6)

where nint(.) is the nearest integer function, and with a constant width and length for
all the channels: (WC , LC) ∈ R2

+.

Fig. 5.5a shows the resulting channels with width WC and length LC for a point pj on the
global path. This process in repeated at consecutive time moments when a new channel
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is reached or over fixed time steps. If this process is repeated over the consecutive
waypoints on the global path, we end up with the sequence of channels enveloping the
global path and parallel to it. Fig. 5.5ba and Fig. 5.5bb show an example of the resulting
channels in the space at two different instants of the navigation. Whereas, Fig. 5.5bc
shows the overall channels sequence resulting after a number of iterations.

(a) The resulting channels within the forward perception range for a path
waypoint pj

(b) The resulting channels at different time instances

Fig. 5.5.: The proactive dynamic channel: space partitioning

By computing the set of channels present in the navigation space, the task of finding a
valid path is reduced to selecting the optimal navigation channel. This decision making
step is essential in the proactive navigation framework, as it defines the general direction
of the vehicle in the space.
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The navigation cost of each channel is evaluated by assigning a weight to each channel
wC . The higher the weight wC the more costly is to navigate in this channel in terms of
pedestrian discomfort and travel/time cost.

5.4.1 The navigation cost of a dynamic channel

The first navigation cost weight wfuzzy is based on the state of the channel itself to mini-
mize the discomfort caused to pedestrians navigation in the channel under evaluation.
This criteria is necessary but not sufficient, as the navigation cost to a channel depends
on the pose of the vehicle, it’s goal or global path as well. To account for this cost, two
additional channel cost weights are defined: the travel cost from the vehicle’s current
pose to the channel (wlocal), and the travel cost from the channel back to the global path
(wglobal). This allows penalizing travelling far distances from the current position of the
vehicle or from its reference global path, over minor advantages in terms of pedestrian
discomfort.

Let XCH(t) be the center point of the channel, DP the perception range, and pj(t) the
next waypoint on the global path at time t, then:

wlocal(t) = 1
DP
||Xv

CH(t)||2 ∈ [0, 1] (5.7)

wglobal(t) = 1
DP
||Xv

CH(t)− pv
j (t)||2 ∈ [0, 1] (5.8)

Thus, the final navigation cost to a channel C can be written as:

wC(t) = β0 [wfuzzy(t) + β1wlocal(t) + β2wglobal(t)] (5.9)

where: βk ∈ [0, 1] : k ∈ {0, 1, 2}.

This formulation allows to select the channel with the optimal state while adding a
penalty on travelling to further away channels. Therefore, distant channels are only
selected if this selection results in a significant advantage in terms of the navigation
cost.

The only cost left to compute is wfuzzy. This weight aims to measuring the cost based on
the channel state itself. Therefore, it is based on the state of the pedestrians within the
channel under evaluation. A fuzzy logic model based on the pedestrian state is proposed
in the following to compute the channel state cost wfuzzy.
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5.4.2 The channel state cost - fuzzy model

To comply with the principals of pedestrian safety and human aware navigation, channels
with less pedestrians and more cooperative pedestrians should be preferred. Therefore,
the first measure used to estimate the channel state cost weight is the pedestrian density
in a channel. The second measure is the expected density change in the channel over a
future navigation horizon TH . This allows to prioritize channels with a predicted reduce
in density over TH . The third measure is based on the cooperation of the pedestrians in
the channel. Proactive navigation is a common task that requires cooperation between
the pedestrians and the vehicle. This means that the navigation system should manoeuvre
in directions containing more cooperative pedestrians who are willing to compromise
their paths and facilitate the vehicle’s navigation. However, there is no straightforward
way to construct a weight function using the previous three measures. But it is possible
to construct a set of navigation rules based on experience. Therefore, Fuzzy logic is used
to compute the navigation cost of a channel.

The fuzzy model Inputs/Output

The three inputs of the fuzzy cost model are: Pedestrian density in the channel (D),
the expected change in the channel’s density over Th (∆D) and the percentage of
uncooperative agents in the channel (NUC%) These three inputs are computed as
follows:

D(t) =
πR2

pedM(t)
LCWC

× 100% ∈ [0, 100]% (5.10)

∆D(t) = D(t + TH)−D(t) % ∈ [−100, 100]% (5.11)

NUC%(t) = MUC(t)
M(t) × 100% ∈ [0, 100]% (5.12)

where M is the total number of pedestrians in the channel, Rped is the radius of the
pedestrian’s footprint, and MUC is the number of agents with a low cooperation factor
(CF ≤ 0.5).

The output of the fuzzy model is a channel weight wfuzzy ∈ [0, 1].

Triangular functions are used as membership functions for both the inputs and the
output. The fuzzy values of the inputs and the corresponding membership functions are
shown in Fig. 5.6.
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Fig. 5.6.: The membership functions of the navigation cost fuzzy model inputs

Fuzzy model description

The model rules are constructed to prioritize channels with smaller weights. Therefore,
lower weights are assigned to channels with lower densities, with a decrease in their
densities over the navigation horizon and/or with a lower percentage of uncooperative
pedestrians in the channel. The list of adapted navigation cost rules is shown in detail in
Appendix G.
The fuzzification of the values is done using the g-Fuzzification method, while the
defuzzification is done using the center of gravity method [Ros00].
Fig. 5.7a shows a visualization of the channel weight membership function and a
defuzzification output example when: D = 40%, ∆D = 30%, NUC% = 30%. The output
of the fuzzy model output is plotted in Fig. 5.7b with two different channel density
levels.

Fig. 5.7.: a: The membership functions of the channel fuzzy weight (wfuzzy). b: The fuzzy
model output with two different density levels

Finally, after calculating the navigation cost for each channel, the channel with the
least cost is selected as the goal navigation channel. The task of the navigation turns
into transitioning to the selected channel and navigating within it, until a new channel
is selected. In the following, we explore how the global path is modified locally to
transition between and navigate within the selected channels.
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5.5 Proactive Channel-Based Local Path Modification

Selecting a navigation channel results in a goal navigation sub-space. The task of
constructing an exact path to move between the selected channels is considered a local
modification of the global path. This is because the proactive channels themselves are
built based on the global path. To maintain a vehicle behavior similar to the driving
patterns of experienced drivers, a lane change like steering is adapted to perform the
channel transition. Lane change manoeuvring generates natural and legible vehicle
trajectories.

Constructing a lane-change candidate path analytically allows to join the goal channel,
while guaranteeing the exact transition behavior at all times [Din+21]. Quintic Splines
are often selected for such maneuvers, as they can guarantee a C2-continuous path is
used as a transition candidate.

Fig. 5.8.: Constructing a Quintic path between two channels

Lets assume we want to construct a Quintic transition path from a current channel
CH0 and a goal channel CH, as shown in Fig. 5.8. Let XCH(t) be the center of the
goal channel, and let FXCH be the Frenet frame with respect to the channel center line.
Supposing the vehicle state in this frame is (el, s, θ̃), then the transition Quintic path can
be written as:

eq(s) = a5s5 + a4s4 + a3s3 + a2s2 + a1s + a0 (5.13)

The parameters of this function (ai ∈ R : i ∈ {0, . . . , 5}) can be easily derived by
applying the motion constraints in (5.14), the only variable that needs to be chosen is
the look-ahead navigation horizon LH .

eq(L0) = e0 eq̇(L0) = 0 eq̈(L0) = 0
eq(LH) = 0 ėq(LH) = 0 ëq(LH) = 0

(5.14)
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where L0 = L, e0 are the length of the vehicle and the initial lateral displacement of the
vehicle respectively. The conditions in (5.14) yields:

⎛⎜⎜⎝
a5
...

a0

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e0

0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L5
0 L4

0 L3
0 L2

0 L0 1
5L4

0 4L3
0 3L2

0 2L1
0 1 0

20L3
0 12L2

0 6L0 2 0 0
L5

H L4
H L3

H L2
H LH 1

5L4
H 4L3

H 3L2
H 2L1

H 1 0
20L3

H 12L2
H 6LH 2 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

(5.15)

Finally, the overall path that the vehicle would follow is the integration of the center lines
of the selected channels, along with the transition candidates between these channels.

5.5.1 Local steering control for path following

The goal from the controller is to transition to the goal channel using the constructed
Qunitic path, then follow the center of the goal channel. Since the goal of the controller
is to drive the system to the goal channel, the control is derived by expressing the system
in the Frenet Frame of the goal channel center FXCH . This selecting greatly simplifies
the design, since the channel center always has a zero curvature.

This is done by finding the closest point between the vehicle’s rear axis center OR and
the channel CH. As shown in Fig. 5.9, at a certain arc length s1, we call this point
M(s1). The goal channel is simply shifted to the projection of this point on the Qunitic
path, which yields a new channel at the arc length s which is CH(s1) = CH

′
. Then, as

shown in Fig. 5.10, the system is controlled based on the error between the vehicle’s
current location and the new shifted channel CH

′
.

Fig. 5.9.: Goal channel center shifting using the Quintic transition path
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Fig. 5.10.: Lateral control diagram using the shifted channel

The previous lateral sliding mode steering controller is constructed using two tracking
errors: the lateral displacement error (Elat) and the heading error (Eθ), shown in Fig.
5.11. This ensures the tracking of the path and the natural manoeuvre while satisfying
the smoothness in the vehicle heading as well. This can also contribute to the comfort
of the vehicle’s passengers. These two heading errors, as well as, the global tracking
error (E) can be written with respect to the vehicle model in the Frenet frame of the
goal channel FC as follows (Fig. 5.12):

Elat(s) = eq(s)− el(s) (5.16)

Eθ(s) = θ(s) (5.17)

E(s) = ELat(s) + dsEθ(s) : ds ∈ R∗
+ (5.18)

Fig. 5.11.: The vehicle tracking errors

Since the relative input-output degree of our system is two, a first degree sliding surface
σ is selected:

σ =
(︃

d

dt
+ λ

)︃
E(s) (5.19)
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Fig. 5.12.: Lateral error computation using the Quintic path

where λ ∈ R∗
+ defines the unique pole of the reduced dynamics system resulting in the

closed loop.

The control required to reach the goal state (E(s) = 0, Ė(s) = 0) is composed of two
parts. These two modes are an equilibrium control which drives the system to the sliding
surface (δeq), and a sliding control δs. The sliding control part keeps the system close to
the sliding surface until the goal state is reached.

The previous equilibrium control is achieved when σ is constant:

δeq = δ|σ̇=0 (5.20)

This is solved by substituting the error derivatives in (5.18) and by using the vehicle’s
state space model

(︂
ṡ, ėl, θ̇̃

)︂
. With a zero-curvature assumption for the center channel

path and by assuming small steering variations δ̇ ≪ 1, the equilibrium control is derived
as a function of the state variables, and the control parameters:

δeq = Fδ(θ̃, s, v, a, λ, ds)
F : [0, 2π]× R∗5 → [−δmax, δmax]

(5.21)

with δmax = π/6. The exact form and derivation of the previous function for the
equilibrium control is shown in Appendix F.

The second part of the control is the sliding mode steering δs, which insures keeping
the system on the sliding surface until reaching the optimal state. Several methods are
used in the literature to derive the sliding mode control part. To avoid the chattering
phenomena which occurs in simpler first order SMC, we use the “Super Twisting” second
order algorithm [SU16]. The “Super Twisting” can be seen as a nonlinear version of the
classic PI controller, where the sliding control is chosen as:

δs = −γ1

√︂
|σ|sign(σ) + c (5.22)

with: ċ = −γ0sign(σ) (5.23)
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with the constants: γ1 = U, γ0 = 1.1U , where U ∈ R+ is a constant to be tuned.

Finally, given an initial state of the vehicle (s, el, θ, v, a) and a goal channel C, the
steering control is computed as:

δ = δeq + δs (5.24)

The flowchart for our navigation scheme is shown in Fig. 5.13. As shown in the figure,
a new exploration of the space is performed in two cases. Either a new channel have
been reached, or a time period of TH have passed without successfully reaching the
goal channel. Reaching a channel is when the displacement error E from the goal
channel and its variation are smaller than the limit displacement error ϵ1 and the limit
displacement variation error ϵ2. The values of ϵ1 and ϵ2 are tuned experimentally to the
values shown in Appendix G.

Fig. 5.13.: The proactive and smooth manoeuvring algorithm
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5.6 Parameters Calibration

5.6.1 Calibrating the SMC parameters

To use the steering controller defined earlier, several parameters need to be tuned. The
first is the lookahead distance used to define the transition Quintic spline in (5.14). The
lookahead distance is computed depending on the speed of the vehicle: LH = vKF

where KF = 10. Fig. 5.14b shows the closed-loop system (trajectory and steering)
response with different values of KF , which is selected to achieve a fast closed-loop
response with minimal overshooting (< 5%). The rest of the steering control parame-
ters are tuned in a similar manner to achieve a smooth steering and avoid trajectory
overshooting. The weight between the lateral and heading tracking errors in (5.18) is
selected as ds = 2. While, the sliding surface constant in (5.19) is set to λ = 10. Finally,
the "Super-twisting" parameter in (5.23) is tuned to U = 10.

Fig. 5.14.: Tuning the lookahead distance factor

5.6.2 Calibrating the channel dimensions

Calibration Criteria

To calibrate the channel dimensions, three average performance measures are used: the
average travel time of the vehicle to reach its goal, it’s average path energy, and the
average uncomfortableness index of the pedestrians. The vehicle time to reach goal is
the time measured in seconds between the start of the simulation and the moment of
reaching the goal destination.

Secondly, the path energy [BN90] is a qualitative measure used to evaluate the quality
of the vehicle’s trajectory or its smoothness. Let Xj = (xj , yj) j ∈ [0, .., M ] be the overall
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path of the vehicle during the simulation, then the equivalent path energy is evaluated
as:

ET =
M∑︂

j=1

(︄
yj − yj−1
xj − xj−1

)︄2

(5.25)

where ET ∈ R+ increases when a path contains more frequent and sharp maneuvers
(ET = 0 for a straight path).

Finally, the uncomfortableness index is used to evaluate the pedestrian comfort during
the interaction with the vehicle [Hel+01]. This index reflects the degree and frequency
of the velocity change a pedestrian can experience during the interaction. In each
simulation, the uncomfortableness index is evaluated as:

Īucf = 1
N

N∑︂
i=1

ȳi

h̄i

(5.26)

h̄i = 1
TF

∑︁t0+TF
t=t0 v2

i (t) ȳi = 1
TF

∑︁t0+TF
t=t0 (vi(t)− ḡi)

2

ḡi = 1
TF

∑︁t0+TH
t=t0 vi(t)

(5.27)

where: N is the total number of pedestrians in the simulation, h̄i, ȳi are the mean square
velocity and the deviation of the average velocity of agent i respectively, and ḡi the
average velocity of agent i over the simulation period [t0, t0 + TF ].

More details on these metrics are shown in Chapter 6.

Calibration

Firstly, a group of 540 simulations are ran to study the effect of the channel length
on the performance. The simulations contained three levels of pedestrian density
(D ∈ 30, 50, 70%), with a sparsity range of GI ∈ [55, 75]%. Additionally, the maximum
velocity of the vehicle, the simulation duration and the channel width are constant
across all simulations (vmax = 4m/s, TF = 60s, W = 3m respectively). The simulations
are grouped based on the density level and the channel length, each group containing
30 simulations where six different channel lengths in [5, 120]m are tested.

