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INTRODUCTION

In order to manufacture an item, several operations are generally performed in succes-
sion, such as drilling, cutting, welding, assembly. Some of these tasks can be executed by
automatic machines, possibly with several repetitions per second. However, such machines
lack of flexibility, in the sense that they are usually designed to accomplish a very spe-
cific task in controlled conditions. As an example, components might need to be precisely
positioned on a conveyor belt in order for a machine to properly perform its task. On the
other hand, a human operator offers much more flexibility. A badly positioned component
does not pose major issues for a human worker, who can, in addition, perform a variety
of tasks according to the needs of the production line. Nonetheless, human operators are
inadequate for the execution of tasks that require millimeter (or even micrometer) preci-
sion, and in addition they can experience health issues such as repetitive motion injuries
due to execution of similar tasks over and over.

The use of robotic systems can improve the productivity since, like automatic ma-
chines, they can execute tasks with high repeatability and reliability. However, they can
also be reprogrammed, and therefore, like human operators, can be assigned to differ-
ent tasks depending on the production needs. Nonetheless, their productivity can still be
limited. As mentioned before, one of the main advantages of having humans perform a
given operation is their ability to adapt to mutable contexts, in which, as an example,
objects might not be precisely positioned on a conveyor. To provide the same level of ro-
bustness and flexibility, robotized manufacturing systems must be equipped not only with
proprioceptive sensors, such as motor encoders used in low-level joints control, but also
with exteroceptive ones, allowing to gather information about both the objects to interact
with and the surrounding environment. These additional sensors often correspond to vi-
sion systems composed of one or more cameras, allowing to gather information about the
relative position between a target object and the actuated robot. Visual signals can then
be used to evaluate control inputs that are robust with respect to several uncertainties,
such as modeling and calibration errors, ultimately allowing an arm to precisely position
itself with respect to the observed object.

Unfortunately, the motion that results from such control strategies is generally slow,
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Introduction

due to a combination of factors. As an example, images are affected by motion blur, making
object detection and tracking harder and less reliable at higher speeds. Furthermore, the
models that describe the interaction between the sensing and sensed systems are often
formulated at a kinematic level, considering at most velocity information. With faster
motions, however, the accelerations and the effects due to the dynamics become non-
negligible and should be considered in the design of robot controllers by means of new,
richer models. Even if these have not yet been used extensively in the research or industrial
domain, few existing works suggest that they are indeed a fundamental ingredient required
to attain high-speed performances. More specifically, the studies by Dahmouche [Dah+12]
and Ozgur [Ozg+13] showed that including this “second-order” information to describe
the evolution of the visual features allows to obtain a simultaneous estimation of the pose
and velocity of the platform of parallel manipulators moving at high speed. Additional
investigations in this field were conducted by Vandernotte [Van+16], who used acceleration
models to establish a direct connection between vision and robot dynamics.

As for the problem of controlling the robot, almost all works that investigated the use
of this new type of interaction focused on the use of feedback linearization techniques,
usually in the form of a proportional and derivative control [Dah+12; KX12]. While this
ensures desirable properties such as robustness with respect to calibration errors, it also
presents some drawbacks. Just to provide some examples, motions can be longer than
necessary, there are no guarantees of maintaining object visibility, joint limits could be
violated. To deal with these issues, Model Predictive Control (MPC) can be employed
[ACC10]. Not only it can take into account constraints imposed on the system, but it can
also guide the robot through a path that is shorter, thus reducing the time to completion
of a task.

These concepts are just some of the topics investigated by the PROMPT (Perfor-
mances de la Robotique Manufacturière en Perception de Tâche) project, of which this
thesis is part. It is one of the projects funded by RFI Atlanstic 2020 1, and its overall
goal is to define a set of new methodologies which allow to enhance the execution speed
of sensor-based servoing tasks. This can be achieved by considering multiple, parallel,
improvements in different fields. First of all, more advanced perception algorithms can
be used to fusion altogether data gathered by different sensors, both exteroceptive and
proprioceptive ones. As an example, information relative to an observed object can be
acquired via a perspective camera, while an Inertial Measurement Unit measures the

1. https://atlanstic2020.fr/
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velocity and acceleration of a moving sensor. Using filtering techniques, it is possible to
better estimate the relative motion of the two entities. Moreover, by optimally placing the
sensors within the environment and on the controlled system, it is possible to enhance the
reliability of the estimation. Another mean to reduce the execution time of a task is the
use of better models that provide a richer information about the evolution of the system
with respect to its environment, in particular, allowing to properly express the dynamics
relating them. Finally, advanced control laws should be considered that are capable of
guiding the system from an initial to a desired configuration by following a better path
and in a shorter amount of time.

The work presented in this manuscript focuses on these last topics. In particular, it
studies the second-order interaction of eye-in-hand robotic configurations, potentially for
any type of feature, and compares it to more classical strategies. Furthermore, it builds, on
top of the acceleration models, advanced control schemes based on the MPC formulation.
The goal is to use the acceleration information to define better predictors that can more
adequately steer the sensor towards the desired configuration. The approach is validated
both in simulation and with real experiments, and for different types of features. Finally, a
last contribution aims at reducing the computational burden of the nonlinear optimization
involved in predictive strategies, which in some cases might prevent real-time feasibility.
It is based on the work by Alamir [Ala06] on input parameterizations, and can effectively
reduce the time needed to evaluate control commands. A test involving a visual trajectory
tracking task is proposed to underline the appeal of this approach.

Chapter 1 presents an overview of classical visual servoing modeling and Image Based
Visual Servoing (IBVS), followed by details on few more advanced schemes that try to
enhance the quality of the sensor motions and to ensure satisfaction of generic constraints
along the path. The following chapter introduces second-order models, discussing their
relation with the dynamics of the robot and detailing how feedback controllers can be
defined on top of them. An brief review of MPC is then presented in Chapter 3, with a focus
on predictive strategies applied to visual servoing, and the original work that combines
MPC and second-order models is then detailed. Chapter 4 provides the fundamental ideas
of “control parameterization” for MPC applications. It also describes several simulations
that were performed to validate the concept. Finally, the general conclusions are reported,
as well as the perspective for future works and improvements.
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Chapter 1

VISUAL SERVOING

Visual Servoing is a robust control technique that allows precise positioning of a sensor
with respect to an observed object. It is robust to modeling errors and features a large
convergence domain thanks to the use of sensor measurements directly in the control loop.

The positioning task is achieved by actively regulating a set of descriptive features,
which are extracted from the visual information. The key idea is that when the value of
these features is changed, the relative pose of the sensor with respect to the object has to
change accordingly. More specifically, the positioning task can be achieved by regulating
the features to what the sensor would measure when properly positioned in front of the
object, as sketched in Figure 1.1.

Several servoing schemes can be found in the literature, each one characterized by dif-
ferent kind of features and different control laws. In particular, a distinction is commonly
made between 2D features, that can be extracted directly from images, and 3D ones,
which need to be reconstructed from sensor measurements [WHB96; Thu+02]. Schemes
that use the first set of features are commonly referred to as Image Based Visual Servoing
(IBVS), while those based on 3D information are named Position Based Visual Servoing
(PBVS). Hybrid approaches are also possible, in which both 2D and 3D features are used
at the same time. Despite these differences, all schemes exploit the same formalism based
on the interaction matrix, which provides a connection between the motion of a sensor and
the resulting changes of the features. Using these models, a feedback control law can be
established that steers the features to the desired configuration, and consequently moving
the sensor in the proper location.

Simulations and experiments included in this thesis used only 2D features, and for this
reason the second section of this chapter briefly illustrates IBVS control, focusing on the
case in which normalized image points are used as features. More advanced approaches are
then discussed, tackling the issues that come from the basic approach. These approaches
attempt to solve some well-known issues arising from the use of normalized coordinates.
The goal is to obtain better sensor motions in the operational space, which represents

13



Chapter 1 – Visual Servoing

(a) An object observed from different poses. (b) Object projection in the two views.

Figure 1.1 – A perspective camera observing a rectangular object from different views.
Moving the camera from one pose to the other is equivalent to moving the corners of the
projected shape from one image to the other.

indirectly a way to shorten motions and thus speedup task execution.
Finally, some works that focused on servoing under constraints are presented. Typical

constraints that are to be enforced are the visibility of the observed object and keeping the
joints within their mechanical limits, which were considered in the original contribution
presented in Chapter 3.

1.1 Modeling and control

1.1.1 The Interaction Matrix

In order to achieve the task of regulating the relative position between a sensor and
an observed object, a set of descriptive features is firstly selected. Their values is gathered
in a vector, denoted as s ∈ Rns , which can be extracted directly or by reconstruction
from the measurements acquired by one or more sensors. The goal of the servoing task
then becomes to regulate the value of the features to a desired one, denoted as s?. For
this purpose, it is first of all necessary to describe how the feature vector evolves as a
function of the motion of the sensor and of the object. The most common approach in
this sense is to use a kinematic relation that expresses the time derivative of the features,

14



1.1. Modeling and control

ṡ, in function of the relative sensor-object motion:

ṡ = Ls (s, z) v (1.1)

The matrix Ls (s, z) ∈ Rns×6 is known in the literature as interaction matrix, and is in
general a function of the features themselves and of a set of nz parameters z. To shorten
the notation in the sequel, the dependency on s and z will be implicitly assumed, and
only Ls will be written unless needed otherwise.

The vector v in (1.1) represents a kinematic screw, or twist, describing the instanta-
neous motion of the sensor frame Fc relative to the object frame Fo. In practice, it consists
in the concatenation of both the linear and angular velocities (v and ω respectively) of
the sensor with respect to the object, and expressed in the coordinate system of the sensor
itself.