Secondly, different width values of the dynamic channels are tested in a similar manner
to the previous test. Another group of 540 simulations are ran using the same previous
configuration with a fixed channel length of 40m and four different width value in
[1, 10]m.
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Fig. 5.15 shows the results of the three average performance measures with the different
channel lengths, widths and the three levels of density. Each point on the graph
represents the average value for one group of simulations. The results show that larger
channel lengths reduce the vehicle travel time and increase the comfort of pedestrians.
Moreover, larger channel lengths significantly reduce the vehicle’s path energy resulting
in smoother trajectories with less channel change along the simulation. This is a result
of anticipating a larger space horizon to plan and select the best manoeuvring option.
However, the relationship between the channel length and it’s effect on the navigation
is not linear. The results show that a minimum channel length is required to obtain
a high performance gain. This minimum length is equal to around 20m in our case.
Whereas, increasing the length beyond that limit results in smaller performance gains.
Moreover, large loss in efficiency in terms of the travel time and pedestrian comfort
occurs when using a large channel width. On the other hand, a large channel width
results in a more smooth path as less partitions of the space are explored thus resulting
in less steering options. Finally, a channel length of 40m and a small channel width
equal to approximately half the vehicle width (1m) are selected to maintain a smooth
path while maximizing pedestrian comfort and minimizing the vehicle travel time.

Fig. 5.15.: Effect of channel dimensions on the steering performance
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5.7 Results Analysis

The navigation is tested using the PedSim simulator presented in [Pré21] under ROS
(Fig. 5.16a). The tests included frontal and lateral crossing interaction scenarios with a
group of pedestrians. The method is tested with a range of different average pedestrian
density and sparsity in the space. To measure sparsity in a particular interaction, we use
a Gini Index measure which represents how equitably a resource is distributed among
entities in a group [GMD16]. In our case, the Gini index measures the distribution of
pedestrians among the interaction space partitions. Let TF be the simulation duration,
Nmax the maximum number of pedestrians in the space, and N(t) be the total number
of pedestrians in the space at time t. Then, the average pedestrian density and sparsity
are measured as follows:

D = 1
TF

t0+TF∑︂
t=t0

N(t)
Nmax

× 100% (5.28)

GI = 1
TF

t0+TF∑︂
t=t0

N(t)∑︂
j=1

|1−Nj(t)|
N(t) + 1 × 100% (5.29)

where the interaction space is first divided into a grid of N(t) equal cells. Then, Nj is
the number of pedestrians in a cell j of the grid (Fig. 5.16b). If the distribution of the
pedestrians in the space is homogeneous, then there is one pedestrian in each of the
equal grid cells, yielding GI = 0%. On the other hand, if the distribution has a maximum
sparsity, then all the pedestrians are in one cell k resulting in Nk = N(t), Nj ̸=k = 0 =>

GI = 100%. Note that these extreme cases are not feasible in most scenarios.

5.7.1 The proactive channel weight model

To investigate how the channel selection and weight assigning is working, let’s observe
the model output for some test cases. In the following tests, the case of three possible
channel options is presented. The width of each channel equals the width of the vehicle
WC = 2m, whereas the length of the channel is LC = 40m. Having the width of the
channel equal to the width of the vehicle means that the existence of only one pedestrian
in a channel yields it a non obstacle-free choice. Each test case is a snapshot of a moment
in the navigation at time tk. The snapshot shows the positions and velocities of both
the pedestrians and the vehicle, as well as, the pedestrian’s cooperation factors. For
each case we show the fuzzy weight model inputs at tk: Density D, Predicted change
of density over Th = 5s (∆D) and the percentage of uncooperative pedestrians NUC%.
The resulting channel weights are calculated: fuzzy weight wfuzzy, local weight wlocal,
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(a) The testing framework under ROS

(b) Two exmamples of the GI
sparsity measure

Fig. 5.16.: The testing framework and the GI measure

global weight wglobal, along with the total channel weight wC . The global path of the
vehicle is shown as a dashed green line in each case.

Example Cases 1-3: The first three example cases are shown in Tab. 5.1. In all three
cases the pedestrians maintain the same density distribution along the three channels.
A pedestrian free path does exist at the moment of the screen shot through channel
Ch 3. However, this channel is not always selected. In all three cases we notice that
the fuzzy weight of channel Ch 3 is the smallest. This weight is then adjusted by the
additional cost of traveling from the vehicle’s position to the channel (wlocal) and the
cost of travelling from the channel back to the global path (wglobal). In both Case 1 and
Case 2, the pedestrian in Ch 2 is predicted to stay there for the upcoming prediction
horizon Th. However, the pedestrian in Case 1 is highly cooperative. This makes the
fuzzy weight of the channel smaller in Case 1 than in Case 2. Consequently, in Case 1
the advantage of travelling to the pedestrian free channel is not enough compared to
navigating in Ch 2 which is slightly denser but much less energy consuming. Whereas,
in Case 2, the uncooperative pedestrian in Ch 2 yields its navigation cost higher, which
makes travelling to channel Ch 3 worth the additional cost. Finally, Case 3 is similar to
Case 1, with the difference of expecting that the pedestrian in Ch 2 is going to leave it
towards Ch 3. Therefore, channel Ch 2 is selected for the navigation.

Example Cases 4-6: Three more examples are shown in Tab. 5.2. Example Case 4
shows the advantage of of adjusting the channel state weight wfuzzy with the local and
global costs. Since the state of all channels is similar, the global path channel Ch 2 is
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Case 1 Case 2 Case 3

Channel Ch 1 Ch 2 Ch 3 Ch 1 Ch 2 Ch 3 Ch 1 Ch 2 Ch 3

D 1.26% 0.63% 0% 1.26% 0.63% 0% 1.26% 0.63% 0%

∆D 0% 0% 0% 0% 0% 0% 0% −0.78% +0.78%

NUC% 0% 0% 0% 50% 100% 0% 0% 0% 0%

wfuzzy 0.06 0.04 0.01 0.19 0.18 0.01 0.06 0.03 0.025

wlocal
1
3 0 1

3
1
3 0 1

3
1
3 0 1

3

wglobal
1
3 0 1

3
1
3 0 1

3
1
3 0 1

3

wC 0.12 0.04 0.07 0.25 0.18 0.07 0.12 0.03 0.085
Tab. 5.1.: Example Cases 1-3 for the navigation cost computation and the proactive channel

selection

selected. In Case 5 an example is shown where the local and global navigation costs
(wlocal, wglobal) are not similar. Finally, in Case 6 a higher density example is shown.

5.7 Results Analysis 125



Case 4 Case 5 Case 6

A More Dense Case Example

Channel Ch 1 Ch 2 Ch 3 Ch 1 Ch 2 Ch 3 Ch 1 Ch 2 Ch 3

D 0.63% 0.63% 0.63% 0% 0.63% 0.63% 25.1% 55.3% 24.5%

∆D 0% 0% 0% 0% 0% 0% +9% −10% +11%

NUC% 0% 0% 0% 0% 0% 0% 50% 60% 50%

wfuzzy 0.04 0.04 0.04 0.01 0.04 0.04 0.305 0.427 0.311

wlocal
1
3 0 1

3
2
3

1
3 0 1

3 0 1
3

wglobal
1
3 0 1

3
1
3 0 1

3
1
3 0 1

3

wC 0.1 0.04 0.1 0.09 0.06 0.08 0.365 0.427 0.3715
Tab. 5.2.: Example Cases 4-6 for the navigation cost computation and the proactive channel

selection
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5.7.2 Steering performance analysis

Low density interactions

Let’s start by examining the performance of the system in interactions with very low
density (i.e. interactions with few pedestrians). The case of frontal interaction is
explored in detail, as this case allows more efficient steering options (as opposite to the
lateral crossing case).

A frontal interaction scenario is initialized between two pedestrians and the vehicle using
PedSim. The goals of the pedestrians lay behind the vehicle and vise-versa, to test an
exact frontal interaction. Fig. 5.17 shows the resulting paths in the XY plane at different
times of the interaction. The vehicle avoids the pedestrians by transitioning to a different
channel, and no cooperation is detected on the pedestrians side. Once the pedestrians
are avoided, the vehicle moves back to the original global path channel. Noting the
difference in the security margins between the front and the side of the vehicle. On the
frontal side, the vehicle starts avoiding the pedestrians at about 20m distance. Whereas,
only around 2m distance is maintained when the pedestrians are safely passing on the
vehicle’s side and no collision could occur. This is a result of considering the probability
of collision in our system model rather than relying directly on the distance to the
vehicle’s body. The resulting smooth steering control command along with the vehicle’s
orientation, and the corresponding angular velocity and acceleration are shown in Fig.
5.19. The channel selection in this example is yielding two transitions. Therefore, the
reference path to be followed is given by the two channels center lines along with two
Quintic transition paths as shown in Fig. 5.18. Overall, the reference path is followed
with small lateral and orientation errors. However, a static lateral displacement error is
observed. This is a result of considering maintaining the vehicle within a channel and
avoid steering efforts over the very small lateral displacements.
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(a) time = 6.2s

(b) time = 7s

(c) time = 8.6s

(d) time = 11s

(e) time = 14s

(f) time = 17s

Fig. 5.17.: Resulting paths in the XY plane in a low-density frontal interaction scenario
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(a) Reference and actual paths

(b) Lateral tracking error

(c) Orientation tracking error

Fig. 5.18.: Path following errors in the frontal interaction scenario in Fig. 5.17
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(a) Steering Angle

(b) Orientation

(c) Angular Velocity

(d) Angular Acceleration

Fig. 5.19.: Resulting steering commands and orientation in the frontal interaction scenario in
Fig. 5.17
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Higher density interactions

A total of 840 simulations are ran (520 frontal and 320 lateral) with over 10K pedestrian
trajectories. The simulations included pedestrian crowds with average density ranging
between D ∈ [20, 90]% and with average sparsity in GI ∈ [35, 93]%. The maximum
speed of the vehicle, the simulation duration and the channel width/length are constant
across all the simulations (vmax = 4m/s, TF = 60s, W = 1m, L = 40m respectively).

Fig. 5.20 shows six examples of the resulting trajectories for both the vehicle and the
pedestrians in the XY plane.

Fig. 5.20.: The resulting trajectories in 6 different interaction tests. Black dashed line: vehicle
path, colored lines: pedestrians paths, red circle: vehicle start point, green ellipse:

vehicle goal.

Another visualization of one frontal interaction scenario on PedSim is shown in Fig.
5.21 at different time instances. The global path channel is plotted in blue, while the
selected navigation channel is in red. In (a) the space is explored proactively and the
optimal navigation channel is selected. Then, the human-like transition to the channel is
executed in (b,c,d). Next, the same process is repeated again in (e,f,g), until the goal
destination is reached.

The steering commands along with the resulting angular velocity and acceleration is
observed over the simulated tests. The average and max value for each quantity is
evaluated in each simulation as follows:
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• Maximum and average value of the steering commands in a simulation:

δmax = max
t∈[t0,t0+TF ]

|δ(t)|

δavg = 1
TF

TF∑︂
t=t0

|δ(t)|
(5.30)

• Maximum and average value of the angular velocity in a simulation:

ωmax = max
t∈[t0,t0+TF ]

|ω(t)|

ωavg = 1
TF

TF∑︂
t=t0

|ω(t)|
(5.31)

• Maximum and average value of the angular acceleration in a simulation:

ω̇max = max
t∈[t0,t0+TF ]

|ω̇(t)|

ω̇avg = 1
TF

TF∑︂
t=t0

|ω̇(t)|
(5.32)

The statistical results of the previous quantities over the simulated tests group (both
frontal and lateral) is shown in Tab. 5.3. The average values of the three quantities gives
an idea about the steering effort over the simulation. Whereas, the maximum values are
shown to express the worse case scenario (with the highest steering or steering rate).

Parameter Unit Mean Max 75% Std. Dev.
δavg rad

0.03 0.11 0.05 0.02
δmax 0.06 0.23 0.10 0.05
ωavg rad/s

0.12 0.32 0.21 0.10
ωmax 0.27 0.77 0.39 0.20
ω̇avg rad/s2 0.73 2.18 1.23 0.61
ω̇max 1.43 4.19 2.97 0.89

Tab. 5.3.: Steering, angular velocity and angular acceleration across the tested interactions
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Fig. 5.21.: Visualization of a frontal interaction in PedSim. The global path channel is shown
in blue, whereas, the selected channel is shown in red. The destination of the

vehicle is the red semi circle.
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5.8 Conclusion

This chapter included the manoeuvring system development of the proactive navigation
framework. The work presents a local manoeuvring technique adapted to autonomous
vehicles navigation in shares spaces with pedestrians. The suggested method integrates
multiple concepts and frameworks to perform a natural and smooth local path modifi-
cation and steering in the shared space. The main idea was to imagine a structure for
the open shared space to deploy the known driving rules and produce natural driving
patterns. The developed proactive dynamic channel method starts with dividing the
shared space into a set of possible navigation options, which we call channels. These
channels are constructed using the global path of the vehicle as a reference which yields
a local path modification system. The cost of navigating in each channel is computed
based on the vehicle travel effort and the state of the pedestrians within the channel.
A lowest cost channel (or best case navigation option) is selected. The global path
of the vehicle is modified using Quintic splines segments to transitions between the
channels and back to the global path. The method presented in this chapter resulted in
the following publication:

"M. Kabtoul, A. Spalanzani and P. Martinet. Proactive And Smooth manoeuvring
For Navigation Around Pedestrians. IEEE International Conference on Robotics and
Automation (ICRA), May 2022, Philadelphia, USA. Under Review"

The method was tested using the PedSim simulator under ROS. The test simulations
included frontal and lateral crossing interactions between a vehicle and a group of pedes-
trians. The steering commands and the corresponding angular velocity and acceleration
of the vehicle is evaluated in each test. The tests showed that the method enables the
vehicle of navigating variable density spaces while maintaining a smooth manoeuvring
of the vehicle. Moreover, the proactive quality of the system enabled the vehicle of
navigating high density spaces where a pedestrian-free path does not exist, therefore
avoiding the freezing robot problem.

The suggested framework was implemented with a kinematic-based sliding mode path
follower. However, the same framework can be implemented with other path following
steering controllers to be implemented with higher vehicle speed limit, for example.

The performance of the steering system within the complete proactive navigation frame-
work is going to be further tested and evaluated in Part III.
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Part II

Implementation and Validation

“"The universe exists independent of the anthropic principle. . . so does overspace,"
continued Krigisa. There was a significant difference between existence and
understanding, between reaction and proaction—or were intelligence and

planning merely illusions? Were we genetically programmed to respond, merely
rationalizing our actions after the facts?”

– L.E. Modesitt Jr., Gravity Dreams





Performance Measures For
Navigation Around Pedestrians

6

Developing fully autonomous vehicles navigation system which can operate around
pedestrians is becoming an increasingly critical issue, especially with the growing
influence of the shared space concept in cities planning [MM14]. This growing interest
is motivated by the premise of more green and pedestrian-friendly cities where vehicles
and pedestrians share public spaces in a safe and efficient way [ET21; Ski16]. However,
building, testing and validating autonomous navigation systems in shared spaces with
pedestrians are highly challenging tasks, each task being a standalone multidisciplinary
problem. These steps of the development process (Build→ Test→ Validate) are equally
crucial before letting a potentially harmful system navigate around humans.

This chapter presents the performance metrics adapted for validating the navigation
performance of an autonomous vehicle (or a mobile robot) in close interaction with
pedestrians. The computation method of each metric is explained using the trajectory-
based information only. Moreover, a success criteria is estimated for each metric based
on social studies.

6.1 Problem Definition

Validating the navigation system in shared spaces with pedestrians requires a set of
adapted performance measures. The metrics traditionally used for autonomous robot
to validate the navigation is necessary but not sufficient. The validation process should
consider the safety and comfort of pedestrian around the navigating system, and of the
passengers who could be on-board of the vehicle.

The problem can be summarized in selecting and/or designing a set of performance
metrics which:

• Evaluate the system’s motion safety in proximity with pedestrians.

• Evaluate the efficiency of the resulting motion in terms of the traveled distance
and traveled time.
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• Evaluate the comfort and safety of the possible vehicle’s passengers.

• Evaluate the social compliance and the comfort of the pedestrians around the
vehicle.

Inputs: The available inputs for calculating the metrics are the trajectory information
for both the pedestrians and the vehicle during an interaction.

Outputs: a scalar value, and the success/fail criteria for each metric.

6.2 Related Work

The problem of autonomous vehicle navigation around pedestrians has started getting
researchers attention only in the past recent years. Therefore, not many works in
the literature arrived at the performance validation step of an AV system in shared
spaces with pedestrians. However, works in robotics in general targeted the issue of
navigation systems validation around humans. We can divide the metrics used in such
cases into three main categories: motion safety, trajectory quality and pedestrian comfort
metrics.

The motion safety of a navigation system is mostly evaluated by reporting the collision
rate or the near missed rate between the humans and the navigating system, as in
[Luo+18] and [Bai+15]. A more continuous metric that can also be used is the minimum
and mean distance between pedestrians and the robot [MVL07]. Other studies depend
on estimating the safety by the distance or the temporal proximity to the collision when
the evasive action starts by the robotic system. For example, the Time To Collision (TTC)
is proposed in some studies [Kap+13; Pas20; TS16]. Whereas, the Post Encroachment
Time (PET) corresponding to the TTC at the minimal approach distance have been used
in other works [Pas20; TS16]. Another metric proposed by [Pas20] for the collision
severity is the AV speed before the AV starts avoiding the collision.
However, these measures evaluate the performance based on the systems behavior before
the start of the collision avoidance behavior. Therefore, this cannot be directly applicable
to proactive navigation systems which do not perform the collision avoidance in the
traditional way.

The trajectory quality evaluation is the most addressed problem since it applies to all
autonomous navigation systems regardless of the environment and context. Te main
aspects addressed in this regard are the smoothness and efficiency of the resulting
trajectory. A smooth trajectory limits abrupt changes in direction and speed. Therefore,
many works, as [Bai+15] and [Luo+18], uses the acceleration/deceleration of the
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system as a smoothness measure. Moreover, the efficiency of a trajectory is usually
measured in terms of the travelled distance [Bai+15], or the travel time [MVL07] or the
goal reaching rate [Luo+18]. Other works suggest adapting the previous measures to
relative terms. For example, [Pas20] compares the trajectory to the optimal trajectory in
terms of the travelled distance and time.
All the previous trajectory quality metrics are valid to evaluate the performance of AV
navigation. However, the case of a vehicle includes the special property of possibly
having passengers on-board. The specific trajectory that the vehicle adapts will have
consequences of the safety and comfort of its passengers. This is an important issue in AV
performance validation which needs to be addressed with the appropriate performance
metrics.

Finally, the comfort of humans navigating around the vehicle is crucial given that it
determines the social acceptance of autonomous vehicles. However, Pedestrian comfort
is a newly addressed topic in the literature, specially for the case of autonomous vehicles.
[MMH17] studies the comfort of a pedestrian for a pedestrian-wheelchair interaction in
a corridor. The work suggests estimating the comfort based on the deviation from the
ideal location within the corridor (i.e. optimal trajectory deviation).

In the following we present a set of performance metrics suitable for the case of shared
spaces navigation, with the success/fail criteria adapted for the case of autonomous
vehicles.

6.3 Motion Safety Metrics

6.3.1 Collision Detection

The main indices used to validate the motion safety around pedestrians are derived
from analysing the collisions occurring in the simulations. A collision is detected in the
simulation when an overlap occurs between the footprints of both the pedestrian and
the vehicle. As explained in Section 2.7.2, the footprint of a pedestrian in the 2D plane
is considered circular with a radius Rped. Whereas, the footprint of the rectangular AV is
approximated with the outer Löwner-John ellipse of the rectangle [Joh14].

The Collisions Rate is an important factor in estimating the safety of the navigation policy.
A near-zero collision rate is required to validate the navigation. However, when looking
at the collision rate in a simulated world it is important to evaluate if this collision could
actually occur in the real world. An Unrealistic Collisions Rate can be detected in the
simulator that could not lead to an actual collision in real life. An example of this is
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shown in Fig. 6.1a where the vehicle is static and a pedestrian walks into the side of
the vehicle. This case is detected as a collision in the simulator whereas in real-life
this is highly unlikely to happen and such a situation would mean, for example, that a
distracted person bumped into a parking vehicle which is not considered an accident
and cannot be avoided in the navigation algorithm. To assist if a collision is realistic or
not, a velocity obstacle based collision analysis is performed.

(a) UnRealistic Collision (b) Realistic Collision

Fig. 6.1.: Two collisions detected at time tC and the state of the AV and the pedestrian in the
previous tCH period

6.3.2 Velocity Obstacle Based Collision Analysis

The Velocity Obstacle (VO) is a known method in robotics used for motion planning.
The method allows to calculate the set of robot velocities that can lead to a collision with
another moving obstacle, or what is referred to as the collision cone. When planning
a trajectory, the velocity command is selected outside the collision cone for obstacle
avoidance [FS98].

The idea of the VO-based Collision Analysis is to examine the AV’s velocity commands
during the time period proceeding the collision with a pedestrian. If the AV’s velocity
belongs to the pedestrian’s collision cone, then the collision is considered "Realistic".
Otherwise, the collision is considered "Unrealistic" as the AV is moving away from the
pedestrian and the pedestrian still collided with the AV. One main limitation of the VO
method is that it assumes a circular shape in the 2D plane for both of the colliding objects.
Since the footprint of the vehicle can be approximated with the smallest enclosing ellipse,
then an ellipse-based velocity obstacle method (EBVO) is applied to derive the collision
cone [JL14].
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Approximate AV footprint

One main limitation of the VO method is that it assumes a circular shape in the 2D
plane for both of the colliding objects. However, assuming a circular footprint for the
rectangular AV would result in large errors. Therefore, the footprint of the vehicle is ap-
proximated with the minimum number of enclosing circles (Fig. 6.2a) [ZS10]. Algorithm
2 shows how the approximated footprint Cfp of the AV with a pose (xo(t), yo(t), θV (t)) is
obtained in the local frame of the AV then in the global frame using the transformation
matrix RG

L :

RG
L (t) =

⎡⎢⎢⎣
cos(θV (t)) − sin(θV (t)) xo(t)
sin(θV (t)) cos(θV (t)) yo(t)

0 0 1

⎤⎥⎥⎦ (6.1)

Once the set of footprint circles is obtained, the VO-based analysis is applied to each
circle and the collision is considered realistic if any of the circles of the set yields a
positive result (Algorithm 3).

(a) (b)

Fig. 6.2.: (a) Circular approximation of the AV footprint (Algorithm 2), (b) VO method
applied to one part of the AV footprint

6.3.3 Pedestrian-Vehicle Time To Collision Based Danger Estimate

Time To Collision (TTC) is one of the most used road safety time-based indicators. TTC
refers to the time remaining before a collision occurs between two bodies if they continue
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Algorithm 2. AV Footprint Circular Approximation

Input: AV centers of mass: XV (t) = (xo(t), yo(t)), and orientation θV (t), AV dimensions:
Length LV , Width WV

Output: Cfp(t) = ∪i∈N+(ci(t), Ri) ∈ R2 ×R+

Set: LT ← LV , i← 0
while LT > WV do

cl
i ← (LV −WV

2 , 0) ▷ Frontal circle (AV frame)
cl

i+1 ← (−LV −WV
2 , 0) ▷ Rear circle (AV frame)

i← i + 2
LT ← LV −WV

end while
ci ← (xo(t), yo(t)) ▷ Middle circle (AV frame)
Cfp ← {(RG

L (t)cl
j(t),

√
2

2 WV ) : 0 ≤ j ≤ i} ▷ Transform to global frame

moving on the same direction and speed. TTC is usually used to estimate the rear-end
collisions between vehicles on roads [Nas+13]. Improvements on the TTC calculations
are proposed in the literature to cover more divers collision angles between two vehicles
[JNG13]. Computing TTC for two bodies depends on the considered geometric shape of
their footprints, and the simplest case is considering circular footprints [HLG14].
Assuming the following configuration at time tk: a pedestrian j with a position (xj , yj)
and velocity VjVjVj = (Vj , θj), and a vehicle with a position (xV , yV ) and velocity VVVVVV =
(VV , θV ). If the footprints for both the pedestrian and the vehicle are circular with radius
Rped, Rveh respectively. Then, the estimated time to collision TTC is found by solving
the following equation:

[(xV + TTC.VV cosθV )− (xj + TTC.Vjcosθj)2

+ [(yV + TTC.VV sinθV )− (yj + TTC.Vjsinθj)]2 = (Rped + Rveh)2
(6.2)

If the root to this equation is not real, then a collision cannot occur and TTC → +∞.
Otherwise, TTC is the minimum positive root of the equation.

Pedestrian-Vehicle TTC

Since the circular case is the simplest to calculate, [HLG14] suggests starting with this
case to estimate if a collision is possible. Then, if TTC is found in the circular case, a
more accurate footprint is considered to estimate TTC.
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Algorithm 3. VO-Based Collision Analysis
Input:

• Time step: tk, Collision time horizon: tCH

• {XV (t), VV (t), XP (t), VP (t)}: t ∈ [tC − tCH , tC ]
Output: Collision Type: IsReal ∈ {0, 1}

for (ci(t), Ri) ∈ Cfp do ▷ AV footprint circles
ts ← tC − tCH

Center ← ci(ts)−XP (ts)
DC ← D(Center, Ri + Rfp) ▷ Collision disk
while ts ≤ tC do

if ts ∗ (VP (ts)− VV (ts)) ∈ DC then
return 1

end if
ts ← ts + tk

end while
end for
return 0

To compute the pedestrian-vehicle TTC a similar method to [HLG14] is applied. In a
first step, circular footprints are considered to both the pedestrian and the vehicle. The
radius of the vehicle’s radius footprint is:

Rveh = 1
2

√︄(︃
LV

2

)︃2
+
(︃

WV

2

)︃2
(6.3)

where LV , WV are the dimensions of the rectangular vehicle.

Then we estimate if a collision is geometrically possible based on the current positions
and orientations of the pedestrian and the vehicle. If the interaction between the
pedestrian and the vehcile is not frontal or back interaction (i.e. θV ̸= θj ± π) , then a
collision is possible at a point (x+, y+): (Fig. 6.3):

x+ = (yV − yj)− (xV tanθV − xjtanθj)
tanθj − tanθV

y+ = (xV − xj)− (yV cotθV − yjcotθj)
cosθj − cosθV

(6.4)

In the case of a frontal/back interaction, a collision is still possible if the lateral dis-
placement between the pedestrian and the vehicle is less than the sum of footprint
radius:

|yv
j | ≤ (Rped + Rveh)2 (6.5)
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with yv
j the y coordinate of pedestrian j in the vehicle’s local coordinates frame.

(a) Non frontal/back interaction (b) Frontal interaction

Fig. 6.3.: Pedestrian-vehicle possible collision point

If this first test yields a possible collision, we start by checking the possibility of collision
with the circular case. If a collision is possible with the circular case as well, the
approximate footprint of the vehicle with multiple circles is estimated as in Algorithm
2. The circular check is repeated for each circle in the approximate vehicle footprint
set. If one or more of the footprint’s circles yields a possible collision, then TTC is the
minimum found time among the possible values.

Pedestrian-Vehicle TTC-based danger estimate

TTC is measured if the two agents (pedestrian and vehicle) could reach a possible future
collision point with the exact time. [JNG13] suggests that a danger can be detected
when the two agents reach the collision point with a close time difference and not
necessarily the same time. Assuming TTCped, TTCveh to be the time needed for the
pedestrian and the vehicle to reach the collision point, respectively. Then the TTC-based
danger can be estimated as:

TTCDanger = 1
|α|+ 1 ∈ [0, 1]

α = TTCped − TTCveh

(6.6)

If the previous TTC algorithm yields an exact possible TTC value, then TTCped =
TTCveh and TTCDanger = 1. If a collision is not immanent and an exact TTC is not
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found, then TTCped, TTCveh are found as the time needed to reach the collision point
(x+, y+) with the same current speed for the pedestrian and the vehicle:

TTCped =

√︂
(xj − x+)2 + (yj − y+)2 −Rped

Vj

TTCveh =
√︁

(xV − x+)2 + (yV − y+)2 −Rveh

VV

(6.7)

The algorithm for calculating the pedestrian-vehicle time to collision TTC and the
TTC-based danger estimate is summarized in the flowchart in Fig. 6.4

Fig. 6.4.: Pedestrian-vehicle TTC and TTC-based danger calculation
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6.4 Trajectory Quality Metrics

A trajectory is a sequence of sample points of the 2D path, ordered by time stamps. Let
TV be the trajectory of the vehicle consisting of M sample points over a time period
[t0, t0 + TF ], then:

TV = {(XiXiXi, ti) : XiXiXi = [xi, yi] ∈ R2, ti ∈ [t0, t0 + TF ]} : i ≤M ∈ N+ (6.8)

Estimating the quality of a vehicle’s trajectory involves three main aspects: the energy
cost of the trajectory, its efficiency and the comfort of the vehicle’s passengers during
such a trajectory.

6.4.1 Trajectory Energy Cost

The energy cost of a trajectory is the cost of following the trajectory’s maneuvers and
speed variations. In other words, the energy cost is a measure of the trajectory’s
smoothness. This energy is estimated using two metrics: the Path Energy [BN90] which
is based on the change of heading during the trajectory, and the Dynamic Trajectory
Energy [Xu+12] which is a speed-based energy estimate.

The path energy measures the smoothness of the path by evaluating the average sharp-
ness of the path maneuvers. While, the dynamic energy measures the average instan-
taneous variation of the speed from the average. The equivalent path energy EP of a
trajectory TV are evaluated as:

EP = 1
M

M∑︂
j=1

(︄
yj − yj−1
xj − xj−1

)︄2

(6.9)

EP ∈ R+ increases when a path contains more frequent and sharp maneuvers (EP = 0
for a straight path). The main limitation in using the previous path energy measure is
that it is not estimated in relative terms. Meaning, that a reference range of accepted
values is required to estimate the quality of a trajectory using this measure. Therefore,
we estimated the value of EP for a number of reference paths. Tab. 6.1 shows the
resulting values of EP for straight lanes, lane change, roundabout and u-turn paths. Fig.
6.5 shows an illustration of some of the previous paths shapes. As a result of the tested
paths energy values , we consider a trajectory with EP ≤ 25 to be of good quality and
the quality of the trajectory increases for lesser path energy values.
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Path Path Equation Parameters Value EP

Straight Lane y = ax + b ∀a, b 0

Lane Change (Quintic) y =
∑︁5

i=0 aix
i

eL = 3.7, LH = 1 19
eL = 3.7, LH = 5 0.5
eL = 3.7, LH = 10 0.2

Roundabout (Circle) y2 + x2 = R2 ∀R 25

U-turn
y = ax2 a = 0.1 4.5

a = 0.3 43
y = ax4 a = 0.001 24

Tab. 6.1.: Path energy estimation for different types of vehicle paths

Fig. 6.5.: Examples of path energy for lane change and U-turn

The limit accepted value for EP is selected based on the working scenario. For example,
in the case of uni-directional road driving where the vehicle is not supposed to do
any 180o turns, the limit value can be selected around 0.5 to ensure a low-energy lane
changes. Whereas, this limit is set higher in scenarios where the vehicle is supposed to
go on roundabouts or make u-turns.