One interesting aspect of this formulation is that it unifies multiple setups at once,
since in the kinematic relation defined above it is not specified which frame is the moving
one. When the observed object is stationary and the features change due to the motion
of the sensor, the setup is commonly named eye-in-hand configuration. In this case, the
relative twist can be expressed as:

v =
 Rw T

c vw c

Rw T
c ωw c

 =
 Rw T

c

Rw T
c

 vw c

ωw c

 = Tc w vw c (1.2)

wherein vw c is the twist of the sensor with respect to a fixed “world” frame Fw, while
Rw c ∈ SO(3) is the rotation matrix representing the orientation of Fc with respect to Fw.
Conversely, a eye-to-hand configuration is obtained whenever a fixed sensor observes

a moving object. In this case, denoting with tc o/c the translation vector from the origin of
Fc to that of Fo and expressed in the sensor frame, the expression of the kinematic screw
v writes as:

v = −
I

[
tc o/c

]
×

I

 Tc w vw o = − Vc o Tc w vw o (1.3)

in which Tc w has the same meaning as before, and vw o represents the linear and angular
velocity of the object in the fixed frame Fw.

It is also possible to consider hybrid cases with multiple sensors in different configura-
tions [FCM00; LSV05], or in which both the sensor and the object are moving [MKF08].
However, it usually the case that only one of the two motions is caused by the actuation
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Fw

FcFo

vc

(a) Eye-in-hand (b) Eye-to-hand

Figure 1.2 – Examples of (a) eye-in-hand and (b) eye-to-hand [CSC16] configurations. On
the left, the relevant frames are named as proposed in the text, while on the right the
naming used in the original paper has been kept. In practice, Fw corresponds to {t}, Fc
to {c} and Fo to {h}.

of the robotic system, while the other is assumed to be a disturbance. In these cases, it is
rather common to rewrite the interaction model as:

ṡ = Lsv + ∂s

∂t
(1.4)

wherein v corresponds to the relative kinematic screw that would be obtained solely due to
the actuation. The second term takes into account the contribution due to the uncontrolled
motion, and usually has to be estimated and compensated for [BC95; Gin+05; Sha+13].

The interaction model (1.1) provides a link between the rate of change and the relative
sensor motion in Cartesian space. However, it can also be rewritten in terms of the gen-
eralized coordinates of the controlled system. In particular, for a serial kinematic chain
featuring nq joints, the time derivative of s can be expressed as a function of the joint
velocities q̇ ∈ Rnq :

ṡ = Jsq̇ (1.5)

Js is sometimes referred to as feature Jacobian [CH07], and takes a different form de-
pending on the type of servoing configuration:

Js = Ls Tc wJ (eye-in-hand) (1.6a)
Js = −Ls Vc o Tc wJ (eye-to-hand) (1.6b)

16



1.1. Modeling and control

In both cases, J is the robot Jacobian providing the end-effector velocity expressed in
the base frame of the robot [KD04], and is a function of the current joint coordinates
q. Moreover, it is assumed that Fw coincides with the base of the robot, while the end-
effector frame Fee coincides with Fc in the case of an eye-in-hand configuration, and with
Fo for a eye-to-hand setup.

1.1.2 Control via Visual Feedback

To control the relative positioning of the sensor with respect to an object it suffices
to regulate the values of the descriptive features to a given desired configuration s?. This
is commonly achieved using the task function formalism [SE91], in which the objective is
to regulate the feature error

es
.= s− s? (1.7)

to zero. The most common approach in this sense is to attempt to enforce an exponential
decay of the error by imposing the desired profile ės = −λes, in which λ is a positive
proportional gain. Considering (1.5), and assuming the joint velocity of the manipulator
to be the control input of the system, the problem is thus equivalent to solve the linear
system

Jsq̇ = ṡ? − λes (1.8)

in which ṡ? provides a feed-forward derivative term, which can be assumed null if a
fixed configuration has to be attained. The system admits a unique solution in q̇ only if
Js is squared and non-singular, which is not necessarily always true, and thus only an
approximate solution will be possible in general. The system is thus solved in the least
squares sense, obtaining the following proportional control law:

q̇ = Ĵ+
s (ṡ? − λes) (1.9)

where Ĵ+
s represents an estimation of the pseudo-inverse of the feature Jacobian. This

control law can be proven locally stable in a neighborhood of s? [CH06] given that a
sufficiently good approximation of Js is used. There are different factors that can influence
the stability of such control law, such as geometric calibration errors, and uncertainty in
the parameters z. Nonetheless, the advantage of visual servoing is that it is rather robust
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Chapter 1 – Visual Servoing

to such modeling uncertainties, and a coarse estimation of the parameters is often sufficient
to ensure local stability.

1.2 Image-Based Visual Servoing

IBVS schemes focus on the case of features that can be extracted directly from image
measurements, as opposed to PBVS [WHB96; Thu+02] and hybrid approaches [MCB99;
MC02a] in which at least some of the features need to be reconstructed via pose estimation
algorithms [DD95; Com+06]. One of the advantages of regulating quantities that come
directly from the vision sensor is thus that little if no knowledge at all of the observed
object is required.

Arguably the most common servoing scheme is based on the use of normalized points
as features, even though other geometric primitives can be used such as lines or ellipses
[ECR92; CRE93]. Given a set of 3D points, each with coordinates Xi, Yi and Zi expressed
in the sensor frame Fc, their normalized coordinates can be used as features, i.e.,

s =



x1

y1

x2

y2

· · ·


=



X1/Z1

Y1/Z1

X2/Z2

Y2/Z2

· · ·


(1.10)

The extraction and tracking of these coordinates from an image can be achieved using
several well-established techniques, such as those based on SIFT (Scale Invariant Fea-
ture Transform) [Low99] or SURF (Speeded Up Robust Features) [BTV06] descriptors,
and a conversion from pixel to normalized coordinates can be obtained from the sensor
projection model.

The interaction matrix of the i-th point can be obtained easily using the law of com-
position of velocities from classical mechanics, and takes the following well known form:

Lsi =
− 1

Zi
0 xi

Zi
xiyi −x2

i − 1 yi

0 − 1
Zi

yi
Zi

y2
i + 1 −xiyi −xi

 (1.11)

while the interaction matrix of the whole set of points is obtained by vertically stacking
the individual matrices. The vector of parameters z consists in this case in the collection
of the depths Zi of each point. These values need to be estimated [DOG07; SG13] or
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1.2. Image-Based Visual Servoing

approximated, as an example using the depths at the desired configuration, i.e., Zi = Z?
i .

Finally, at least four points should be used [MR93] to avoid singularities in the interaction
matrix.

Schemes based on image points as features are simple to implement, but can lead to
unsatisfactory results due to the structure of the interaction matrix. First of all, since
the total number of feature coordinates ns is usually at least 8, there exist configurations
known as local minima [Cha98], in which the proportional control law presented before
leads to v = 0 despite having es 6= 0. Furthermore, the components of the relative twist
v are not decoupled. This fact is particularly important when the sensor has to perform
a large rotation in order to reach the desired configuration. Due to the high coupling of
the degrees of freedom, the motion of the sensor presents not only the desired rotation,
but also an unwanted translation, usually in the form of a possibly large retraction from
the observed object. This is obviously an issue when the sensor is attached on the end-
effector of a manipulator, since the tip of the serial chain can only move within a limited
workspace.

1.2.1 Features with higher decoupling

One way to solve the issues that appear when using image points is to consider alter-
native features which provide better decoupling. In particular, it would be desirable to
find a set of features partitioned as:

ṡ1

ṡ2

 =
L1

L2

v (1.12)

whose interaction matrices have orthogonal rows, i.e., L1LT
2 = O. From this orthogonality

condition, it would follow that the proportional control law would be written in the form

v = −λL+
1 e1︸ ︷︷ ︸

v1

−λL+
2 e2︸ ︷︷ ︸

v2

(1.13)

in which v1 ⊥ v2. In other words, each of the two features would govern a selected number
of degrees of freedom, and the two components would not influence each other. This is
the principle at the base of partitioned visual servoing, in which the goal is usually to
isolate the motions related to the focal axis of the camera or to decouple translational
and rotational motions. More commonly, only a partial partitioning is used, in which the
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interaction model writes as

ṡa
ṡb

 =
La

Lab Lb

va
vb

 (1.14)

in which va and vb represent a partition of the coordinates of v (not necessarily with the
same ordering). As a consequence of this specific structure, the value of va is dependent
solely on that of ea, while that of vb is evaluated as

vb = −L+
b (−λeb + Labva) (1.15)

and thus depends not only on eb but also on ea, with the term Labva acting as a distur-
bance compensation. This approach is similar to that of 2.5D visual servoing [MCB99],
in which the rotational motion is decoupled from the translational one. However, parti-
tioned IBVS schemes are based solely on image measurements and no 3D reconstruction
is needed.

As an example, in [CH01] two features are introduced in addition to image point
coordinates. The first one, being the orientation of a line joining two of the observed
points, is strictly linked to the rotational motion around the optical axis. The second
feature is related to the area of the polygon defined by the image points, which is invariant
to translation and to rotation around the focal axis. Instead, it changes mainly with the
distance of the sensor from the points, and is thus closely linked to the translation.

Another way to solve the issues that appear when using image points is to consider
alternative features which provide different motions in the Cartesian space. As a first
example, polar coordinates can be used [IO05], in which the interaction matrix of the i-th
point is given by

Lsi =
− cos θi

Zi
− sin θi

Zi

ρi
Zi

(ρ2
i + 1) sin θi − (ρ2

i + 1) cos θi 0
sin θi
Ziρi

− cos θi
Ziρi

0 cos θi
ρi

sin θi
ρi

−1

 (1.16)

with ρi =
√
x2
i + y2

i and θi = atan2 (yi, xi). The advantage of this formulation is that
when large rotations around the optical axis are to be performed, retraction issues are
not present since the translation along the focal axis is now decoupled from the rotation
normal to the plane (third and last columns of the interaction matrix).