On the other hand, the dynamic trajectory energy ET ∈ R+ is evaluated as:

ET = 1
M

M∑︂
j=0

(︄
vperf − v(j)

vperf

)︄2

(6.10)

v(j) =
√︂

ẋ2(j) + ẏ2(j) : vperf = maxjv(j) (6.11)

where ET increases when the trajectory consists of large instantaneous velocity variations
and ET = 0 for a constant velocity trajectory. Smaller ET values yield smoother
trajectories.
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6.4.2 Trajectory’s Efficiency

The efficiency of the trajectory can be expressed in distance or time terms [Xu+12].
Firstly, the Relative Traveled Distance (CL) measures the length of the traveled path
relative to the shortest distance path between the start and goal points:

CL =
∑︁M

i=0 D(Xi+1 −Xi)
D(XM , X0) (6.12)

D(X2, X1) =
√︂

(x2 − x1)2 + (y2 − y1)2 (6.13)

Secondly, the Relative Time To Goal (TTG) measures the traveled time relative to the
time to reach the goal on the average speed:

TTG = (tM − t0)× vavg

D(XM , X0) (6.14)

In more efficient trajectories, the length of the traveled distance is close to the shortest
path distance corresponding to the optimal path between the goal and the start points in
a dynamic obstacle free case CL

1−→. Moreover, more efficient trajectories do not contain
large time delays, i.e. TTG ≤ 1.

6.4.3 Passengers’ Comfort

Assessing passengers’ comfort along a trajectory is a problem specific to vehicles naviga-
tion. The trajectory itself entails information on the comfort of the vehicle’s passengers,
which is an important part of the trajectory quality validation. This problem drew the
attention of researchers with the growing applications of autonomous navigation. Works
in the domain started considering the passengers’ comfort aspect when developing a
trajectory planning method [WCM18; BMS19]. A recent case study shows that pas-
sengers comfort is mainly related to their experience of the centripetal force [GC21].
Meaning that passengers experienced more discomfort when passing small radius curves
with high speed. Therefore, the average Centripetal Acceleration (aC) is used as a
passengers’ comfort measure:

aC = 1
M

M∑︂
i=0

v2(i)κ(i) (6.15)

where κ(i) is the curvature of the path at point i. The results of the study in [GC21]
recommends different aC values depending on the driving speed range. For the case of
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shared space (speed ≤ 20km/h), aC ≤ 1 is recommended for a very comfortable driving
and at least aC ≤ 1.75 for an acceptable comfort level.

6.5 Pedestrians Comfort Metrics

Providing a comfortable experience for pedestrians in shared spaces is an important
milestone to successfully integrate AV in daily life. Conducting a survey experiment is
one way of estimating pedestrian comfort. However, it is essential to provide measures
capable of approximately estimating pedestrian comfort in simulations as well. The first
metric used to evaluate the pedestrian comfort during the interaction with the AV is
the Uncomfortableness Index Īucf suggested in [Hel+01]. This index is an average
value which reflects the degree and frequency of the linear velocity change a pedestrian
experienced during the navigation. Let N be the total number of pedestrians in a
simulation with a duration [t0, t0 + TF ], then the uncomfortableness index is evaluated
as:

Īucf = 1
N

N∑︂
i=1

ȳi

h̄i

(6.16)

h̄i = 1
TF

∑︁t0+TF
t=t0 v2

i (t) ȳi = 1
TF

∑︁t0+TF
t=t0 (vi(t)− ḡi)

2

ḡi = 1
TF

∑︁t0+TH
t=t0 vi(t)

(6.17)

where h̄i, ȳi are the mean square velocity and the deviation of the average velocity of
agent i respectively, and ḡi the average velocity of agent i over the simulation period.

Moreover, pedestrians are known to accelerate/decelerate heavily when detecting danger
[Tek16]. However, it is more relevant to the pedestrian-vehicle interaction to consider the
behavior at the min approach distance (MAD) to the vehicle. Therefore, the pedestrian
min. approach acceleration during the navigation is used as a metric of pedestrian
comfort. Moreover, the vehicle’s behavior at the MAD contains information on the
resulting pedestrian comfort.

Assuming di
min, ti

MAD is the vehicle’s min approach distance and time to pedestrian
i during the interaction, respectively. Then the Vehicle’s Average Min. Approach
Acceleration:

aV
MAD = 1

N

N∑︂
i=1

av(ti
MAD) (6.18)
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Similarly, the Pedestrian Min. Approach Acceleration:

aP
MAD = 1

N

N∑︂
i=1

ai(ti
MAD) (6.19)

where av, ai are the AV and the pedestrian i linear acceleration, respectively.

To evaluate the success/fail criteria for the previous comfort metrics a reference data
is required. The goal is to analyse the pedestrian behavior and the values of these
metrics in comfortable interactions with a vehicle. These values can then be used as
our success criteria. To do so we use the pedestrian-vehicle interaction data that we
presented earlier in 3.5. This dataset includes a number of interactions between a vehicle
and a group of pedestrians in different scenarios (frontal, lateral, etc). The recorded
interactions was split into two parts: one with an aggressive behavior on the driver’s
side where pedestrians experienced some levels of discomfort, and one part with a more
yielding driving patterns. Since we wish to maintain the pedestrian comfort during the
navigation, we use the values of the previous metrics calculated for the yield mode as
reference values as shown in Table 6.2.

Parameter Scenario Behaviour Mean Max Std. Dev.

Īucf All
Aggressive 3.7 8.6 2.2

Yield 1.2 5.6 2.0

aV
MAD All

Aggressive 0.18 1.19 0.20
Yield 0.14 0.44 1.30

aP
MAD

Lateral
Aggressive 0.08 1.00 0.14

Yield 0.06 0.36 0.11

Frontal/Back
Aggressive 0.12 1.33 0.22

Yield 0.11 2.26 0.31

Shared Space
Aggressive 0.08 0.40 0.10

Yield 0.08 0.33 0.09
Tab. 6.2.: Collected PVI data statistics relative to pedestrian comfort
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6.6 Conclusion

Performance validation of autonomous navigation systems in shared spaces requires an
adapted set of performance metrics, specially in the case of AV navigation. The selected
set of performance metrics is trajectory-based and is designed to validate: the motion
safety, the trajectory quality and both the pedestrians and the passengers comfort.

Let N be the total number of simulated tests, Assuming a simulation s contains NRC(s)
realistic collisions, A(s) pedestrians, and TV the trajectory of the vehicle:

TV = {(XiXiXi, ti) : XiXiXi = [xi, yi] ∈ R2, ti ∈ [t0, t0 + TF ]} : i ≤M ∈ N+ (6.20)

then the performance metrics computed for a simulation s can be summarized in Tables
6.3, 6.4 and 6.5. Where the success criteria for N simulations can be compared with the
statistical distribution of each metric.

Trajectory Energy

Metric Definition Success Criteria

Path Energy EP = 1
M

∑︁M
j=1

(︂
yj−yj−1
xj−xj−1

)︂2 One-Way Road EP ≤ 0.5

Round-about/ U-turn
EP ≤ 25

Dynamic Energy

ET =
1

M

∑︁M
j=0

(︂
vperf −v(j)

vperf

)︂2
ET ≤ 1

v(j) =
√︂

ẋ2(j) + ẏ2(j) :
vperf = maxj v(j)

Trajectory Efficiency

Relative Traveled CL =
∑︁M

i=0 D(Xi+1−Xi)
D(XM ,X0) CL → 1

Distance
D(X2, X1) =√︁

(x2 − x1)2 + (y2 − y1)2

Relative Time To Goal TTG = (tM −t1)×vavg

D(XM ,X1) TTG ≤ 1

Passengers’ Comfort

Centripetal Acceleration aC = 1
M

∑︁M
i=0 v2(i)κ(i) aC ≤ 1.75

Tab. 6.3.: Performance metrics for validating the trajectory quality around pedestrians
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Motion Safety

Metric Definition Success Criteria

Realistic Collisions Rate
NRC% =

1
N

∑︁N
s=1 NRC(s)× 100% NRC%→ 0

Tab. 6.4.: Performance metrics for validating the motion safety around pedestrians

Pedestrians’ Comfort

Metric Definition Success

Uncomfortableness Index

Īucf = 1
A(s)

∑︁A(s)
i=1

ȳi

h̄i

Īucf ≤ 5.6
h̄i = 1

TF

∑︁t0+TF
t=t0 v2

i (t)

ȳi =
1

TF

∑︁t0+TF
t=t0 (vi(t)− ḡi)

2

ḡi = 1
TF

∑︁t0+TH
t=t0 vi(t)

A
ve

ra
ge

M
in

.
A

pp
ro

ac
h

A
cc

el
er

at
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n

Vehicle
aV

MAD =
1

A(s)
∑︁A(s)

i=1 av(ti
MAD)

aV
MAD ≤ 0.44m/s2

Pedestrian

aP
MAD =

1
A(s)

∑︁A(s)
i=1 ai(ti

MAD)
Lateral: aP

MAD ≤ 0.36m/s2

Frontal: aP
MAD ≤ 2.26m/s2

Tab. 6.5.: Performance metrics for validating the motion safety around pedestrians
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Implementation and
Performance Evaluation

7
This chapter includes the implementation of the proactive navigation framework in
its three parts: the pedestrian cooperative behavior prediction system (in Ch. 3),
the proactive longitudinal velocity and steering control system (in Ch. 4), and the
manoeuvring system using the proactive dynamic channel method presented in Ch. 5.
The proactive navigation system is implemented under ROS and tested with SPACiSS
[Pré21] simulator. A diverse group of simulations is run and the performance is evaluated
using the statistical performance metrics presented in Ch. 6. Furthermore, the Risk-RRT
planning method is implemented and the performance of the system with the two
methods is compared.

7.1 Testing Environments

Once the proactive navigation system is designed, it is crucial to run a sufficient number
of tests using a virtual environment which simulates pedestrians in a shared space as
accurately as possible. This is due to the difficulty of designing and deploying real-life
experiments which include pedestrian-vehicle interaction. These experiments are not
only difficult to establish but also dangerous due to the high risk of operating a heavy
and potentially harmful robot such as an AV around humans. Therefore, it is necessary
to have realistic simulators for shared spaces to test such a system in complete safety and
repeatedly. The reliability of the simulator is a key point in the development process, as
the simulated tests will serve as the bases to moving towards real-life experimentation.

Several simulators have been created in the recent past years for the purpose of develop-
ing and testing autonomous vehicles systems. However, there are no global simulators
and the choice of the simulator depends on the goal and the targeted scenarios. The goal
being the tested sub-system, as the navigation system, the lower-level vehicle control,
the visual perception, etc. The targeted testing environment/scenarios also affect the
choice of the simulator. One simulator might be good for driving testing on highways,
while another can be targeting urban areas.
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To test the proactive navigation system in a shared space, the simulator should be able to
capture both the vehicle model and the pedestrians behaviors, as well as, the interaction
dynamics between the two. Moreover, the simulator should reflect the existing diversity
in pedestrians behaviors and include the ability to build realistic scenes with various
interaction scenarios and testing parameters.

CARLA [Dos+17], PORCA [Luo+18] and SUMMIT [Cai+20] are few of the well-know
open-source simulators for urban environments. CARLA targets urban areas and it is
suitable for the training and validation of autonomous driving systems. PORCA is build
on a pedestrian extension of the Optimal Reciprocal Collision Avoidance (ORCA) method,
and it allows to simulate high density crowds in shared spaces. SUMMIT supports a
wide range of applications, including perception, vehicle control and planning, and
end-to-end learning. However, it is based on the same motion model for all road users
and does not provide a specialized pedestrian model.

The simulator used to test the navigation method in this work is SPACiSS [Pré21]
simulator which is based on PEDSIM library [Glo12] with the addition of the PVI,
therefore it is suitable for simulating pedestrian crowds in shared spaces.

7.2 Reference Comparison Method: Risk-RRT

Risk-RRT is a risk guided search algorithm which integrates a collision risk assess-
ment with the classic Rapidly-exploring Random Trees (RRT) non-convex space search
[Ful+10]. RRT is an incremental space search method developed in the late 90s [LaV98].
This method has been widly used in robotic motion planning as it easily handles nonholo-
nomic and kinodynamic constraints. Many variants and improvements of this method
have been introduced over the years [NKH16]. Risk-RRT was one of these improvements
which was introduced to handle dynamic environments and implemented to produced
more human-friendly motion [Chi+16; CWM18].

In Risk-RRT, the configuration-time space is given a probabilistic representation. The
moving obstacles are modeled using Gaussian Processes and a probabilistic prediction
of their future trajectories is performed. The uncertainty in the static environment
is represented with an occupancy grid. Afterwards, a probabilistic risk of collision is
estimated for each path based on the probability of occupations of the surface swept
by the robot motion along the path. Then a search similar to RRT is performed, where
the weights of the nodes are adapted to account for the risk of collision. Finally, the
decisions in Risk-RRT are updated in real-time.
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This method is implemented under ROS for comparison purposes. The method is
selected as the proposed risk improved probabilistic framework is designed for dynamic
environment. In the following, we analyse the performance results for our proactive
framework in comparison with the Risk-RRT method.

7.3 System Implementation

Fig. 7.1.: The proactive navigation framework structure

The proactive navigation system is implemented under ROS in combination with a
global path planner. Fig. 7.1 shows the structure of the implemented system regardless
of the used simulation tool. First, the space state measurements and semantics are
extracted from the raw sensor data. This includes the pedestrian tracking information
(pedestrians positions, velocities, orientations) and the vehicle’s pose and velocity, as
well. This part is assumed to be treated by an external system or provided directly by
the respective simulation tool. Furthermore, other enquired space measurements are
computed using the space state information. These measurements include the inputs
required by the proactive systems such as the space density, the distances between the
pedestrians and the vehicle, the probabilities of collisions, etc. The second step is the
behavioral prediction of the tracked pedestrians. The pedestrian cooperation model
presented in Ch. 3 is run to compute the cooperation factor of each pedestrian. The
estimated cooperation for each pedestrian is used to predict the future trajectory using
the cooperation-based trajectory planning model in Ch. 3. The predicted pedestrian
behavior is then used for the local planning system for both the longitudinal and lateral
control. Using the cascading architecture, first the proactive longitudinal control is
computed using the controller presented in Ch. 4. Then, using this control along with
the estimated cooperative pedestrians behavior in the space, the global path of the
vehicle is locally modified. This global path is provided by an external path planner,
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which is the ROS Navigation Stack in the case of the SPACiSS simulator, for example.
The local modification of the global path and the lateral control of the vehicle is done
using the proactive dynamic channel system presented in Ch. 5. Finally, the resulting
speed and steering controls are provided to the vehicle model in the simulator and the
corresponding effect on the space dynamic is re-measured.

7.4 Evaluating the Performance with SPACiSS

SPACiSS is a kinematic simulator which does not consider the vehicle’s dynamics. The
vehicle used in the simulator has the dimensions and visual representation of the
Renault ZOE vehicle with an underlying bicycle model. The particle interest of using
this simulator came from the possibility of testing the navigation around a crowd of
pedestrians which can perceive and react to the vehicle. Fig. 7.2 shows the overall
structure of the system under ROS.

Fig. 7.2.: System structure with SPACiSS simulator under ROS

7.4.1 Tests Design

To test and validate the proactive navigation around pedestrians, we selected one test
environment E = {e1} (K = 1) which represents a shared space with no specific assign
pedestrian or vehicle areas. This means that the space does not contain any road,
sidewalks, pedestrian crossings, traffic signals, .. etc. The space is bounded by two side
barriers which can represent a parking lot or a shared business area like the Exhibition
Road in London for example. The dimensions of the environment and the possible
entry/exit points are shown on Fig. 7.3 for a frontal and a lateral crossing scenarios.

The navigation is tested in environment e1 in 7 different different interaction scenarios:
Frontal Crossing, Back Crossing, Frontal-Back Crossing, Lateral Crossing, Bi-Lateral
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Fig. 7.3.: Simulation space structure on SPACiSS

Crossing, 45o Uni-Directional Crossing, 45o Bi-Directional Crossing. The AV’s goal in all
scenarios is to cross the shared space, while the possible pedestrian start/goal points
vary based on the scenario. The start and goal points of all agents (pedestrians and AV)
are shown on Fig. 7.4 for each scenario.

(a) Frontal (b) Back (c) Bi-Lateral

(d) 45o (Uni-directional) (e) 45o (Bi-directional) (f) Lateral

Fig. 7.4.: PVI scenarios definition based on the interaction angle

The variable test parameters set includes the space density, the space sparsity (or the
distribution of the pedestrians in the space) and the existence of pedestrian groups in the
space. The density of the space is measured as the average percentage of the occupied
space by pedestrians during the simulation. Whereas, the space sparsity is estimated
with a Gini Index which measures the distribution of pedestrians among the interaction
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space partitions [GMD16]. Let [t0, t0 + TF ] be the simulation period, A the area of the
shared space (m2), and N(t) be the total number of pedestrians in the space at time t.
Then, the average pedestrian density and sparsity are measured as follows:

D = 1
TF

t0+TF∑︂
t=t0

N(t)
A

(pedestrian/m2) (7.1)

GI = 1
TF

t0+TF∑︂
t=t0

N(t)∑︂
j=1

|1−Nj(t)|
N(t) + 1 × 100% (7.2)

where the interaction space is first divided into a grid of N(t) equal cells. Then, Nj is
the number of pedestrians in a cell j of the grid. For example, if the distribution of the
pedestrians in the space is homogeneous, then there is one pedestrian in each of the
equal grid cells, yielding GI = 0%. Two examples of a pedestrian distribution with the
corresponding GI vales are shown in Fig. 7.5. We can notice here that larger GI values
means that more pedestrian free navigation options exist in the space. Whereas, smaller
GI values means that the pedestrians occupy the space in a more homogeneous way
which can yield the navigation more challenging with higher densities.

Fig. 7.5.: Two examples of the GI calculation to estimate the sparsity

Other test parameters which are required to define the scenario but have been set to a
constant value, along with the values of the variable test parameters are the following:

• Constants: AV max speed 5.5m/s, Pedestrian max speed 6.5m/s,

• Variables: pedestrian density D ∈ [0.003, 0.56] ped/m2, pedestrian distribution
(Sparsity) GI ∈ [6, 34]%.

Every simulation is run with 20 repetitions, with 8 different values for the pair (D, GI)
to have finally a total of 2280 test simulation.

Fig. 7.6 and Fig. 7.7 show six examples of the resulting trajectories in the XY-Plane for
the pedestrians and the AV in different testing scenarios. In the following, we analyse
the test simulations based on the statistical results relative to the motion safety, the
quality of the produced vehicle trajectory and the pedestrians comfort around the AV.
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(a) Frontal (b) Back

(c) Frontal-Back (d) Lateral

Fig. 7.6.: The PVI trajectories visualization in XY-Plane in frontal, lateral and back crossing
scenarios

7.4.2 Motion Safety - Collisions Analysis

A collision is detected in a simulation when an overlap occurs between the footprint
of the vehicle and that of a pedestrian, as shown in Sec. 6.3.1. The corresponding
collisions in each of the test simulations are counted and a VO-based collision analysis
(Sec. 6.3.2) is performed on each detected collision. This analysis was developed after
observing some faulty behaviors in the simulator. The goal is to get a realistic estimate
of the safety of the navigation without over penalizing the system due to collisions with
an external cause. To make this point more clear, an example of what is detected as
an unrealistic collision is shown in Fig. 7.8. The figure shows four snapshots of the
simulation at four consecutive time instants around the moment when a collision is
detected with the highlighted pedestrian. This collision is qualified as unrealistic, as
the pedestrian ran to collision with the vehicle from the side and the vehicle did not
take any velocity command to collide with this pedestrian. By counting the collisions
occurring in each test simulation and performing the VO-based collision analysis, we
can get the both Realistic Collision Rate and the Unrealistic Collision Rate. Overall,
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(a) 45o Bi-directional (b) 45o uni-directional

Fig. 7.7.: The PVI trajectories visualization in XY-Plane in the 45o crossing scenarios

we get a collision rate of 3.085 collisions per simulation, of which 2.877 collisions are
qualified as unrealistic and 0.208 collisions are realistic collisions. To investigate the
interactions where more collisions are occurring, the two rates are computed for each
interaction type, as shown in Fig. 7.9. We can see from the detailed collision rates, that
we got a very low realistic collision rates for the frontal and lateral crossing scenarios,
which are the scenarios used to obtain the used behavioral model. This rate increases
when incorporating a bi-directional movement for the pedestrians in the lateral scenario.
The rate also increases when back crossing a pedestrian crowd. This is a particular case
that requires an incorporation of the perception range of a pedestrian which is present
in the simulator but not treated in our navigation system. When moving from the two
basic crossing scenarios to a crossing with a different interaction angle such as the 45o

crossing, we notice an increase in the realistic collision rate. Specially for the more
complicated case when a bi-directional movement in combined with the new interaction
angle (45o Bi). Therefore, it is important to consider a wider range of interaction angles
when training or calibrating an interaction model. This in terms require a more rich and
diverse sets of PVI data to be recorded either in controlled laboratory experiments or in
real-life interactions.

7.4.3 Trajectory Quality

The resulting vehicle trajectory in each simulation is qualified by analysing the corre-
sponding energy cost, the efficiency in terms of the traveled distance and the traveled
time, and the passengers comfort using the centripetal acceleration as explained in
Sec. 6.4. Tab. 7.1 shows the corresponding performance metrics values to the set of
testing simulations across all scenarios, density and sparsity levels. The statistical results

160 7 Implementation and Performance Evaluation



Fig. 7.8.: Four snapshots from a simulation on SPACiSS where an unrealistic collision is
detected with the highlighted pedestrian

for each metric are shown with: the average and max values across all simulations
(Mean/Max), the max value for 75% of the simulations, and the standard deviation of
the values (Std. Dev.). Moreover, the success criteria found in Ch. 6 are shown for each
metric.

Trajectory Energy Cost

Metric Mean Max 75% Std. Dev. Success Criterion

Path Energy EP 0.14 1.10 0.16 0.06 ≤ 0.5

Trajectory Energy ET 0.13 0.23 0.17 0.05 ≤ 1

Trajectory Efficiency

Metric Mean Max 75% Std. Dev. Success Criterion

Relative Traveled Distance CL 1.12 1.36 1.13 0.02 → 1

Relative Time To Goal TTG 0.55 2.14 0.78 0.35 ≤ 1

Passengers’ Comfort

Metric Mean Max 75% Std. Dev. Success Criterion

Centripetal Acceleration aC 0.17 1.29 0.24 0.17 ≤ 1.75

Tab. 7.1.: Trajectory quality metrics statistical results

Firstly, the navigation system resulted in low energy cost both in terms of the ma-
noeuvring (path energy) and the linear velocity (trajectory energy). The values of the
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Fig. 7.9.: Detected collision rate in each scenario type in the test simulations on SPACiSS

trajectory energy ET are all within the desired low limit to maintain a smooth linear
velocity variations. Although the maximum value of the path energy EP is a little higher
than the desired limit, most of its values fall in a very low acceptable energy range.
Secondly, the resulting trajectories are efficient in terms of the traveled distance. We
can notice that CL takes values close to 1, which means that the vehicle did not deviate
very far from its optimal path. Whereas for the efficiency in terms of the traveled time,
we can see that the larger part of the test simulations did not have large time delays
and only a small portion had larger time delays with TTG reaching over double the max
desired value. Finally, the values of the centripetal acceleration of the vehicle along its
traveled trajectory was overall within the desired range to maintain a comfortable ride
for any potential passengers.

7.4.4 Pedestrian Comfort

The trajectory information for both the pedestrians and the vehicle in a test simulation
is used to estimate the pedestrian comfort during the interaction with the vehicle. As
explained in Sec. 6.5, this can be analysed using the average uncomfortableness index
(Īucf ) and both the pedestrian and the vehicle average acceleration at the minimum
approach distance (aV

MAD and aP
MAD). In a similar manner to the previously presented

trajectory metrics results, Tab. 7.2 shows the statistical results corresponding to the
pedestrian comfort metrics.

The average uncomfortableness index across the test simulations had an average of 2.69
with maximum values reaching 8.6 which exceeds the desired limit of 5.6. However,
the majority of the samples (75%) had values well within the desired range with a
maximum of 3.89. To further examine the cases leading to higher level of discomfort for
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Pedestrian Comfort

Metric Scenario Mean Max 75% Std.
Dev.

Success
Crite-
rion

Uncomfortableness Index Īucf All 2.69 8.60 3.89 1.80 ≤
5.60

Vehicle MAD Acceleration aV
MAD All 0.02 0.76 0.12 0.07 ≤

0.44

Ped. MAD Acceleration aP
MAD

Frontal 0.36 0.57 0.39 0.05 ≤
2.26

Lateral 0.39 0.48 0.42 0.05 ≤
0.36

Tab. 7.2.: Pedestrian comfort metrics statistical results

the pedestrian, we can analyse the distribution of the values along the different scenarios
and the different pedestrian densities. Fig. 7.10 shows the histogram of the average
uncomfortableness index for the different testing scenarios. We can see from the figure
that the higher levels of discomfort are mostly resulting in lateral and bi-lateral crossing
scenarios. Furthermore, Fig. 7.11 shows the uncomfortableness index values against
the pedestrian density of each testing scenario. We can clearly notice here a correlation
between the two where the uncomfortableness index increases in general for higher
levels of pedestrian density. In our tests, the lateral and bi-lateral cases presented the
most dense interaction, therefore leading to higher levels of discomfort. The defined
desired limit of the uncomfortableness index is completely maintained for interactions
with pedestrian densities reaching 0.2ped/m2. The index also remains close to the
desired range for densities up to 0.3ped/m2. Beyond this density limit, the navigation
policy is bound to produce higher levels of undesired pedestrian discomfort.

Furthermore, the behavior of both the vehicle and the pedestrians at the minimum
approach distance is an indicator to the resulting pedestrian comfort. The vehicle
acceleration at the MAD aV

MAD was well within the desired acceleration limit for most
cases. The maximum value for 75% of the simulations is 0.12m/s2 which is much
lower than the acceptable max limit defined for a comfortable navigation (0.44m/s2).
Whereas, the maximum value for the values can reach 0.76m/s2 for some simulations.
It is worth noting that (unlike the uncomfortableness index) these values that exceeded
the defined limit did not result due to higher pedestrian density. On the contrary,
the highest aV

MAD values exceeding the defined limit resulted for densities lower than
0.1ped/ms. Whereas, the system maintained low levels of MAD acceleration with the
highest densities, as shown in Fig. 7.12. Moreover, the previous correlation between
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Fig. 7.10.: Histogram of the average uncomfortableness index (Īucf ) across the tests

Fig. 7.11.: The pedestrian density Vs. average uncomfortableness index (Īucf ) across the test
simulations

the metric and the pedestrian density is not noticed here. The higher values of vehicle
acceleration at the minimum approach distance in lower densities means that the
navigation system is deciding to take more aggressive actions when working with lower
pedestrian densities.

Finally, the pedestrian acceleration at the minimum approach distance aP
MAD was

very close to the desired range for the lateral crossing scenarios. Whereas for the
frontal crossing cases, it is observed that the values of the observed acceleration for the
pedestrians is much lower than the observed limit recorded in real interactions. This
can be due to the difference in the behavioral model between the observed behaviors
and the model considered in the simulator. In our observations, pedestrians had higher
acceleration levels at very close distances of the vehicle in the frontal case during yielding
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Fig. 7.12.: The pedestrian density Vs. the vehicle MAD acceleration across the test simulations

driving patterns. Whereas, such behavior may not be included in the pedestrians model
used in the simulator.

7.4.5 Comparison with Risk Rapidly-exploring Random Trees

A group of tests is selected and ran twice. In the first run, the navigation of the vehicle
is done using the developed proactive navigation framework. We refer to the results of
this run with PDC. Whereas in the second run, the navigation is done using the Risk-RRT
method presented in Sec. 7.2. The selected test group included a total of 840 simulations
for each run (520 frontal crossing and 320 lateral crossing) with over 10K pedestrian
trajectories. The tests are selected to scan the same previous range of variable density
and sparsity, and with the same fixed parameter values. Tab. 7.3 shows the results in
both the lateral and frontal scenarios for our method (PDC) and the Risk-RRT method.

Firstly, the results of the collisions tests are shown for the pedestrian safety analysis.
Additionally, the success rate for each method is shown, which is the percentage
of simulations where the vehicle reached its goal destination within the simulation
period. There is a significant improvement in terms of the navigation success (in both
scenarios) when using the proactive framework. The Risk-RRT method is noticed
to fail in planning a trajectory in many interaction scenarios due to its reactive and
uncooperative nature. The vehicle was noted to freeze in many cases, specially with
higher densities. Whereas, using the developed proactive system, the vehicle anticipates
the pedestrian cooperation and succeeds to find a valid solution. This is done while
maintaining a better pedestrian safety than the Risk-RRT. Using the proactive system,
the vehicle was adapting its behavior in critical situation resulting in no frontal collisions
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Collisions Test Success

Method Rate Speed Rate

PDC
Frontal 0.0008 0.25m/s 98%

Lateral 0.020 0.65m/s 78%

Risk-RRT
Frontal 0.001 3.13m/s 22%
Lateral 0.012 2.36m/s 8.3%

Īucf EP

Method Mean Max Mean Max

PDC
Frontal 3.07 5.37 0.18 0.53
Lateral 6.46 10.31 0.16 0.49

Risk-RRT
Frontal 4.32 6.86 0.02 0.15
Lateral 5.64 8.78 0.01 0.05

Tab. 7.3.: Pedestrians Safety and Comfort Results

and low collision speed. Moreover, a low collision rate is detected in the frontal crossing
coupled with a high success rate. In the lateral crossing, a slightly higher collision rate is
detected in our method. Noting that the collision rates displayed in the table are those
of realistic collisions. This is done to eliminate the collisions caused by simulator from
the comparison.