Still with the objective of determining a set of features which guarantees good decou-
pling properties, planar image moments can also be considered [Cha04; TC05]. Given an
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object whose projection on the image plane is described by the dense set O, its moments
can be defined as:

mi/j =
∫∫
O
xiyj dx dy (1.17)

Similarly, for a finite set of N points, the discrete moments of order i + j are expressed
as:

mi/j =
N∑
k=1

xik y
j
k (1.18)

The interaction matrix can be obtained after differentiation by considering the feature
model of each point (xk, yk). In addition, under the planar assumption it is possible to
express the inverse depth as a function of the image coordinates as in 1

Zk
= Axk +

Byk + C, wherein A, B and C are the parameters that characterize the 3D plane to
which the observed shape belongs, which can be estimated online [SGC15] or otherwise
approximated. On top of these features, more complex ones can be obtained, such as a
normalized area of the shape or the main axis of orientation. Interestingly, it was shown
that when the object plane is parallel to the projection plane of the sensor (A = B = 0)
it is possible to build a feature set based on moments whose interaction matrix features
good decoupling properties, in which each feature almost controls a separate degree of
freedom and thus leading to satisfactory sensor motions in 3D.

1.2.2 Efficient Second Order Minimization

The retraction issues obtained when servoing from image points can be explained by
the highly nonlinear map between the operational and sensor space. In particular, the
proportional control law (1.9) will attempt to move each feature along a straight line
from the initial to the target position. Despite this being the shortest path in the feature
space, it can lead to relative motions of the sensor in SE(3) which do not necessarily
correspond to the geodesic connecting the initial and goal poses.

A nice explanation for this issue was provided by [Mal04], which compares different
control strategies to minimization algorithms. More specifically, the proportional control
law based on the pseudo-inverse of the interaction matrix was compared to the Gauss-
Newton minimization algorithm, which provides good performances in presence of mild
nonlinearities or in proximity of the desired configuration.
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Additionally, still based on the parallelism control/minimization, new schemes were
proposed with the objective of reaching the desired configuration by following a shorter
path. They consist in using, inside the proportional control law (1.9), one of the following:

Ĵ+
s =

(
Ĵs
)+

+
(
Ĵs?

)+

2 (1.19a)

Ĵ+
s =

(
Ĵs + Ĵs?

2

)+

(1.19b)

in which Ĵs represents an estimation of the feature Jacobian evaluated from the cur-
rent measured features, while Ĵs? is calculated by replacing the desired features in the
interaction matrix.

A similar philosophy led to the development of a Hessian-based control scheme [LM04],
while an extension of (1.19b) was proposed in [MC08]. Finally, in [TM08; TM10] some
limitations of the approaches proposed in [Mal04] were discussed, in particular focusing on
the case of large translations and rotations. In particular, it was shown that the control
laws have to be adjusted by integrating information related to the displacement to be
performed by the sensor from the current to the desired location.

1.3 Dealing with Constraints

1.3.1 Weighted control

One first way that can be used to deal with constraints is to consider them as additional
tasks in the control law. As an example, if visibility of an image point is to be ensured, the
task could consist in moving the feature towards the center of the image. More generically,
the idea is to add a task in the form Jcq̇ = ėc in addition to the original servoing task (1.8).
It must be noted that this additional task cannot be permanently active since it could
otherwise interfere with the main one, e.g., by introducing local minima even when the
constraint would be satisfied at the goal configuration. One solution is thus to dynamically
activate or deactivate the task by means of a proper weighting matrix. In other words,
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the new control law would become:

q̇ = J+
a ėa =

 Js
WcJc

+ ṡ? − λes
Wcėc

 (1.20)

in which the pair Ja, ėa represents the “augmented task” and Wc is a diagonal weighting
matrix with non-negative entries. In principle, when far away from the constraints it
suffices to select Wc = O, leading to the original control law (1.9) Increasing the weights
in Wc allows instead to activate the corresponding constraints.

In [RMC06] it was proposed to define the weights using the activation function:

w(e) =


0 e ≤ 0
1
2

(
1 + tanh

(
1

1−e/β −
β
e

))
0 < e < β

1 e ≥ β

(1.21)

in which β is a scaling parameter that regulates how sharply constraints activate. Ad-
ditionally, a set of weights were also added to the main task. These value were chosen
complementary to those associated to constraints, in such a way that when a constraint
is fully activated then the weight associated to the corresponding feature is reduced to
zero.

A similar concept is used in [KC14]. The weight of the main task is kept equal to 1,
while the weights associated to the constraints are modulated according to a hyperbolic
profile:

w(e) =

0 e ≤ e+

e−e+
emax−e e+ < e < emax

(1.22)

wherein emax is the maximum allowed value for the quantity e, while e+ represents a
“soft maximum” in which the constraint should activate. In addition, means to escape
from local minima are provided, as well as strategies to smooth out the behavior of the
controlled system when moving between multiple active constraints.

Finally, it must be noted that these approaches can introduce discontinuities in the con-
trol laws. In fact, the pseudo-inverse operation is not continuous under rank changes, and
thus irregular control signals will be obtained if Ja changes rank due to the (de)activation
of one or more constraints. This can be a major problem in systems which are redundant
with respect to the main task, in which the additional degrees of freedom are often used
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precisely to satisfy constraints such as joint limits avoidance. Nonetheless, the inversion
operator proposed in [MRC09] can be used to solve (1.20) while ensuring continuity. Such
operator behaves exactly like the pseudo-inverse when a constraint is either fully active
or inactive. Furthermore, it can guarantee local asymptotic stability and the resulting
controller can remove oscillation that arise when near to constraint boundaries due to
repeated activation and deactivation of the weights.

1.3.2 Hierarchical control

If the system presents redundancy with respect to the target task, constraints can be
enforced using the additional degrees of freedom. In fact, one can use the redundancy
framework [SS91] to execute a secondary task of lower priority while ensuring that the
main task is executed as expected without any perturbation. In practice, an extension of
(1.9) can be written as:

q̇ = Ĵ+
s (ṡ? − λes) + PJs q̇

′ (1.23)

in which PJs = I− J+
s Js is the projector into the kernel of Js, i.e., such that JsPJs = O,

and q̇′ is an arbitrary vector. If the kernel of Js is not empty, then q̇′ can be chosen in
order to enforce existing constraints without affecting the desired features dynamics.

Oe possible application of such hierarchical approach is joint limits avoidance [CM01],
using the so-called gradient projection method [SEB91]. In this context, a cost function
V (q) is defined, which increases when approaching the constraint boundary and stationary
while sufficiently far away from it. Denoting with qi each coordinate of the joint position
vector, such a function can be written as:

V (q) =
∑
i

αiw
2
i wi =


q−i − qi qi < q−i
0 q−i ≤ qi ≤ q+

i

qi − q+
i qi > q+

i

(1.24)

with q−i and q+
i are soft activation limits for the i-th joint, while the coefficients αi can

be modulated online by a proper algorithm. The gradient of the cost function, ∂V
∂q

T , can
then be used as an artificial repulsive potential to steer the joint configuration away from
the limits by setting q̇′ = −∂V

∂q

T .
The main issue with the gradient projection method is that it allows constraints to be
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included only as low-priority tasks, and thus there is no guarantee that they can always
be satisfied during the control. To overcome this issue, the idea of using a hierarchy of
tasks was expanded in [MC07]. The main task is decomposed in a multitude of sub-tasks,
each one thus requiring a lower number of degrees of freedom, and constraints are still
handled at the lowest priority using the gradient projection method. However, contrarily to
existing approaches, two supervisory controllers are added as well, which can respectively
remove or add tasks in the stack. The first one is required to check if, due to the current
set of active tasks, the produced control law will lead to violation of any constraint. If
this is the case, the auxiliary controller selects the active task which is responsible for the
predicted constraint infringement and deactivates it. The second controller is in charge of
determining when it is safe to re-activate a task that had been previously removed from
the stack. Since each task is responsible for controlling only few degrees of freedom, the
system will still tend to evolve towards the goal configuration thanks to the remaining
active tasks. In addition, by proper modification of the control law (1.9) it is possible to
make the computed command continuous even during insertion or removal of a task.

Even though [MC07] introduced substantial improvements in handling of constraints,
they are still managed at the lowest priority level. It is thus essential to properly decompose
the main task in smaller ones so as to be able to dynamically change the stack and allow
constraints to be taken into account. The method proposed in [MKK09] is based on the
continuous inverse [MRC09] detailed before, extending its use to a stack of tasks. It allows
to add unilateral constraints at arbitrary priority levels, and not necessarily at the lowest
ones.

A different approach was instead considered in [MC10], in which a new projection
operator was proposed. Constraints are still handled using the gradient projection method,
and are thus still located at a lower priority with respect to the main task. However, the
main task is modified: rather than acting directly on the feature error es, the control
objective becomes to steer its norm ‖es‖ to zero. This task requires a single degree of
freedom, thus leaving much more flexibility to satisfy the secondary task, i.e., constraints
satisfaction. The new norm nullification task is characterized by a new Jacobian J‖es‖

whose pseudo-inverse takes the following expression:

J+
‖es‖ = ‖es‖

eTs JsJTs es
JTs es (1.25)

It must be noted that this matrix approaches a singularity when JTs es → 0, which hap-
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pens either when the main task is completed (es = 0) or when the system reaches a
local minimum for the servoing task, i.e., when es ∈ ker (J+

s ) = ker
(
JTs
)
. It is therefore

proposed to use the new projection strategy in the beginning of the task (when the main
task error is still significant), and to smoothly switch to the classical projection method
once a neighborhood of the target configuration has been reached.

1.3.3 Quadratic Programming

The classical control law based on the pseudo-inverse of the interaction matrix can be
viewed as an unconstrained, multi-objective, quadratic minimization. More specifically, it
can be shown that (1.9) is equivalent to solving:

min
q̇
‖Jsq̇ − (ṡ? − λes)‖2 � min

q̇
‖q̇‖2 (1.26)

in which a � b means that the minimization problem b is of secondary importance with
respect to a. The controller thus evaluates the command that achieves at best the main
task (1.8), also featuring the least magnitude if possible.