For the pedestrian comfort, the proactive system provoked less pedestrian discomfort
in the frontal crossing scenario that the Risk-RRT. Whereas, less levels of discomfort
are experienced with the Risk-RRT for the lateral crossing scenario. For the path
smoothness, in our method the path energy EP falls in a low energy range, which
shows that the smooth steering adapted in our method allowed to produce smooth
trajectories in both the frontal and lateral interactions. The Risk-RRT freezes in many
cases, which results in a very low path energy.

Finally, in the lateral crossing for Risk-RRT, a slightly lower collision rate and lower
pedestrian uncomfortableness are detected. However, this result is coupled with a very
low success rate (< 10%) which means that the vehicle, in most cases, did not succeed
to insert itself in the pedestrian crowd.

7.5 Conclusion

The proposed proactive navigation system was integrated and implemented in its entirety
in this chapter. The system was implemented under ROS and tested using a kinematic
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simulator for pedestrian crowds in shared spaces with a vehicle (SPACiSS simulator). A
diverse group of PVI scenarios is run to evaluate the performance of the system. The tests
included seven different interaction scenarios: frontal, back, frontal-back, lateral, bi-
lateral and 45o crossing both uni and bi-directional. The tests also spanned a wide range
of various pedestrian densities and with different space configurations. The performance
of the system was evaluated using the performance metrics introduced in the previous
chapter (Ch. 6) to evaluate the safety of the motion, the quality of the produced vehicle
trajectory and the comfort of the pedestrians around the vehicle during the interaction.
Furthermore, the performance of the system was compared with a reference reactive
navigation method which is the Risk Rapidly-exploring Random Trees (Risk-RRT). This
method was selected as the RRT method is a well known and tested method, and the
Risk-RRT improves over the classical RRT to handle dynamic environments.

The simulations results showed the system is capable of navigating dense and complex
environments while producing smooth trajectories and maintaining the pedestrians
safety and comfort. Moreover, the proposed proactive framework showed a significant
advantage when compared the the reactive Risk-RRT method. The system showed a
much higher success rate in crossing the pedestrian crowds, as compared to the Risk-RRT
which failed to navigate and resulted in the freezing of the vehicle in many scenarios.
Although the proposed framework showed major improvement over a reactive system,
several points of improvement can be identified to account for the detected limitations.

The lowest collision rates of the system were detected in the frontal and lateral crossing
scenarios. Whereas, higher rates resulted for in the back crossing, frontal-back crossing
and the bi-lateral crossing scenarios. The highest collision rates of the system were
detected in the 45o crossing scenarios (uni and bi-directional). We believe that this
performance can be improved by improving the pedestrian cooperation-based behavioral
model used within the proactive system. This is because the model itself was obtained
using PVI data in frontal and lateral crossing scenarios. Therefore, an interaction with
an angle between the vehicle and the pedestrians was not considered. Rather, only the
limit cases for this interaction angle was considered for the lateral and frontal cases.
This consideration clearly did not generalize well to the rest of the interaction angles
between the two limits, such as the 45o crossing. Furthermore, considering the back
crossing interaction needs an additional part in both the behavioral model and the
planning/control system to deal with the perception range of a pedestrian. This was not
considered in the actual configuration and the pedestrian is assumed to have an equal
360o perception at all time, which is not the case in real life or in the testing simulator.

Overall, the system produced smooth and high efficiency trajectories for the vehicle while
maintaining the pedestrians comfort. This is thanks to the proactive dynamic channel
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method for the lateral control which drives the system in appropriate directions where
more cooperative pedestrians and less densities are expected to exist, while not straying
far away from the pre-planned trajectory. This efficiency is also thanks to the proactive
longitudinal controller which anticipates the pedestrians cooperation and avoids large
time delays or the freezing of the vehicle.
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Conclusion and Future
Prospects

8
Autonomous navigation in close proximity with pedestrians is a highly challenging task,
specially for a bigger sized and potentially harmful robot such as an autonomous vehicle.
However, developing autonomous navigation solutions capable of navigating around
pedestrians is becoming increasingly more interesting to researchers and stockholders
in the field. This is mainly motivated by the vision of green modern cities where the
traditional street structure is replaced by more livable and pedestrian-friendly spaces
shared between vehicles and more vulnerable road users (Fig. 8.1a). Indeed this vision
of shared spaces within our city centers is not a future fantasy, but a plan already in
action. This direction of city planning can be seen in many cities across Europe and the
world (Fig. 8.1b). Unless autonomous driving solutions are capable of navigating shared
spaces safely and efficiently, such technologies would not be able to thrive in the future.
Moreover, autonomous navigation solutions that are functional in such spaces can lead
to a major improvement in urban life style and city design. Only then we will be able
to expand the scope of these green and shared spaces over our cities, while providing
transport options that are safe, efficient and equally accessible to all.

(a) Shared spaces vision in city planning [Ham08] (b) London’s Exhibition Road shared space

Fig. 8.1.: Shared spaces: future and current spaces

However, current autonomous driving solutions and technologies are not targeting this
sort of environments. The main direction in autonomous driving is focused on cities
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that are designed for vehicles with roads infrastructure and working scenarios which
sparsely interact with pedestrians. Therefore, the current technologies are not suitable
for unstructured, shared and pedestrian-populated spaces. Furthermore, there is an
obvious gap between where the planning of cities is heading, and where the technology
for AVs is focused.

This vision of shared spaces in city planning and the need for autonomous driving
solutions in such spaces were the main motivation for this thesis, as part of the ANR
project HIANIC. The main goal of the work was to develop a navigation framework
suitable for an autonomous vehicle navigating a space shared with pedestrians. The
challenges in achieving such a goal are not confined to finding a solution, they start
with the formulation of the problem as well. The performance of the final solution
remains limited by the aspects taken into consideration when designing this solution.
When developing our framework, we explored the different behavioral aspects which
are necessary for a safe and socially acceptable navigation around pedestrians. The
main drive of the solution was the natural behavior of drivers and even pedestrians
when navigating and interacting with each other. We explored a diverse range of
works on robot social navigation and navigation in dynamic and pedestrian-populated
environments. The ideas present in these works along with their limitations motivated
our proposed Proactive Navigation Framework.

We argued along this thesis that the lack of proactivity is a main source of limitation
in many existing works in the literature. Where the drawback of the develop method
is the result of ill-defined problem. The main point of limitation that was observed
globally is designing strictly reactive navigation solutions and expecting the system to
perform in a social and natural way. We discussed this idea back in Chapters 1 and 2
with several examples demonstrating that a proactive behavior is a natural behavior
deployed by humans. Therefore, a natural navigation policy requires this behavioral
aspect to be included in the system. Furthermore, when it comes to shared tasks, a
proactive behavior is necessary for the success of a task between two peers. The absence
of proactivity and a strictly reactive behavior would always lead to a master/slave
relationship during the shared task. This is not always desirable, which is the case for
navigation tasks around pedestrians in shared spaces. We discussed in Chapter 2 how
the navigation in such scenarios is considered a shared task between the vehicle and
the surrounding pedestrians. A task of pooling and sharing the navigation resources
(space and time) between the vehicle and the pedestrians. A shared task that requires
an interaction between the two, which we called Pedestrian-Vehicle Interaction (PVI) as
a sub-category of Human-Robot Interaction (HRI). Therefore, in order for the navigation
to succeed in this peer-to-peer shared task, the vehicle must participate in the navigation
space as an active agent and not merely react to the surrounding events. Furthermore,
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we demonstrated with several examples how the absence of proactivity can lead to
the failure of the navigation in cases where either the pedestrians are navigating in
close proximity or the complexity of the space exceeds a certain limit. In such cases, a
reactive policy would be over penalizing to the system and can lead to the failure of the
navigation and the freezing of the vehicle.

The proposed proactive navigation framework is build on the idea of human cooperation.
The system exploits the cooperation of pedestrians and influences their trajectories to
facilitate the navigation of the vehicle. This is done while maintaining the pedestrian
safety and comfort. The developed system is composed of three main parts. The first part
is responsible of predicting the pedestrians reactions and behavior around the vehicle.
Whereas, the two other parts are the systems to control the longitudinal and lateral
movement of the vehicle.

The developed pedestrian behavioral model which was discussed in Chapter 3, is a
cooperation-based model. The cooperation in this context is defined as the pedestrian’s
tendency to modify its optimal trajectory to facilitate the movement of the vehicle. The
proposed model is composed of two layers. In the first layer, the pedestrian cooperation
around the vehicle is estimated with a time-varying scalar based on the state of the space,
the behavior of the vehicle and the state of the pedestrian. This cooperation estimation
is then used as an input to the second layer to predict the short-term future trajectory
of the pedestrian. The model was designed using social concepts and calibrated using
real-life recorded pedestrian to vehicle interactions. Basing the behavioral model on the
concept of cooperation was essential to exploit it in the proactive navigation system. In
this context, proactivity can be defined as equivalent to taking an action which increases
the pedestrian cooperation along the interaction.

The possibility of deploying a proactive robotic behavior on the vehicle side was first
explored using only the longitudinal control in Chapter 4. To develop a proactive
longitudinal controller, the lateral control was assumed to be provided by a higher level
system. The goal was to explore navigating even dense environments not by modifying
the vehicle’s direction but by influencing the surrounding agents and behaving proactivly.
The proposed controller was designed to maximize the pedestrians cooperation while
maintaining an appropriate safety margin. The longitudinal system was implemented
using the developed cooperation-based trajectory planning model to simulate the pedes-
trian crowd (Fig. 8.2). The implementation of this system on its own resulted in an
important improvement over reactive controllers which leads to the freezing of the
system in many cases. This demonstrated that a proactive influence is indeed possible
even with the longitudinal control on its own.
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Fig. 8.2.: The longitudinal proactive controller implementation summary

The longitudinal control was used as an input to the lateral control system proposed in
Chapter 5. The system was based on the idea of proactive exploration of the space in
combination with a dynamic channel method. The proactive exploration means that
more navigation options are considered which are not necessarily pedestrian-free. This
is done by dividing the space into a set of navigation channel. Then estimating the state
of each channel based on its current pedestrian density, future predicted density and the
cooperation of pedestrians within it. Using this estimate along with its distance relative
to the vehicle and to the global path, the cost of navigating in each channel is estimated.
This is done using a proposed fuzzy model for the cost estimation. After considering all
the possible navigation options and their respective costs, the channel with the lowest
costs is selected as the goal destination. The transition to the goal channel is done using
a Qunitic path to ensure a smooth transition similar to the lane change manoeuvre
(Fig. 8.3). This ensures the legibility of vehicle movement, as such behavior is often
performed by experienced drivers on roads. The proposed system allowed us to explore
the possibility of proactivity by controlling the steering of the vehicle. This allows the
vehicle to find the best possible navigation direction and avoid the freezing when an
obstacle free path does not exist.
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Fig. 8.3.: The proactive dynamic channel method summary

The issue of evaluating the system performance was discussed in Chapter 6. The
different aspects of the performance to be evaluated is summarized in three main
category. The first is the safety of the vehicle’s motion around the pedestrians. This
can be evaluated using the collision rate and the time to collision during an interaction.
Furthermore, a collision analysis based on the velocity obstacle method was presented
to qualify the cause of a collision occurring in a simulation. The second category is
the trajectory quality which includes its smoothness, efficiency and the comfort of
a passenger along this trajectory. The third and final category is the comfort of the
pedestrians around the vehicle. Appropriate performance metrics were suggested for
each category. Moreover, the success/fail criterion for each metric was presented.

The three parts of the proactive navigation system were integrated and implemented
under ROS in Chapter 7. The system was tested in a diverse group of interaction
scenarios with variable pedestrian density and sparsity. The proactive system was also
compared with the reactive Risk-RRT method. The performance in the simulation was
evaluated using the previously presented performance metrics.

Finally, we can summarized the main conclusions of the work in the following points:

• A proactive behavior is necessary for a robotic system to navigate socially and
naturally among pedestrian crowds. Proactivity was approached in this work as
the way of increasing pedestrian cooperation. The system implementation presents
a proof of concept of the defined proactivity. The results proved the possibility of
applying a proactive control during navigation and influencing pedestrian behavior
in a desired manner.

173



• Cooperation is a natural behavior deployed by humans, and considering this
aspect in the navigation is essential for its success. Pedestrians have a tendency
to alter their trajectories and cooperate in different degrees depending on their
state and on the specific interaction. Therefore, it is important to understand the
degree to which a pedestrian is willing to cooperate and exploit this cooperation
during the navigation. Furthermore, building a behavioral model based on the
concept of cooperation is essential for a cooperative and proactive navigation
framework. Understanding what vehicle behaviors stimulate more cooperation on
the pedestrian side can be one of the keys to a proactive navigation system.

• There is an imperative requirement for reliable PVI simulators for the development
of social and safe autonomous navigation system. The navigation system must
be tested intensively in simulation before letting this potentially harmful robot
(the AV) operate around humans. Moreover, appropriate performance evaluation
metrics must be considered to evaluate the different aspects of the navigation.

• The proactive framework allows the system to navigate complex spaces much more
efficiently and improves the success rate of the navigation significantly. The results
of the integrated proactive navigation framework implementation in chapter 7
proved the efficiency of the system and its improvement over reactive navigation
systems. However, the performance of the navigation system is bound to be more
limited when the complexity of the space increases. The efficiency in terms of the
traveled time and a high level of pedestrian comfort cannot be maintained beyond
a certain level of pedestrian density. This level was close to 0.3ped/m2 according
to our analysis.

In this work we managed to suggest a first implementation of a proactive navigation
framework around pedestrians. However, the system still has some limitations and
would benefit from future development. These limitations combined with the premise of
the HIANIC project on human inspired navigation in crowds, creates the opportunity for
multiple extensions and future prospects. We can summarize the main points on future
improvements in the following:

• The proactive navigation framework presented in this thesis was tested and evalu-
ated in a simulated PVI environment under ROS. The next step is implementing
the system on an automated vehicle and evaluating the performance in real-time
testing. This can be done in the future by benefiting from the ICARs simulator
which is a ROS-based self-driving cars testing platform developed by the LS2N1

laboratory. The main benefit of ICARs is its multiple working modes options. In the

1Le Laboratoire des Sciences du Numérique de Nantes, https://www.ls2n.fr/
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Simulation Mode, the dynamics of the vehicle have been accurately implemented
using experimental data obtained with a physical car. This mode simulates the
vehicle’s sensors such as GPS, IMU, LiDAR and cameras. After testing the naviga-
tion system using this mode, the Real Time Mode can be run on-board of the self
driving car using the exact same architecture.

• The cooperation-based behavioral model proposed in this work can benefit from
multiple improvements. The perception range of a pedestrian, the possibility of a
distraction and weather the pedestrian perceived the AV or not should be included
in the model. Moreover, currently the model is based only on spatio-temporal
information. However, the model can benefit from integrating other sources of
information of the pedestrian state such as the body pose, gaze, facial and body
gestures. These information sources can be merged with the suggested model as
a way of estimating what we called the inner cooperation factor. Furthermore,
the navigation system can be significantly improved if more diverse PVI data is
considered in the development of the model, which leads us to our second point.

• There is an obvious lack in the collected PVI data globally. It is imperative to
have more diverse PVI data to understand pedestrian behavior around vehicles in
different situations and against different drivers and driving patterns. This can
either be real-life recorded data for natural interactions, or designed experiments
with prepared volunteers. However, both methods are challenging. The first due to
the privacy and consent of the recorded individuals. The latter due to the challenge
in designing the experiment itself and the challenge of obtaining natural behaviors
from volunteers conscious to the experiment. This takes us to the third point on
the importance of collaborating with the social sciences in this domain.

• The collaboration with social and cognitive sciences can be of great benefit to the
development of proactive and socially-aware navigation systems. This collabo-
ration can take place in two stages of the work. The first is PVI data collection
for understanding and modeling the pedestrian behavior. We have seen from our
own experiment the difficulty in obtaining free and natural trajectories from the
volunteers who in most cases would behave in a preconceived manner. Therefore,
it is important to have experts preparing volunteers to eliminate their basis from
natural behavior as much as possible. The second stage of the collaboration can
take part when evaluating the system performance in real experimentation around
pedestrians. In this stage, the goal of the collaboration would be to estimate
the safety and comfort of the pedestrians and even the passenger during the
navigation.
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• The proposed proactive navigation system was focused on the interactions with
pedestrians and did not consider dealing with static obstacles. The static obstacles
are assumed to be treated by the global path planner. However, it is important
to include the sensor-based static obstacles avoidance in the proposed lateral
controller using the proactive dynamic channel method. This can be done by first
modifying the navigation cost model of a dynamic channel to include an additional
cost caused by the existence of a static obstacle in the channel. This would be a
very important cost in some cases. If the size of this obstacle is big enough, then
it can eliminate the containing channel from the navigation options all together
(Fig. 8.4a). The sensor-based treatment of static obstacles can also be included
in the path generation layer after selecting a goal channel. This can either be by
maintaining an exact Quintic transition path but modifying its look-ahead distance
to avoid an obstacle of the way. Meaning to make the Quintic extend shorter to
pass before a static obstacle, as shown in Fig. 8.4b for example. This can also be
done by a modification of the Quintic or considering a different transition shape.
However, this part would require more in depth study to generate smooth and
legible trajectory around the pedestrians with the existence of static obstacles.

(a) A static obstacle can eliminate
channel CH1 from the

navigation options

(b) Modifying the Quintic transition (dashed black) to
avoid the static obstacle

Fig. 8.4.: Targeting static obstacle in the PDC method

• The proposed proactive framework can be integrated with a reactive driving system
under a global structure for decision making. The switching between the two
systems can be made based on the perceived situation. The system can switch to
highly reactive (slave) mode when perceiving an external agent with high priority
such as an ambulance vehicle for example. Similarly the system can be switched
to a highly proactive mode in case of passenger emergency for example. This can
also be approached by defining different levels of control proactivity instead of the
binary (reactive/proactive). This new proposed proactivity factor can be modeled
and estimated in the interaction scenarios based on the state of the space.
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• An extension of this work can be made to treat unmodeled or hazardous pedestrian
behaviors in shared spaces. Furthermore, more social influence can be integrated
in the work to consider diverse social relationships, such as dealing with pedestrian
groups or couples. This is to maintain the highest possible levels of pedestrians
comfort and ensure the social acceptance of the autonomous vehicle.

• A clear intention communication on the vehicle’s side is a very critical point to the
success of the proactive navigation. This has been discussed through the lateral and
longitudinal commands to produce legible motion. However, this aspect can also
be supported by a visual/audible communication system implemented on board
of the vehicle. This system should be linked to the navigation system through an
action interpretation layer to further communicate the vehicle’s proactivity to its
surroundings.

Finally, throughout this thesis we sat out to solve the problem of social and natural
autonomous navigation in shared spaces by deploying a proactive robotic behavior.
We managed to propose a first implementation for a proactive navigation framework.
This implementation showed very promising results and significant improvements over
the solutions based on reactive concepts. This enables us to solve the navigation
problem around pedestrians from a different perspective. A perspective based on
engaging the vehicle (or the robot) more actively in the navigation space by perceiving
intentions, expecting cooperation and influencing other agents. This can transform the
way autonomous vehicles or mobile robots function and increase their efficiency and
social awareness. We hope that the concepts and methods presented in this thesis could
open the door to more developments in the domain of social navigation and enable
more beneficial mobile robot applications to function safely around humans.
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Collected Pedestrian-Vehicle
Interaction Data: Visualization

A
This appendix includes a visualization of the recorded trajectories during the experiment
performed at the parking lot of the LS2N lab on the École Centrale de Nantes campus
(Sec. 3.5). Seventeen volunteers interact with a Renault Fluence vehicle with a driver
behind the wheel, during the experiment. The data is collected on board of the vehicle
using a perception system consisting of: 4 Camera, 1 Velodyne (VLP-16), 1 IMU and 1
GPS.

The experiment is comprised of 5 different interaction scenarios: Frontal, Back, Frontal-
Back, Lateral, Bi-lateral and Shared Space scenarios. Each volunteer is given a start and
goal point in the space and is asked to move in a free and natural way. The driver is
asked to move to a goal point as well with one of two driving patterns: an aggressive
driving pattern and a more yielding driving pattern where the priority is given to the
pedestrians.

In the following we presented the recorded trajectories in the XY plane for both the
vehicle and the pedestrians in the different interaction scenarios. The driving behavior
adapted in each scenarios (Yielding or Aggressive) is indicated below each figure.

Firstly, the three recorded bi-lateral crossing scenarios are shown in Fig. A.1 – Fig. A.3.

Secondly, the five recorded uni-lateral crossing scenarios are shown in Fig. A.4 – Fig.
A.8.

Thirdly, the nine recorded frontal crossing scenarios are shown in Fig. A.9 – Fig. A.17.

Fourthly, the two recorded back crossing scenarios are shown in Fig. A.18 and Fig. A.19.

Then, the two recorded frontal-back crossing scenarios are shown in Fig. A.20 and Fig.
A.21.

Finally, the five recorded shared space scenarios are shown in Fig. A.22 – Fig. A.26.
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Fig. A.1.: Bi-Lateral Crossing 1: Yielding Driver

Fig. A.2.: Bi-Lateral Crossing 2: Aggressive Driver
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Fig. A.3.: Bi-Lateral Crossing 3: Aggressive Driver

Fig. A.4.: Lateral Crossing 1: Yielding Driver
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Fig. A.5.: Lateral Crossing 2: Aggressive Driver

Fig. A.6.: Lateral Crossing 3: Yielding Driver
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Fig. A.7.: Lateral Crossing 4: Aggressive Driver

Fig. A.8.: Lateral Crossing 5: Aggressive Driver
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Fig. A.9.: Frontal Crossing 1: Aggressive Driver

Fig. A.10.: Frontal Crossing 2: Yielding Driver
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Fig. A.11.: Frontal Crossing 3: Aggressive Driver

Fig. A.12.: Frontal Crossing 4: Aggressive Driver
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Fig. A.13.: Frontal Crossing 5: Aggressive Driver

Fig. A.14.: Frontal Crossing 6: Yielding Driver

206 Appendix A Collected Pedestrian-Vehicle Interaction Data: Visualization



Fig. A.15.: Frontal Crossing 7: Aggressive Driver

Fig. A.16.: Frontal Crossing 8: Yielding Driver
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Fig. A.17.: Frontal Crossing 9: Aggressive Driver

Fig. A.18.: Back Crossing 1: Yielding Driver
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Fig. A.19.: Back Crossing 2: Aggressive Driver

Fig. A.20.: Frontal-Back Crossing 1: Yielding Driver
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Fig. A.21.: Frontal-Back Crossing 2: Aggressive Driver

Fig. A.22.: Shared Space 1: Yielding Driver
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Fig. A.23.: Shared Space 2: Aggressive Driver

Fig. A.24.: Shared Space 3: Yielding Driver
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Fig. A.25.: Shared Space 4: Aggressive Driver

Fig. A.26.: Shared Space 5: Yielding Driver
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Collected Pedestrian-Vehicle
Interaction Data: Statistics

B
This appendix includes the statistics of the recorded data during the experiment per-
formed at the parking lot of the LS2N lab on the École Centrale de Nantes campus (Sec.
3.5 and Appendix A).

Seventeen volunteers interact with a Renault Fluence vehicle with a driver behind the
wheel, and the data is collected on board of the vehicle. The experiment is comprised
of 5 different interaction scenarios: Frontal, Back, Frontal-Back, Lateral, Bi-lateral and
Shared Space scenarios. Each volunteer is given a start and goal point in the space and
is asked to move in a free and natural way. The driver is asked to move to a goal point as
well with one of two driving patterns: an aggressive driving pattern and a more yielding
driving pattern where the priority is given to the pedestrians.

In the following, we show the key observed statistics for both the vehicle trajectory data
and the pedestrians trajectories data.

B.1 Vehicle Statistics

Firstly, the linear velocity of the vehicle at the minimum approach distance to each
pedestrian in each interaction. This is done by computing the distance between the
vehicle and the pedestrians throughout each interaction. Then, the point of minimum
approach distance is found for each pedestrian in each interaction, and the linear
velocity of the vehicle at this point is what we refer to as the minimum approach
distance. The previous method results for one value of the minimum approach speed for
each pedestrian. These values of the vehicle speed are gathered based on the driving
pattern (aggressive or yield). Finally, the corresponding histogram of the values with
respect to the pedestrian count shown in Fig. B.1, where no obvious distinction was
found between the two driving modes in terms of the speed.

Secondly, the vehicle’s maximum linear acceleration value is computed for each recorded
interaction. These values are gathered based on the driving mode and the corresponding
histogram is plotted with respect to the recorded interactions count (Fig. B.3). The

213



Fig. B.1.: Histogram of the recorded vehicle speed at the minimum approach distance of the
pedestrians

figure shows larger values of the maximum vehicle acceleration in the aggressive driving
mode, on average, as compared to the yielding mode.

Fig. B.2.: Histogram of the recorded max vehicle acceleration in all interactions

Finally, the max linear acceleration value of the vehicle is computed for each recorded
interaction. The values are gathered based on the driving mode and on the interaction
type: lateral (uni and bi), frontal and back or shared space. This results in six categories.
The mean value for the max acceleration values in each each category is computed. The
resulting mean vehicle max acceleration points are shown on Fig. B.3. We notice that
the vehicle achieves higher levels of acceleration in the aggressive mode. However, the
difference in acceleration between the two modes becomes much smaller in the frontal
and back interactions.
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Fig. B.3.: Recorded mean value for the vehicle’s max acceleration in an interaction across the
different interaction types and driving modes

B.2 Pedestrian Statistics

Firstly, the speed of the pedestrians during the interactions are examined. Fig. B.4 shows
the histogram on the average pedestrians speed, whereas, Fig. B.5 shows the histogram
of the maximum speed for each pedestrian in each interaction. The pedestrians maintain
on average lower speed in the yielding driving mode. However, the do reach similar
levels of maximum speeds during one point of the interaction in both modes.

Fig. B.4.: Histogram of the average pedestrian speed in the collected data

Secondly, the recorded values of pedestrian acceleration is observed. Fig. B.6 shows the
histogram of the average acceleration value for each pedestrian in each interaction, and
Fig. B.8 shows the histogram of the maximum acceleration value for each pedestrian
in each interaction. Moreover, Fig. B.8 shows the pedestrian acceleration values at the
vehicle’s minimum approach distance. The previous values were all gathered based on
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Fig. B.5.: Histogram of the maximum pedestrian speed in the collected data

the driving mode. However, no significant difference was noted between the two modes,
other than a number of higher acceleration values reached with the yielding mode.

Fig. B.6.: Histogram of the average pedestrian acceleration in the collected data

Finally, the distance left between the pedestrians and the vehicle is analysed. Fig. B.9
shows the histogram of the vehicle’s minimum approach distance to each pedestrian in
each interaction, and Fig. B.10 shows the histogram of the average overall distance left
between the vehicle and each pedestrian during each interaction. The vehicle can be in
very close proximity to the pedestrian (≤ 0.1m) even in the yielding mode. However,
the pedestrians do maintain larger minimum approach distances to the vehicle in the
aggressive mode.
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Fig. B.7.: Histogram of the maximum pedestrian speed in the collected data

Fig. B.8.: Histogram of the average pedestrians’ minimum approach speed in the collected
data

Fig. B.9.: Histogram of the minimum approach distance in the collected data
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Fig. B.10.: Histogram of the average pedestrian-vehicle distance in the collected data
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Pedestrian Behavioral Model
Results

C
The appendix includes a more detailed visualization of the output of the pedestrian
cooperation behavioral model proposed in Chapter 3 and in Sec. 3.4.1. In the following
we explore the result of the trajectory prediction when applied to two scenarios of the
VCI-CITR1 data-set: one bi-lateral and one frontal crossing. The prediction is done over
a future prediction horizon of 5s

C.1 Lateral Crossing Results

Fig. C.1 and Fig. C.2 show an example of the trajectory prediction model output using
the generalized cooperation model in a bi-lateral crossing scenario. On Fig. C.1 the real
trajectories from the data-set are shown with a black contouring circles, whereas, the
predicted trajectory in shown without a contour. The starting point for the vehicle and
for each agent is marked with a red "X" mark. Moreover, a unique ID is given to each
pedestrian. To better examine the prediction quality, the respective linear velocity and
orientation estimation are shown on Fig. C.2 for each pedestrian during the interaction.
Where the number on each sub-figure corresponds to the unique pedestrian ID given on
Fig. C.1. The model manages to capture similar speed and orientation patterns for the
pedestrians. An inverse orientation estimation is noted in many cases, however, with a
similar orientation pattern.

1https://github.com/dongfang-steven-yang/vci-dataset-citr
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Fig. C.1.: Trajectory prediction model output in a bi-lateral interaction scenario. Black
contour: Real. No contour: Predicted. X: starting point

C.2 Frontal Crossing Results

Similarly to the lateral case, we show the prediction results for one of the frontal
interaction cases. Fig. C.3 and Fig. C.4 show an example of the trajectory prediction
model output using the generalized cooperation model in a frontal crossing scenario.
The figures shows the predicted trajectory for each pedestrian and the corresponding
linear speed and orientation estimation errors.
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(a) Linear velocity estimation error for each pedestrian

(b) Orientation estimation error for each pedestrian

Fig. C.2.: Trajectory prediction error corresponding to the trajectories in Fig. C.1
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Fig. C.3.: Trajectory prediction model output in a frontal interaction scenario. Black contour:
Real. No contour: Predicted. X: starting point
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(a) Linear velocity estimation error for each pedestrian

(b) Orientation estimation error for each pedestrian

Fig. C.4.: Trajectory prediction error corresponding to the trajectories in Fig. C.3
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Deriving The Trajectory
Prediction Error Gradient

D

Assuming a pedestrian j in interaction with the vehicle, where the pedestrian and the
vehicle models are as in 2.7.2. The pedestrian cooperation based trajectory planning
model (in 3) can be written as:

VjVjVj(t) = C1P j
m(t) + C2 (D.1)

where VjVjVj(t) is the velocity vector:

VjVjVj(t) = [Vj(t),∠VjVjVj(t)]T (D.2)

and:

P j
m(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CFj(t).Ij
V (t)

CFj(t).Θj
V (t)

[1− CFj(t)] .Θj
goal(t)

[1− CFj(t)] .Dj
goal(t)

Ij
P (t)

θj
P (t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(D.3)

C1 = [C1[0], C1[1]]

C2 = [C2[0], C2[1]]T

with C1[0] = [c00, ..., c04] and C1[1] = [c10, ..., c14]. and the pedestrian generalized
cooperation model is written as:

CFj(t) = a0P[j,veh](t) + a1Dj(t) + a2Ij
P (t) + a3

V a
m(t)

VP max
+ ICF (D.4)

where ICF is the inner cooperation factor we aim to update online by minimizing the
trajectory prediction error.
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Assuming V real
jV real
jV real
j (t) and V pred

jV pred
jV pred
j (t) are the observed and predicted velocity of agent j at

time t, then the trajectory prediction error over a time window [t0, t0 + tk] can be written
as:

Jpred(tk) = 1
tk

∫︂ tk

t=t0

(︂
V real

jV real
jV real
j (t)− V pred

jV pred
jV pred
j (t)

)︂T
AJ

(︂
V real

jV real
jV real
j (t)− V pred

jV pred
jV pred
j (t)

)︂
dt (D.5)

where Aj is a diagonal matrix:

Aj =
[︄ 1

Vmax
0

0 1
2π

]︄
(D.6)

and Vmax = 5.5m/s is the maximum allowed velocity for the vehicle.