Starting from this parallelism, it would thus be possible to consider the control problem
explicitly as a quadratic minimization. This opens to the possibility of inserting constraints
in the minimization, as long as they can be described as a set of inequalities that are linear
in the control input, and to obtain the commands using any Quadratic Programming (QP)
algorithm. As an example, in [Agr+17] constraints of this type are introduced to ensure
visibility and avoid occlusion on humanoid robots, while in [PM+18] they are used to
ensure collision avoidance for an autonomous vehicle performing a parking maneuver.

The illustrated concept allows to consider a single task subject to one set of constraints,
which are all to be satisfied at the solution. However, it is possible to combine the concept
of a stack of tasks and the quadratic minimization formulation to create a more complex
control scheme. More specifically, the methodology proposed in [KLW11] extends the
notion of task to include inequalities relations. At each priority level, a new quadratic
problem is formed, in which the objective is to satisfy a set of (in)equality tasks as much
as possible, while not influencing the tasks coming from higher priority levels. Constraints
can thus be incorporated in the control scheme with a given priority, an not necessarily at
the last level. The method is further refined in [EMW14], in which subsequent quadratic
problems are formulated efficiently using a change of variable. The basic idea is that the
projector PJs in (1.23) can be replaced with an orthogonal basis of the kernel of Js,

26



1.4. Conclusions

denoted as ZJs , and such that JsZJs . However, while the projector is a square matrix, the
orthogonal basis has a smaller number of columns in comparison. The new hierarchical
control law can be written using the orthogonal basis as:

q̇ = Ĵ+
s (ṡ? − λes) + ZJs y (1.27)

The difference with respect to (1.23) is that, while dim(q̇′) = dim(q̇), y is a lower-
dimensional vector with only dim(q̇) − rank (Js) components. Therefore, after a prior-
ity level is solved in the stack, the following problem can be parameterized in a lower-
dimensional variable. Starting from this simple concept, the complete hierarchical ap-
proach is developed and it shown that it greatly improves the performances of the con-
troller.

1.4 Conclusions

In this chapter, the fundamental notions of visual servo control have been introduced,
with a focus on Image Based Visual Servoing. As discussed, servoing schemes that use im-
age points as features are simple to implement, but can lead to few problems. In particular,
when large displacements are involved the sensor motion can be longer than necessary,
thus leading to larger time to convergence. One way to improve the performances can be
found in the use of better features that lead to higher decoupling in the control degrees
of freedom, or by using efficient laws which attempt to steer the sensor along geodesic
paths.

Two issues are however still open. First of all, the control laws detailed so far work
under the assumption that the evaluated joint velocity commands can be readily tracked
by the low-level controllers of the manipulator. This hypothesis is reasonable when the
robot moves at relatively low speed. However, in order to obtain good performances at
high speed it might be necessary to employ high gains to achieve the required velocity
tracking performances. This can be problematic, since higher gains will lead to noise
amplification. This problem is thus briefly investigated in the next chapter.

A second issue is related to the exponential decrease in velocity imposed by feedback
control laws. As the sensor approaches the desired configuration, the speed of the manip-
ulator can decrease significantly. Faster convergence can be obtained using larger gains,
but at the cost of having very large velocities and accelerations in the beginning of the
task. One way to tackle this problem, as proposed in Chapter 3, can be found in the use
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of Model Predictive Control, in which the control inputs can be optimized in order to
achieve high velocities for a longer period, but also with the ability of decelerating in a
controlled manner once the servoing task is completed. Furthermore, the advantage of
considering a predictive control strategy is that it allows to accomplish two further goals
using a unified approach: first of all, not only the motions can be faster, but also shorter
thanks to the ability of predictive controllers to foresee future states and thus optimize
the sensor motions. Secondly, unilateral constraints can readily be included in the opti-
mization process. It is thus possible to ensure not only a faster convergence, but also to
guarantee feasibility of the motion.
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Chapter 2

VISUAL SERVOING USING

SECOND-ORDER MODELS

The control laws classically used in visual servoing are formulated at the velocity
level. It is generally assumed that low-level controllers are able to properly track velocity
references generated by the visual controllers, thus assuming that dynamic effects are
negligible. This is a fair assumption when the task to be performed is executed at medium-
low speed. However, dynamic effects increase with the velocity [CG96] and therefore, as
faster motions are involved, new and more accurate models have to be considered.

One way to enhance the performances of the servoing schemes is to establish a direct
link between the evolution of the features in the image and the dynamic parameters of the
controlled system. This naturally leads to the use of second-order models which express
the acceleration of the features as a function of both the velocity and the acceleration of
the sensor. The advantage is that no low-level velocity controllers are needed anymore,
and the desired features evolution can be obtained by computing directly the required
motor torques by taking into account the dynamic model of the manipulator.

This chapter focuses precisely on this topic, in particular on the study of second-
order acceleration models. First of all, the next section includes several related works that
explored the use of features acceleration and attempted to exploit it in the context of
dynamic control. Afterwards, in Section 2.2 a procedure to derive features acceleration
models is detailed, and it is shown how they can be used to directly link the feature space
with the dynamics of manipulators. Section 2.2.3 proposes different dynamic controls.
The first one does not need the use of acceleration models and relies instead only on
velocity information. It will be used later for comparison with another type of controller
that is instead based on the proposed second-order models. The comparison, performed
in simulation, is presented in Section 2.3. In particular two variations of the velocity-
based controller are tested against the control law based on second-order models, and the
benefits of using this approach are discussed.
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2.1 Related Works

The idea of using acceleration information in a sensor-based control scheme can be
backtracked to almost the origins of visual servoing itself. Indeed, few early works can be
found in the literature which propose controllers that are not based solely on the clas-
sical interaction model. The idea of computing commands using a PD controller based
on second-order models of image features and incorporating it into a CTC was already
mentioned in [ECR92], even though it was then proposed to consider a kinematic con-
trol under the assumption of low accelerations and the use of high-gain joint velocity
controllers.

Even when the dynamics of the manipulator is disregarded, integrating higher order
information in kinematic control laws can still be beneficial, as illustrated in [MBG96]. The
study shows that using both the position and velocity of a point as feature can enhance
the performances of the controller in presence of relatively large processing delays.

A series of works by Dahmouche et al. [Dah+09; Dah+10; Dah+12] focuses on the
use of spatio-temporal point features whose evolution depends not only on the current
relative twist v but also on its derivative. More precisely, these works aim at performing
simultaneous pose and velocity estimation of the end-effector of a parallel robot using a
eye-to-hand setup. To decrease significantly the cost of image acquisition and processing,
features are detected by analyzing specific ROIs (Region of Interests) in a sequential
manner, and thus at different time instants. As a consequence, the value of each feature
is dependent not only on the position of the corresponding point, but also on the time
at which the ROI is captured and the object velocity. In particular, using a first order
linearization, [Dah+09] estimates the position of a measured feature as si = pi + ∆tiLiv,
in which pi is the point that is being measured and the second component represents the
displacement of the point due to the time delay of the sequential acquisition. The time
derivative of each feature thus depends both on the relative velocity and acceleration of
the sensor with respect to the object. In [Dah+10] a virtual visual servoing approach
[MC02b] is used to obtain an estimation of the pose and velocity of the end effector,
under the assumption of piece-wise constant acceleration. This estimation is then used in
a CTC scheme with the objective of tracking a given trajectory at high speed, with the
experiments showing that the vision-based approach outperforms model-based schemes
based only on proprioceptive information. Furthermore, in [Dah+12] a further scheme was
proposed consisting in a Image Based Visual Servoing (IBVS) scheme formulated directly
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at the dynamic level, and in [Ozg+13] the same approach is extended to control a parallel
mechanism from legs observations rather than using image points.

An alternative approach to directly express the dynamics of the features at the dynamic
level can be found in [HO99]. By considering a bijective map between image features and
robot state, a Lagrangian is written directly in terms of the feature vector s and its
derivative ṡ. In particular, the center and radius of a circular shape are used to control
the motion of a simplified miniaturized blimp.

Yet another approach is used in [Tho+14], which considers a simplified drone model
moving in the sagittal plane. The position of the drone is controlled using two features
projected on a virtual image plane parallel to the ground. The authors show that these
features constitute a flat output for the system, allowing to evaluate the thrust and torque
needed to pilot the drone directly from the feature error and its derivatives.

A second-order IBVS scheme using the joint acceleration as control input was proposed
in [KX12] for a non-redundant manipulator observing four image points, and was later
extended to take into account the dynamic model of the robot in a CTC fashion [KXM14].
Using the same formalism, [MKX14] proposes an acceleration control for a serial robot
equipped with a stereo-vision system on its end-effector.

A hierarchical multi-objective control scheme was proposed in [Van+16], in which a 7-
dof manipulator performs a hybrid force-vision control. The tasks are formulated directly
at the dynamic level and the priorities in the hierarchy are respected using a projection
strategy similar to that of [MC07] and [SS91].

Finally, whole-body control of a humanoid robot was proposed in [Agr+17], which
has been already mentioned in the previous chapter. In this case, an acceleration control
command is computed using QP to minimize three weighted objectives under multiple
constraints.

2.2 Second-Order Visual Servoing & Dynamics

This section focuses on the theory behind modeling and feedback control via second-
order model. In particular, starting from the kinematic relation described by (1.1), it is
shown in the next section how to obtain an expression that provides the second derivative
of the features in function of the spatial acceleration of the sensor. It is then detailed how
these relations can be linked with the dynamic model of a serial manipulator, and how
the new models can be used for visual servo control.
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Since the final objective is to control a redundant manipulator, for which the visual
task can constrain at most 6 dof, it is shown how redundancy can (and should) be resolved
in the new schemes.

2.2.1 Second-Order Visual Servoing

The class of models presented in the sequel considers the second-order time derivative
of the features and how it depends on the acceleration of sensors, in addition to their
velocity. In some related works the derivation of the second-order model was achieved by
considering the geometric meaning of the considered features and by evaluating s̈ from
such geometric definition. As an example, let’s consider a stationary 3D point pc observed
from a moving camera, for which the interaction matrix writes as [CH06]:

L pc =
[
−I [ pc ]×

]
(2.1)

It is possible to express the second derivative of pc from the laws of classical mechan-
ics, e.g., as done in [KX12]. In particular, using the well-known rule of composition of
accelerations in non-inertial frames [Sic+10]:

p̈c = −a+ pc × ω̇ + 2ω × v + ( pc × ω)× ω (2.2)

in which a and ω̇ are the linear and angular acceleration of the sensor expressed in the
coordinate system of the sensor itself. Rearranging the terms, one can realize that p̈c can
be expressed using the interaction matrix of the 3D point as

p̈c =
[
−I [ pc ]×

] a
ω̇

+ 2ω × v + ( pc × ω)× ω = L pc a + h pc (2.3)

In the formula, a is the concatenation of the linear and angular sensor accelerations, i.e.,
aT =

[
aT ω̇T

]
, and the affine term h pc groups the quantities that depend solely on the

kinematic screw v and on the feature itself. As it will be soon shown, this structure is
common to other features as well.

A similar procedure could be followed to evaluate the second-order models of any
feature, such as lines and planes [Van16]. However, the procedure can become rather long
and error-prone. Instead, we propose in the following a general approach that we believe
facilitates the derivation of these models, and in addition provides a specific structure for
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the affine term h. First of all, the interaction model (1.1) is directly differentiated:

s̈ = Ls
d

dt
v + L̇s v (2.4)

Assuming an eye-in-hand setup, the derivative of the kinematic screw writes as follows:

d

dt
v = a +

v × ω
0

 (2.5)

The additional term is a consequence of the fact that the camera frame is not inertial
with respect to the object. In order to proceed, it is now necessary to differentiate Ls.
For this purpose, it is convenient to consider the interaction matrix as a stack of vectors
`i ∈ R6 (i = 1, · · · , ns). In particular, each of these vectors represents one the rows of Ls:

Ls =


`T1

· · ·
`Tns

 (2.6)

Given this structure of the interaction matrix, the required quantity L̇s readily follows
from the total differentiation rule:

L̇s =


(
∂`1
∂s
ṡ+ ∂`1

∂z
ż
)T

· · ·(
∂`ns
∂s
ṡ+ ∂`ns

∂z
ż
)T
 (2.7)

The derivative ṡ can be obtained from the classical interaction model (1.1). In the
following it is assumed for simplicity that an expression for ż is available, and that fur-
thermore it takes the form ż = Lzv. Under this assumption it is thus possible to write:

L̇s =


(
∂`1
∂s

Lsv + ∂`1
∂z

Lzv
)T

· · ·(
∂`ns
∂s

Lsv + ∂`ns
∂z

Lzv
)T
 =


vTH1

· · ·
vTHns

 (2.8)

in which the matrices Hi
.=
(
∂`i
∂s

Ls + ∂`i
∂z

Lz
)T

are a function of the features s and the
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parameters z only. Injecting this result and (2.5) into (2.4) leads to:

s̈ = Lsa + Ls

v × ω
0

+


vTH1

· · ·
vTHns

v (2.9)

The second term in the right-hand side can be rearranged in a nicer form that matches
the structure of the last term. By denoting with `(v)

i ∈ R3 the vector containing the first
three elements of `i, the second term in the last equation can be written as:

Ls

v × ω
0

 =


`T1 (v × ω)
· · ·

`Tns (v × ω)

 =


ωT (`1 × v)
· · ·

ωT (`ns × v)

 =


vTL1v
· · ·

vTLnsv

 (2.10)

in which the circular-shift invariance of the mixed product has been used in the second
passage, and the matrices Li ∈ R6×6 in the last expression are defined as:

Li
.=
 O O[
`

(v)
i

]
×

O

 (2.11)

Finally, using (2.9), (2.10) and by defining

Gi
.= (Hi + Li) + (Hi + Li)T

2 (2.12)

leads to the sought expression of second-order models:

s̈ = Lsa +


vTG1v
· · ·

vTGnsv

 = Lsa + hs (2.13)

It must be noted that, as already mentioned, the second-order model of the 3D point
developed in the beginning of this section takes a similar form, the only difference being
the h pc vector which was not expressed as a set of quadratic forms in (2.3). Appendix A.1
includes the second-order model of 3D points rewritten according to (2.13), which, after
some development, can be shown to be equivalent to (2.3). More in general, Appendix A
includes the second-order models of few other features, such as normalized image points.

The main interest in the illustrated procedure is that, in order to get the second-order
model of any feature, the only required work is the evaluation of ∂`i

∂s
and ∂`i

∂z
. In addition,
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2.2. Second-Order Visual Servoing & Dynamics

the constructive procedure shows that the affine term hs consists in a series of quadratic
forms, with Gi ∈ R6×6 depending on s and z. This can be useful, e.g., if the partial
derivatives of s̈ are to be computed.

To conclude this section, it is shown how a second-order model can be obtained from
another set of features for which an acceleration model has already been obtained. Let’s
consider a set of features sb defined by some twice differentiable function of another set
sa, i.e., sb = ψ(sa). Using the chain rule of differentiation, the second time derivative of
sb can be expressed as:

s̈b = ∂ψ

∂sa
s̈a +

(
d

dt

∂ψ

∂sa

)
ṡa (2.14)

The first and second derivatives of sa can be expressed by their respective models (1.1)
and (2.13). Substituting these expressions leads to

s̈b = ∂ψ

∂sa
Laa + ∂ψ

∂sa
ha +

(
d

dt

∂ψ

∂sa

)
Lav (2.15)

in which, by comparison with (2.13), it is easy to identify hb as:

hb = ∂ψ

∂sa
ha +

(
d

dt

∂ψ

∂sa

)
Lav (2.16)

However, directly using this expression does not provide explicitly the form of the G-
matrices. To obtain them it is necessary to perform few additional steps, leading to the
final result:

Gb,i = LT
a

∂2ψi
∂s2

a

La +
∑

j

∂ψi
∂sa,j

Ga,j (2.17)

wherein Gb,i is the i-th G-matrix of the feature set sb and Ga,j follows the same notation.
Finally, ψi is the i-th entry of the vector-valued function ψ and sa,j is the j-th coordinate
of the feature set sa.

2.2.2 Robot Kinematics and Dynamics in Sensor Space

As previously mentioned, the obtained second-order model (2.13) is valid under the
assumption that the relative motion between the sensor and the object depends solely on
the motion of the robot (eye-in-hand setup). In this case, the velocity and acceleration of
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the sensor, expressed in the base coordinate system, are given by:

vw c = Jq̇ (2.18a)
aw c = Jq̈ + J̇q̇ (2.18b)

wherein J and J̇ are the robot Jacobian (as used in (1.6a)) and its derivative. By projecting
(2.18a) and (2.18b) on the sensor frame and injecting the result into the second-order
model, the feature acceleration can be obtained as a function of the joint velocities and
accelerations:

s̈ = Jsq̈ + Ls Tc wJ̇q̇ + hs = Jsq̈ + hq (2.19)

where Js is the feature Jacobian (1.6a) defined in the previous chapter.

A further step consists in expressing a direct link between the features and the dynamic
model of the robot. First of all, it is recalled here that the Inverse Dynamic Model (IDM)
of a robotic system composed of a set of rigid bodies writes as [KD04]:

τ = A(q)q̈ + C(q, q̇)q̇ + g(q) + Fvq̇ + Fssign(q̇) + JTfe
= Aq̈ + b+ JTfe

(2.20)

wherein τ represents joint efforts while A is the generalized inertia matrix of the system,
grouping inertial effects due to masses and inertiae of both rigid bodies and motors.
Cq̇ represents Coriolis and centripetal efforts, while g gravitational ones. Fv and Fs are
diagonal matrices used to model friction, and fe represents an external wrench applied on
the end-effector. For brevity, b groups Coriolis and centripetal forces, the efforts exerted
on the system by gravity and the forces and moments acting on the actuators due to
friction.

Assuming that A is invertible, which is always true for a serial kinematic chain, the
joint accelerations are given by q̈ = A−1

(
τ − b− JTfe

)
. In conjunction with (2.19), it

leads to:

JsA−1τ = s̈− hq + JsA−1
(
b+ JTfe

)
(2.21)

which provides the sought relation between motor effort commands and features evolution.
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2.2. Second-Order Visual Servoing & Dynamics

2.2.3 Dynamics based Feedback Control

In this section, few controllers are discussed, which try to evaluate effort commands by
considering the dynamics of the maneuvered manipulator with the objective of regulating
the feature error es .= s− s? to zero.

A first solution would be to disregard second-order models and to separate the control
law in two distinct loops. An outer visual servoing loop evaluates a reference joint velocity
using the proportional control law (1.9):

q̇? = Ĵ+
s (ṡ? − λes) (2.22)

The goal of the second control loop is then to track such velocity profile. An auxiliary
acceleration pseudo-control can be designed for this purpose as:

w = q̇ff + γ (q̇? − q̇) (2.23)

given a positive proportional gain γ. The feed-forward term q̈ff is added in order to
remove tracking delays, and should ideally correspond to the derivative of q̇?. Since it
cannot be obtained analytically, it has to be estimated numerically from (2.22). This
auxiliary command can be injected in the IDM, thus giving the control:

τ = Âw + b̂ (2.24)

in which Â and b̂ provide an estimation of A and b respectively, and fe was assumed
to be null. The main drawback of this control scheme, as it will be shown later in this
chapter, is that it requires the feed-forward to be effective. However, since the signal has
to be estimated via numerical differentiation, it is a source of noise amplification.