Therefor, the gradient of the trajectory prediction with respect to ICF can be written
as:

∇Jpred(tk) = 2
tk

∫︂ tk

t=t0
AJ

(︂
V real

jV real
jV real
j (t)− V pred

jV pred
jV pred
j (t)

)︂⎛⎝∂V pred
jV pred
jV pred
j (t)

∂ICF

⎞⎠T

dt (D.7)

By substituting the partial derivative of the predicted velocity from the cooperation
model, we get:

∇Jpred(tk) = 2
tk

∫︂ tk

t=t0
AJ

(︂
V real

jV real
jV real
j (t)− V pred

jV pred
jV pred
j (t)

)︂ (︂
Cs.P j

s (t)
)︂T

dt (D.8)

with:

Cs =
[︄

c00 c01 −c02 −c03

c10 c11 −c12 −c13

]︄
(D.9)

P j
s (t) =

⎡⎢⎢⎢⎢⎢⎣
Ij

V (t)
Θj

V (t)
Θj

goal(t)
Dj

goal(t)

⎤⎥⎥⎥⎥⎥⎦ (D.10)
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Deriving The Model Gradients
For Computing The Proactive
Longitudinal Velocity Control

E

Assuming a pedestrian j in interaction with the vehicle, where the pedestrian and the
vehicle models are as in 2.7.2. The pedestrian cooperation model, and the pedestrian
linear velocity from the cooperation based trajectory planning model (in 3) can be
written as:

CFj(t) = a0P[j,veh](t) + a1Dj(t) + a2Ij
P (t) + a3

V a
m(t)

VP max
+ B (E.1)

Vj(t) = C1[0]P j
m(t) + C2[0] (E.2)

where:

P j
m(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CFj(t).Ij
V (t)

CFj(t).Θj
V (t)

[1− CFj(t)] .Θj
goal(t)

[1− CFj(t)] .Dj
goal(t)

Ij
P (t)

θj
P (t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(E.3)

and C1[0] = [c00, ..., c04], C2[0] ∈ R.

The gradients of both the pedestrian cooperation and velocity can be obtained assuming
that: When a pedestrian is inside the vehicle’s influence zone, the effect of the sur-
rounding pedestrians on the pedestrian behavior is much smaller than the effect of the
vehicle.

Assuming u(t) is the longitudinal velocity control of the vehicle. Using the previous
assumption, we can write:

∂uCFj(t) = a0∂uP[j,veh](t) + a3
VP max

∂uVj(t− 1) (E.4)

227



therefore the gradient of the cooperation can be written as in (4.23)

∂uCFj(t) = F2
(︂
∂uP[j,veh](t), ∂uVj(t− 1)

)︂
F2 : R2 → R

F2
(︂
∂uP[j,veh](t), ∂uVj(t− 1)

)︂
= a0∂uP[j,veh](t) + a3

VP max
∂uVj(t− 1)

(E.5)

To express the gradient of the pedestrian’s linear velocity as in (4.22), let’s write the
gradients of the vehicle influence parameters (deformation and deformation angle). We
have the deformation of the cooperation zone due to vehicle intrusion is written as:

Ij
V (t) = 1

2π

∫︂ 2π

α=0

RC − d(α, t)
RC

dα (E.6)

where d(α, t) is the deformation radius at angle α and time t which is proportional to
the minimum distance between the pedestrian and the vehicle:

d(α, t) = dkDmin
j (α, t) : dk ∈ R∗

+ (E.7)

Moreover, the cooperation zone weighted deformation angle is defined as:

Θj
V (t) =

1
2π

∫︁ 2π
α=0 (RC − d(α, t)) αdα

Ij
V (t)

(E.8)

The gradients of the two previous parameters are:

∂uIj
V (t) = 1

2π

∫︂ 2π

α=0

−dk∂uDmin
j (α, t)

RC
dα (E.9)

∂uΘj
V (t) = 1

2π

Ij
V (t)

∫︁ 2π
α=0

(︂
−dk∂uDmin

j (α, t)
)︂

αdα− ∂uIj
V (t)

∫︁ 2π
α=0 (RC − d(α, t)) αdα(︂

Ij
V (t)

)︂2

(E.10)
Therefore, we can write:

∂uIj
V (t) = g1(∂uDmin

j )

g1 : R→ R

g1(∂uDmin
j ) = 1

2π

∫︂ 2π

α=0

−dk∂uDmin
j (α, t)

RC
dα
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and

∂uΘj
V (t) = g2(∂uDmin

j )

g2 : R→ R

g2(∂uDmin
j ) = 1

2π

Ij
V (t)

∫︁ 2π
α=0

(︂
−dk∂uDmin

j (α, t)
)︂

αdα− g1(∂uDmin
j )

∫︁ 2π
α=0 (RC − d(α, t)) αdα(︂

Ij
V (t)

)︂2

By substituting this along with (E.4) in (E.2), we can write:

∂uVj(t) =CF (t)
[︂
a0g1(∂uDmin

j (t)) + c01g2(∂uDmin
j (t))

]︂
+ [a0∂uP[j,veh](t) + a3

VP max
∂uVj(t− 1)][c00Ij

V (t) + c01Θj
V (t)]

which is equivalent to the writing in (4.22):

∂uVj(t) = F1
(︂
∂uVj(t− 1), CFj(t), ∂uP[j,v](t), ∂uDmin

j (t)
)︂

F1 : R4 → R

F1
(︂
∂uVj(t− 1), CFj(t), ∂uP[j,v](t), ∂uDmin

j (t)
)︂

= CF (t)
[︂
a0g1(∂uDmin

j (t)) + c01g2(∂uDmin
j (t))

]︂
+ [a0∂uP[j,veh](t) + a3

VP max
∂uVj(t− 1)][c00Ij

V (t) + c01Θj
V (t)]
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SMC for Quintic path following F
F.1 Vehicle Model (Reminder)

Let (O, XG, YG) be the global Cartesian Coordinates map frame. Two additional local
coordinate frames are used in this work (Fig. F.1). The first is the the vehicle’s local
Cartesian Coordinates frame (OV , XV⃗ , YV⃗ ), where OV is the center of mass of the vehicle
and xV⃗ is in the direction of the longitudinal velocity of the vehicle v⃗ . The second
local frame is a Frenet frame [Fre52]. this frame can be computed analytically at
arbitrary points along a curve, which makes it convenient for path tracking applications.
The Frenet frame is defined by the tangential and normal vectors at a certain point
of a reference curve. To use Frenet frame with degenerate curves (straight paths for
example), the tangential is defined in the same direction of the path in this case. In the
following: the symbols Xg, Xv and XFC denotes the coordinates of a point X expressed
in the global frame, the vehicle frame and the Frenet frame of a curve C respectively.

Fig. F.1.: Vehicle local frame and the Frenet frame

The vehicle model used in this work is a kinematic bicycle model expressed in the Frenet
frame, with a zero slip assumption. This model is convenient since the navigation among
pedestrians imposes low velocities and acceleration limits on the vehicle [Pol+17]. As
shown in Figure ??.a, the vehicle model is defined in the Frenet frame of a path C
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using the the lateral displacement of the vehicle and the traveled path length (el and s

respectively), and heading error angle θ̃. The heading error is the difference between the
vehicle heading respect to the global frame θ = ( ˆ︂XG, XV ) and θc = ( ˆ︁XG, t) the heading
angle of the tangential vector of the frame. Assuming OR to be the center of the rear
axis, the vehicle model can be written at OR as follows: [CSB96]

ṡ = v cos (θ̃) 1
1− elκ(s) el̇ = v sin (θ̃) (F.1)

θ̇̃ = w − v cos(θ̃) κ(s)
1− elκ(s) v̇ = a (F.2)

where κ(s) is the curvature of the path, and w = v
L tan(δ) (L is the length of the vehicle

and δ is the steering control input).

F.2 SMC implementation

To implement the SMC, we start by defining a tracking error to the selected Quintic
transition path (eq). Then, a sliding surface is designed using this tracking error. Finally,
the local steering control is derived by insuring the closed-loop stability of the system.

Firstly, the model of the vehicle is expressed in the Frenet frame of the goal channel.
Since the goal channel has zero curvature we can write the vehicle kinematics as
follows:

ṡ = v cos (θ̃) el̇ = v sin (θ̃) (F.3)

θ̇̃ = w = v

L
tan(δ) v̇ = a (F.4)

Fig. F.2.: Quintic path tracking errors

232 Appendix F SMC for Quintic path following



Two tracking errors are used. One lateral displacement error and another heading error.
These two heading errors can be written with respect to the vehicle model in the Frenet
frame of the goal channel FC as follows:

Elat(s) = el(s)− eq(s) (F.5)

Eθ(s) = θ̃(s) (F.6)

and the global tracking error is written as:

E(s) = ELat(s) + dsEθ(s) : ds ∈ R∗
+ (F.7)

Since the relative input-output degree of our system is two, a first degree sliding surface
σ is selected:

σ =
(︃

d

dt
+ λ

)︃
E(s) (F.8)

= ĖLat(s) + λELat(s)⏞ ⏟⏟ ⏞
σLat

+ds

[︂
Ėθ(s) + λEθ(s)

]︂
⏞ ⏟⏟ ⏞

σθ

(F.9)

where λ ∈ R∗
+ defines the unique pole of the reduced dynamics system resulting in

the closed loop. The control required to reach the goal state (E(s) = 0, Ė(s) = 0) is
composed of two parts. These two modes are an equilibrium control which drives the
system to the sliding surface (δeq), and a sliding control δs. The sliding control part
keeps the system close to the sliding surface until the goal state is reached.

The previous equilibrium control is achieved when σ is constant:

δeq = δ|σ̇=0 (F.10)

σ̇ = 0 => σ̇Lat = −dsσ̇θ (F.11)

σ̇Lat = ĖLat(s) + λËLat(s) (F.12)

ĖLat(s) = v sin(θ̃)⏞ ⏟⏟ ⏞
ėl(s)

− ṡ
∂eq(s)

∂s⏞ ⏟⏟ ⏞
∂seq

(F.13)
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let’s use: ∂seq = ∂eq(s)
∂s . we have:

ṡ = v cos(θ̃) (F.14)

Therefore:
ĖLat(s) = v

[︂
sin(θ̃)− cos(θ̃)∂seq(s)

]︂
(F.15)

Now let’s compute ËLat(s):

ËLat(s) = a
[︂
sin(θ̃)− cos(θ̃)∂seq(s)

]︂
+ v.w

[︂
cos(θ̃) + sin(θ̃)∂seq(s)

]︂
− v cos(θ̃)∂2

s eq(s)ṡ
(F.16)

then:

ËLat(s) = sin(θ̃) [a + v.w.∂seq(s)] + cos(θ̃) [vw − a∂seq(s)] + v2 cos2(θ̃)∂2
s eq(s)

(F.17)
and σ̇Lat:

σ̇Lat = w.λ.v
[︂
cos(θ̃) + ∂seq sin(θ̃)

]︂
+ sin(θ̃) [v + λa]− cos(θ̃)∂seq(s) [v + λa] + λv2 cos2(θ̃)∂2

s eq(s)⏞ ⏟⏟ ⏞
G1(a,v,θ̃,s,λ)

(F.18)

then:
σ̇Lat = w.K0(θ̃, s, λ) + G1(a, v, θ̃, s, λ) (F.19)

with:
K0(θ̃, s, λ) = λ.v

[︂
cos(θ̃) + ∂seq sin(θ̃)

]︂
(F.20)

and:

G1(a, v, θ̃, s, λ) = sin(θ̃) [v + λa]− cos(θ̃)∂seq(s) [v + λa] + λv2 cos2(θ̃)∂2
s eq(s) (F.21)

Now lets find σ̇θ:
σ̇θ = Ėθ(s) + λËθ(s) (F.22)

since: Eθ = θ̃, then:
Ėθ(s) = θ̇̃ = w (F.23)

Ëθ(s) = ẇ (F.24)

Then:
σ̇θ = w + λẇ (F.25)
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Now to find the equilibrium control it is enough to plug the results we obtained in the
following equation:

δeq = δ|σ̇=0 (F.26)

σ̇Lat + dsσ̇θ = 0

K0(θ̃, s, λ)w + G1(a, v, θ̃, s, λ) + dsw + λdsẇ = 0
(F.27)

[︂
K0(θ̃, s, λ) + ds

]︂
w + λds.ẇ = −G1(a, v, θ̃, s, λ) (F.28)

with the assumption: δ̇ << 1:
w = v

L
tan(δ)

ẇ = a

L
tan(δ)

(F.29)

Then:
tan(δeq)

[︂
v.K0(θ̃, s, λ) + ds.(v + λ.a)

]︂
= −L.G1(a, v, θ̃, s, λ) (F.30)

then the equilibrium control:

δeq = tan−1
(︄

−L.G1(a, v, θ̃, s, λ)
v.K0(θ̃, s, λ) + ds(v + λ.a)

)︄
(F.31)

with the constraint:
v.K0(θ̃, s, λ) + ds(v + λ.a) ̸= 0 (F.32)

Noting that if the vehicle is stationary v = 0→ a = 0 we get a singularity of the system
where the steering cannot be derived using the previous controller and in this case we
use δeq = 0.

Several methods are used in the literature to derive the sliding mode control part. To
avoid the chattering phenomena which occurs in simpler first order SMC, we use the
“Super Twisting” second order algorithm [SU16]. The “Super Twisting” can be seen as a
nonlinear version of the classic PI controller, where the sliding control is chosen as:

δs = −γ1

√︂
|σ|sign(σ) + c

with: ċ = −γ0sign(σ)
(F.33)

with the constants: γ1 = U, γ0 = 1.1U , where U ∈ R+ is a constant to be tuned. Finally,
given an initial state of the vehicle (s, el, θ, v, a) and a goal channel C, the steering
control is computed as:

δ = δeq + δs (F.34)
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Parameters Values G
In the following table we display the values of all the parameters used in this work. This
includes both the models and the controllers paramerters.

General Parameters
Parameter Value

Vmax 5.5m/s

VP max 6.5m/s

TF 60s

Th 10s

L 4m

W 2m

LV 4.4m

W 2.2m

Rped 0.3m

RP 2m

RC 10m

Φ [0.449, -0.952, 0.0476, -0.460]
[α1, α2, α3] [0.04, 0.2, 1]
[β0, β1, β2] [1, 0.06, 0.12]

LH 10v

ds 2
λ 10
U 10
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