An alternative approach that does not require the use of second order models consists
in using the following control law, corresponding to a proportional and derivative feedback
with gravity compensation [Kel+00]:

τ = g − γq̇ − λJTs es (2.25)

Intuitively, this control law moves the end-effector of the robot under the action of a
virtual force that equals −LT

s es. Moreover, asymptotic stability can be proved rigorously
considering the Lyapunov function 1

2 q̇
TAq̇ + λ

2e
T
s es. However, the resulting sensor tra-

jectories seem less satisfactory and harder to anticipate than those obtained with other
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methods.
Finally, control laws based on second-order models can be considered. The rationale

behind them is similar to that of first-order proportional controllers, the goal being to
enforce an exponential decrease of the error according to the evolution of the autonomous
linear system ës + kdės + kpes = 0, which is asymptotically stable if positive gains are
selected. Perfect linearization will not be achievable in general, but asymptotic stability
can nonetheless be proved [KXM14] when using the auxiliary acceleration control

q̈? = Ĵ+
s

(
s̈? − kdės − kpes − ĥq

)
(2.26)

Note that in addition to an estimation of the pseudo-inverse of Js, the two quantities hq
and ės are to be estimated as well. Similarly to the case of the first controller presented
in this section, the acceleration command q̈? can be used in conjunction with the IDM to
evaluate a set of effort commands to be sent to the actuators.

2.2.4 Dealing with Redundancy

The case in which the robot has more degrees of freedom than those required to
perform the servoing task is address separately here. First of all, it is important to recall
that the controls returned by the feedback control laws (2.22) and (2.26) are nothing but
particular solutions to the following minimization problems:

min
q̇

∥∥∥Ĵsq̇ − ṡ? + λes
∥∥∥ (2.27a)

min
q̈

∥∥∥Ĵsq̈ − s̈? + kdės + kpes + ĥq
∥∥∥ (2.27b)

In particular, as mentioned in the previous chapter, they correspond to the solutions that,
in addition to be minimizers of the objectives, have the least norm possible. Assuming that
no singularities are encountered, a visual task can constrain up to six degrees of freedom.
If the manipulator features nq > 6 joints, it follows that the kernel of Js is not null, and
thus infinite solutions can be found that are compatible with (2.27a) and (2.27b).

Assuming that no secondary task needs to be performed, the control law based on
first-order models will move the sensor in the proper configuration and then stop the
manipulator in the attained position. In fact, once the visual error has been nullified, the
minimum norm solution solving (2.27a) is trivially q̇ = 0.
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On the contrary, when the control input is an acceleration, the minimum norm solution
returned by (2.27b) does not necessarily correspond to a stable manipulator configuration.
In fact, to a null acceleration – the minimum norm solution – corresponds a constant and
possibly non-zero velocity. The reality is slightly more complicated due to the nonlinear-
ities in the geometric and kinematic model of the manipulator, which will also cause the
kernel of Js to change continuously. Nonetheless, without modifications of the proposed
control law the joint velocity of the manipulator will not be null in general, and will
instead continuously change in order to fall within ker (Js).

In order to solve the issue at hand, one first solution is to attempt to evaluate the con-
trol not as a minimum norm acceleration, but rather by using directly (2.21) to compute
the efforts from the desired task [Van+16]. One possible choice in this sense would be
to compute the actuation command τ having the least norm. However, this strategy can
again lead to large uncontrolled velocities, and it is generally preferable to use a weighted
pseudo-inverse [DO18; Man12]:

τ = (Js)+
D

(
s̈? − kdės − kpes − hq + JsA−1b

)
(2.28)

wherein (Js)+
D
.= D (JsD)+, with D > 0. If repetitive motions are to be performed, other

solutions might be preferable, such as the method proposed in [PPT14] which causes the
system to stabilize on a periodic orbit, thus eliminating the chaotic behavior that would
result otherwise.

Finally, a last, simple, solution would be actively damp the velocity of the manipulator.
This would ensure that, when reaching a fixed visual configuration, the joint velocity of the
robot is decreased, eventually stopping the robot once the visual task has been completed.
This active velocity minimization objective can be considered as a secondary task in the
form

q̈ = −kvq̇ (2.29)

kv > 0 being a positive gain. Using the redundancy framework to ensure that this task
does not perturb the visual one, the final acceleration control law becomes:

q̈?′ = q̈? − ZZT (kvq̇ + q̈?) (2.30)

in which q̈? is the acceleration evaluated using (2.26). Z is an orthogonal basis of the
kernel of Js, so that the orthogonal projector is given in the efficient form ZZT [EMW14].
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Figure 2.1 – A Kuka LWR4+ manipulator in a eye-in-hand configuration, observing a
target with four dots. This same manipulator was simulated in Gazebo to perform the
comparison between the different control schemes presented in this section.

Analogously to other schemes, efforts can finally be obtained by injecting into q̈?′ into the
IDM.

2.3 Comparison of Velocity and Acceleration-based
controllers

In this section, a comparison between two control schemes based only on first-order
information and one based on the presented second-order models is proposed. The compar-
ison has been performed in a simulated environment, using Gazebo for physics simulation
and ROS for the implementation of controllers and communication. ViSP [MSC05] has
been used for Visual Servoing related computations.

The test scenario involves a positioning task from four coplanar points, whose second-
order interaction models is reported in Appendix A.2, which are located at the vertices
of a square. A perspective camera is mounted on the tip of a 7-dof Kuka LWR4+ robot,
as shown in Figure 2.1. A perfectly calibrated sensor with no distortion is assumed for
simplicity, and the normalized coordinates of the observed points are used as features.
Uncertainties in the Geometric and Dynamic parameters of the robot are not considered
in this analysis.

The control period of the simulation is set to 1 ms, and it is assumed that the visual
feedback comes from a mixture of image processing and state estimation, and that the
unknown parameters z can be estimated as well [DOG07; SGC15]. To take into account
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2.3. Comparison of Velocity and Acceleration-based controllers

uncertainties due to these operations, normally distributed noise is added to both s and
z. In addition, the presence of encoders on each motor is simulated by quantization of the
readings to a given resolution. More details on noise are presented in the next section.

Three control strategies have been analyzed. The first one, namely First Order (FO),
corresponds to a velocity-based scheme as described in the beginning of Section 2.2.3.
However, in the computation of the acceleration pseudo-control (2.23) the feed-forward
signal q̈ff is not considered. The second strategy takes this term into account and will be
referred to as First Order with Feed-Forward (FOFF).

It must be noted that a problem with the first-order law (2.22) is that it presents a
discontinuity in velocity at the very first iteration since the manipulator is initially at
rest. In order to guarantee a “smooth start”, the computation of q̇ in (2.22) was slightly
modified, according to the concepts presented in [MC07].

The last controller, denoted as Second Order (SO), evaluates joints accelerations using
(2.26) and (2.30). Details about the implementation and tuning of the three controllers
are discussed in Section 2.3.2.

Finally, results are provided for two cases: servoing to a fixed feature configuration s?

in Section 2.3.3 and tracking of a variable reference trajectory in Section 2.3.4.

2.3.1 Sensor Noise

Noise is introduced in the simulation to obtain a more realistic study-case. The first
source of noise that is considered affects the current value of the features s. In a real
setup this might come from, e.g., the image processing routine that extracts the points
of interest, estimators that produce a continuous feedback when an image is not available
or the sensor itself.

Feature noise is thus included by adding to each coordinate of s a random value, drawn
from a truncated Gaussian distribution with zero mean. The truncation is performed
symmetrically at ±3σ, σ being the standard deviation of the unbounded distribution. In
the experiments, a value of σ = 2 · 10−3 (corresponding to about 1 pixel) was used. A
similar strategy has been used to simulate uncertainties in the unknown depths of the
observed points, by adding to z a noise with σ = 3 · 10−3.

Regarding the measurement of joint positions and velocity, an assumption is made:
only encoders are available to estimate the current configuration. These devices are simu-
lated by discretizing the values of joints angles with a given resolution ∆q. In particular,
∆q = 10 µrad was used.
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All noisy signals were then filtered using low-pass Butterworth 4th-order filters and
finally used in all the calculations performed by controllers.

2.3.2 Controllers Implementation and Parameters Tuning

First-Order (FO) Controller

As briefly mentioned above, the computation of the desired joint velocity (2.22) was
modified so as to ensure smoother control signals in the beginning of task execution. In
particular, in [MC07] it was shown that whenever a new task is activated, it is possible
to achieve a smooth transition in the control input by adding a homogeneous term to the
command. Applied to the present setup, the velocity reference q̇? can be changed into

q̇? = J+
s

(
ṡ? − λes + e−µtes(0)

)
(2.31)

where es(0) corresponds to the features error at t = 0, and under the assumption of null
desired features velocity at the beginning, i.e., ṡ?(0) = 0. Due to this modification, the
command at the very first iteration evaluates to zero, thus enforcing a smooth transition
of the desired velocity of the manipulator.

The effect on the error dynamics is that it now behaves as an equivalent second-order
system – if perfect linearization was possible – according to the autonomous equation

ës + (µ+ λ) ės + µλes = 0 (2.32)

One interesting consequence of this choice is that it is possible to enforce the same desired
behavior of the features evolution with both first and second-order controls. Indeed, in a
perfect world not affected by noise, the two control strategies are perfectly equivalent in
terms of error evolution.

After computing the desired velocity (2.31), the effort command is computed as τ =
γA (q̇? − q̇) + b.

Regarding gains tuning, it was decided to impose a critically damped behavior for the
transient response, which corresponds to the fastest convergence without oscillations:

λ = µ = ωn (2.33)

The parameter ωn > 0 defines the roots of the characteristic polynomial of the second-
order system, and theoretically regulates the autonomous response of the error according
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to es(t) = e−ωnt (1 + ωnt) es(0). The selection of ωn is thus performed so that, after a time
T , the error corresponds to a given fraction of its original value, i.e., e−ωnT (1 + ωnT ) = α,
α ∈ (0, 1). The equation is solved numerically for α = 0.05 and T = 2 s, leading to the
value ωn ' 2.37 s−1.

Finally, the proportional velocity gain γ appearing in (2.23) has to be chosen. From a
theoretical point of view, higher values will lead to better tracking of the desired velocity
profile. However, this would also lead to increased control efforts, and therefore a trade-off
has to be found. In the presented simulations, a value of γ = 8 s−1 was used, corresponding
to a step response that can reach the 80 % of the target value in 0.2 s.

First-Order with Feed-Forward (FOFF)

The implementation of this controller is very similar to the one of FO. In particular,
the smooth velocity transition and the same set of gains are used here as well. The feed-
forward term q̈ff is computed as the numerical derivative of the reference command q̇?.
It is well-known that this process highly amplifies noise, possibly resulting in unfeasible,
if not just undesirable, control signals. In order to lessen the impact of noise and thus
obtain a better behavior, (2.31) is thus filtered prior to differentiation. This considerably
reduces the shakiness of the controller. The final efforts sent to the motors are evaluated
using (2.23) and the IDM.

Second-Order (SO) Controller

This controller exploits the acceleration in the feature space. As explained, it computes
joints accelerations using (2.30) to complete the visual task while simultaneously damping
the velocity of the manipulator, finally exploiting the IDM to compute the actuation
signal.

It must be noted that the control law requires an estimation of ės. For this purpose,
it was decided to use directly the first-order interaction model, i.e., ̂̇es = Ĵsq̇ − ṡ?.

The control gains kp and kd are selected to obtain a critically damped evolution as in
the FO and First Order with Feed-Forward (FOFF) cases, with kp = ω2

n, kd = 2ωn, and
ωn = 2.37 s−1. The last parameter that need to be tuned is kv, i.e., the gain appearing
in the secondary damping task (2.29). With the selected value of ωn, the servoing task is
expected to be completed in about 2 s. Therefore, kv is tuned so that the convergence of
velocity to zero is achieved after a slightly longer time. kv = 1 s−1 was used in practice,
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theoretically ensuring that any non-null velocity is reduced to about the 5 % of its initial
value in 3 s.

2.3.3 Regulation to a Fixed Configuration

The first set of tests involves positioning the end-effector in front of a set of four points
at a distance of 0.5 m, see Figure 2.2. As the desired value of the features does not change
during the tests, in the controllers the quantities ṡ? and s̈? are set to zero.

Figure 2.2 – Initial (left) and desired (right) configuration of the observed object. The
points used for the task are the centers of the four circles.

The initial relative transformation from the camera to the object presents a rotation
of about 90° around the optical axis of the sensor, leading to the well-known retraction
problem. Nonetheless, this affects all control laws and therefore no attempt to solve the
problem was performed.

Results related to two cases are reported: an ideal test run in absence of noise (Fig-
ure 2.3) and a more realistic case with disturbances as previously discussed (Figure 2.4).
When signals are not influenced by any perturbation, all control strategies show nice con-
vergence behavior and smooth control inputs. Compared to FOFF and SO, FO presents
a deviation in convergence from the ideal evolution, justified by the intermediate velocity
regulation not being able to perfectly track the desired command q̇?. FOFF and SO are
instead able to better follow the desired behavior and the error evolves according to the
expected second-order exponential decay. The difference in these two controllers can be
seen only in the control input, yet not significantly different.
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Figure 2.3 – Comparison of the visual error (left) and control input (right) using the
different control strategies, in absence of noise. FOFF and SO are almost indistinguishable
in terms of error evolution.

When noise is considered, more evident differences appear. FO’s convergence worsens,
with a little overshoot near to the equilibrium configuration, whereas both FOFF and
SO still feature a nice evolution of the error towards zero. In terms of control inputs,
all strategies suffer from the added noise. In particular, the oscillations corresponding
to FOFF are quite large, with peak-to-peak amplitude of about 30 N m even at equilib-
rium. Oscillations of FO and SO controllers are bounded instead to a reasonable amount,
between 0.5 N m and 1 N m of amplitude in both cases.
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Figure 2.4 – Comparison of visual error (left) and control inputs (right) when noise is
injected in simulations. FOFF and SO are still almost indistinguishable in terms of error
evolution.

It is possible to enhance the convergence of FO by increasing the gain γ or selecting
a faster behavior (higher ωn), at the cost of higher oscillations in the commanded efforts.
Similarly, to reduce the shakiness of the control signal in FOFF, the response has to be
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penalized with lower values of γ and/or ωn.
It is also worth mentioning that, when noises amplitudes are increased, the relative

performances of these controllers are not significantly altered. FOFF and SO still give
satisfactory results in terms of error convergence, and the oscillations in the control com-
mands produced by FO and SO are smaller compared to those introduced by FOFF.

2.3.4 Tracking of a Visual Trajectory

In this last section, the case of varying features references is considered. For each
normalized point si =

[
xi yi

]T
, the motion was defined as a circular trajectory starting

at the instant t0 and ending after a time period T :
x

?
i (t) = x?i (t0) +R (cos (ρ(t− t0))− 1)

y?i (t) = y?i (t0) +R sin (ρ(t− t0))
(2.34)

In this definition, ρ(t) is a quintic polynomial whose value changes from 0 to 2π in
T = 2 s, such that ρ̇(0) = ρ̇(T ) = 0 and ρ̈(0) = ρ̈(T ) = 0. The desired initial position of
each point s?i (t0) is assumed to be the one attained after the regulation task described in
the previous section. The amplitude R is set to 0.2, and thus the radius of the physical
trajectory is expected to be of 0.1 m since the sensor should be at 0.5 m from the four
points, as detailed before. In addition, it is assumed that t0 � 0, so that the homogeneous
term in (2.31) does not affect the control, since smooth transition are already enforced by
the choice of the time-varying reference.

Results are depicted in Figure 2.5, which shows that FO is once again the worst
controller in terms of tracking error. FOFF still presents high oscillations in the input
commands during the motion, but with good tracking performances. Finally, SO gives
the best results, with tracking errors of the same magnitude of FOFF and reduced effort
oscillations.

2.4 Conclusions

This chapter investigated the use of second-order models in order to establish a direct
link with the dynamics of a manipulator. The resulting control scheme is a Computed
Torque Control based on a Proportional and Derivative acceleration pseudo-command.
Its performances were compared against two controllers that used instead a two-stages
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Figure 2.5 – Comparison of the visual error (left) and control input (right) during the
execution of a trajectory. Time axes are relative to t0.

control strategy composed of an outer servoing loop based only on velocity information.
The inner loop attempts to track the produced joint velocity reference also by taking into
account the dynamics of the robot. However, it was shown by means of simulations that
performances are in this case less satisfactory. More specifically, it is necessary to either
sacrifice tracking accuracy or to pilot the robot with very noisy control inputs. Instead,
the use of second-order controllers provides the best results, allowing good tracking with
more regular input efforts. These results were the subject of a conference article [FKM19]
that was accepted for publication and presented at IROS 2019.

The interest of this class of models is not only related to feedback linearizing control.
Indeed, as it will be shown in the next chapter, they can be used to formulate future
predictions for a set of observed features. The quality of these predictions is generally
higher than that obtained considering only velocity information. This allows to create
new control schemes based on the Model Predictive Control paradigm thanks to which
the robot can move faster and with shorter sensor trajectories.
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Chapter 3

VISUAL PREDICTIVE CONTROL

Even though feedback linearization techniques are frequently exploited in Visual Servo
control, they present some limitations. One important issue is that they might lead to non-
optimal behaviors with respect to the motion of the sensor in the Cartesian space. In fact,
these strategies rely on the pseudo-inversion of the interaction matrix (or some estimation
of it), which, depending on the features configuration, might lead to sub-optimal motions
for the sensor. This comes directly from the structure of the interaction matrix of the
chosen feature set, and therefore the options allowing to improve the motion are rather
limited.

Moreover, it is not always straightforward to include and satisfy general constraints
that are imposed on the system. Practical examples of such constraints are the need to
keep an observed object inside a camera’s field of view, or ensuring that the joint angles
of a manipulator always lie within their physical limits.

A last relevant aspect – especially in the context of fast systems – is the one of the time
required to converge to a given configuration. When the system is controlled via feedback
strategies, the error is usually steered to zero with exponential decay. The rate at which
the configuration of the system approaches the desired target is mainly controlled via
parameters such as the gain of a proportional controller. In principle, the higher the gain,
the faster the response. However, physical limitations of the actuators impose to consider
control limits. To deal with them, it would be possible to simply saturate the command
on a per-coordinate policy, but this might have undesired consequences such as loss of
stability. Another way would be to scale all control input coordinates by a common factor,
which ensures the system to follow the same path (thus retaining stability) at lower speed.
However, the time needed to converge to the desired configuration would increase.

One of the reasons why feedback linearization techniques are subject to these limi-
tations is that they aim at reducing the mismatch between the current features set and
their desired value by following a locally optimal path. To some extent, they behave like a
gradient-descent minimization algorithm, looking for the control that locally reduces the
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error as quickly as possible. In this sense, one improvement could consist in considering
how a control input affects future states reached by the system. This would allow to take
better decisions in order to reach the desired state both in shorter time and with nicer
motions, while simultaneously ensuring satisfaction of existing constraints. This naturally
leads to the study of a powerful technique from the domain of optimal control, Model
Predictive Control (MPC), which is the subject of study of this chapter, in particular
with a focus on visual servoing applications.

This chapter is divided mainly into three parts: it begins with a quick introduction to
the fundamentals of MPC, in particular focusing on existing mathematical formulations
and the strategies that can be employed to solve the presented problems. A short review of
existing works that used predictive strategies for visual servo control follows. Finally, the
original contributions of this work are illustrated, which appeared in a peer-reviewed pub-
lication [FKM20]. They constitute a point of junction between Visual Predictive Control
(VPC) and the second-order models presented in the previous chapter. Without entering
into details yet, the core idea behind the proposed methods is that second-order models
can be used to design more accurate predictors which ultimately lead to better robot
motions. This claim is supported both by simulations and real experiments. In addition,
the generality of these results are confirmed by the use of different types of features in the
experiments: both normalized image points and their representation in polar coordinates.

3.1 Model Predictive Control

Model Predictive Control is an optimal control technique that aims at determining the
best input signal to be applied to a system by taking into account the future evolution of
its state. A continuous-time system is supposed to be described by the generic state-space
form:

ẋ = f (x,u) (3.1)

x ∈ Rn and u ∈ Rm being respectively the state vector and the control input of the system.
A common formulation of the MPC problem is a finite-horizon, open-loop, optimization
that takes into account the model (3.1) and a set of constraints. More precisely, denoting
the current time instant as t0, the mathematical formulation of the control problem can
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be described as the following functional optimization:

min
u(·)

∫ t0+Tp

t0
C (x(t),u(t), t) dt (3.2)

subject to the constraints:

x(t0) = x0 (3.3a)

ẋ(t) = f (x(t),u(t)) t ∈ [t0, t0 + Tp] (3.3b)

x(t) ∈ X ⊆ Rn t ∈ [t0, t0 + Tp] (3.3c)

u(t) ∈ U ⊆ Rm t ∈ [t0, t0 + Tp] (3.3d)

In this formulation, the constant Tp > 0 is named prediction horizon, and it corre-
sponds to the time interval up to which future states are evaluated and control inputs are
to be designed. The function C – sometimes referred to as stage cost – models the desired
behavior of the system. As an example, a simple, yet common in practice, choice is the
use of a quadratic cost:

C (x,u, t) = (x− x?(t))T Q(t) (x− x?(t)) + (u− u?(t))T R(t) (u− u?(t)) (3.4)

in which x?(t) and u?(t) represent the desired state and input signals over time, while
Q(t) and R(t) are positive (semi)definite weighting matrices.

Regarding the constraints, the first one is simply used to fix in the optimization the
initial state of the system, i.e., x(t0), while the second constraint reflects the fact that
states should be predicted by means of the provided evolution model. Finally, (3.3c) and
(3.3d) define the regions of admissible states and control values, and are often as simple
as pairs of lower and upper bounds, e.g., x− ≤ x(t) ≤ x+.

It is worth remarking that the problem is meant to be solved online at each control step.
In the case of Tp = +∞ and with perfect knowledge of the model, it would be theoretically
possible to solve it just once and then to apply the computed control signal u(t) to the
system in an open-loop fashion. This is however generally infeasible for different reasons.

51



Chapter 3 – Visual Predictive Control

First and foremost, perfect knowledge of the model is impossible, especially considering
the existence of disturbances and identification uncertainties, and the control input will
need to be adjusted while the system evolves. A further reason is that the time to solve the
optimization problem generally depends on the chosen horizon, and in the case of infinite
horizons it might be unsuited for real-time applications. As a consequence, the problem
is repeatedly solved online and only the first portion of the obtained control signal is sent
to the actuators.

Regarding the way to find solutions to the problem, different strategies can be consid-
ered [FA02; Die+06]. Those belonging to the family of indirect methods try to solve the
original problem “exactly”, using, e.g., the calculus of variations, dynamic programming,
or so that an optimal feedback function u = ϕ(x) is determined in closed-form. One
famous example in this sense is the Linear Quadratic Regulator (LQR) [LVS12], which
provides the optimal solution to the optimization problem in case the system is linear
and not subject to state or control constraints. Such solution has the form of a linear
state feedback, which can be obtained by solving a continuous-time Riccati differential
equation – or an algebraic Riccati equation in case of an infinite-horizon problem. Note,
however, that the problem is very challenging in the general nonlinear, constrained, case
and usually too computationally expensive for an online implementation.

In order to achieve real-time feasibility, it is instead rather common to solve the prob-
lem using a different class of techniques, known as direct methods. In this context, the
original continuous-time, constrained, functional optimization is approximated with a
finite-dimensional minimization problem. First of all, the continuous-time dynamics (3.1)
is approximated by a non-linear discrete-time system having the general form:

xk+1 = fd (xk,uk) (3.5)

In this sense, Euler’s forward integration is arguably the most commonly used technique,
according to which xk+1 is approximated by a first-order Taylor expansion:

xk+1 = xk + ∆t ẋk = xk + ∆tf (xk,uk) (3.6)

∆t being the time sampling step.
For the purposes of MPC, once the continuous-time dynamics has been approximated

with a discrete-time system, the objective becomes to compute a finite number of con-
trol samples, rather than the signal u(t) over the whole prediction horizon. More pre-
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cisely, at the discrete time-step τ , a control sequence uτ , uτ+1, · · · , uτ+np−1 is to be
evaluated, which will steer the system from the current state xτ to the new samples
xτ+1, xτ+2, · · · , xτ+np . In this context, the original prediction horizon Tp is replaced by
the positive integer np, the two constants being related by the simple formula Tp = ∆t np.
In order to shorten the notation in the following, τ will be omitted in the subscripts. It is
implicitly assumed that discrete-time samples are relative to the “current” sample τ : as
an example, u3 will stand for uτ+3.

The new MPC optimization problem can finally be stated. The objective (3.2) is
replaced by the following:

min
u ,x

np−1∑
k=0

Cd (xk+1,uk, k) (3.7)

in which the decision variables u and x correspond to the stacked sequences of control
samples and predicted states, i.e.,

u =


u0

· · ·
unp−1

 x =


x1

· · ·
xnp

 (3.8)

It must be noted that the prediction vector x does not contain the value x0, as it corre-
sponds to the current state of the real system, measured or estimated, and thus cannot
be freely changed during the optimization.

Like in the continuous-time MPC optimization problem, the objective is often in the
form of a quadratic stage cost, the obvious differences being that the (continuous) time
variable t is now replaced by k:

Cd (x,u, k) =
(
x− x?k+1

)T
Qk+1

(
x− x?k+1

)
+ (u− u?k)

T Rk (u− u?k) (3.9)

Finally, the constraints (3.3) can be kept almost unchanged:

xk+1 = fd (xk,uk) k = 0, · · · , np − 1 (3.10a)
xk ∈ X k = 1, · · · , np (3.10b)
uk ∈ U k = 0, · · · , np − 1 (3.10c)

According to the above formulation, the problem has a total of (n+m)np decision
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variables. Depending on the model to be controlled and on the desired prediction horizon,
the necessary time to evaluate a solution might still be significant. Nonetheless, there
exists a widely exploited strategy so as to reduce the computational burden associated
with the optimization, consisting in limiting the free control samples to be in the number
of nc < np. The usual way of dealing with this reduction of parameters is generally as
simple as reducing the sequence u to include only the first nc samples, while the remaining
np− nc inputs are kept constant and equal to unc−1 (see Figure 3.1). For this reason, the
constant nc is named control horizon in the literature.

Figure 3.1 – Example of control sequence with nc = 4 and np = 10. The last np − nc
parameters are nothing but a repetition of unc−1.

Depending on the way the problem is solved, the number of decision variables can be
further reduced. In particular, the so-called single-shooting methods allow the decision
vector to be limited to the control variables u. On the other hand, multiple-shooting
algorithms do solve the problem as stated by (3.7) and (3.10), but are able to better
exploit parallelization and can thus still provide competitive solutions with respect to
single-shooting methods [Die+06]. In both cases, once the problem has been solved the
first control sample returned by the optimization, u0, is used as input to actuate the
real system for the current control cycle. As in the continuous-time case, the new state
reached by the system is then measured (or estimated) and used to formulate the new
optimization problem to be solved at the next control iteration.
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3.1.1 Single-shooting methods

The core idea behind single-shooting strategies for the solution of an MPC optimization
is that the whole prediction vector x can be removed from the decision variables thanks
to the recursive structure of the discrete-time system (3.5). In fact, one can write:

x1 = fd(x0,u0)

x2 = fd(x1,u1) = fd(fd(x0,u0),u1)

x3 = fd(x2,u2) = fd(fd(fd(x0,u0),u1),u2)
· · ·

(3.11)

which shows that x is ultimately a function of x0 and u only. Since the former is simply
a constant supplied to the optimization problem, only the latter is still to be considered
within the decision variables, effectively reducing the dimensionality of the problem. Note
that an additional advantage of single-shooting methods is that the nonlinear constraint
(3.10a) is enforced by construction, and is not to be checked during the optimization.

Figure 3.2 – Pictorial example of state prediction in single-shooting methods. Given a
control sequence u0, · · · ,unc−1 and an initial sample x0, future samples are evaluated in
succession using the model function fd. The result is a “continuous signal”, whose samples
constitute the prediction vector x.

In order to solve the optimization, various non-linear programming routines can be
exploited, such as those detailed in Appendix B. Frequently, these algorithms will require
the gradient of the objective and of the constraint functions to be supplied in order to
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guide the search for the optimal solution. Obviously, these might be approximated by finite
differences methods, but this generally leads to lower performances. In single-shooting
algorithms, the main challenge is the computation of the jacobian of the prediction vector
x with respect to the control sequence u, since other quantities can be computed rather
trivially from it. The first step for the computation of the jacobian ∂x

∂u
is to focus on the

partial derivatives of any predicted state with respect to the j − th control sample, uj.
Starting from the prediction model (3.5) and employing the chain rule it is possible to
write:

∂xk+1

∂uj
= ∂fd (xk,uk)

∂xk

∂xk
∂uj

+ ∂fd (xk,uk)
∂uk

∂uk
∂uj

(3.12)

It should be noted that, for k, j < nc, ∂uk
∂uj

= δj,kI (δj,k being Kronecker’s Delta), which
is a direct consequence of the fact that all elements in u are independent variables.
Furthermore, since all control samples from nc and beyond are simply a copy of unc−1, it
is also holds:

∂uk
∂uj

= δj,nc−1I ∀k ≥ nc,∀j < nc (3.13)

It is also important to notice that ∂x0
∂uj

= O since the initial state of the system is a given
constant for the optimization. Finally, by looking at the relations reported in (3.11) it is
possible to notice that, more generally, ∂xk

∂uj
= O if k ≥ j – which reflects the impossibility

for a control input to affect a past state. By putting all these pieces together, the complete
jacobian can be computed, and takes the lower block-triangular form shown in (3.14)
(zeros have been omitted for easier reading). In the formula, sub-matrices Fi,j

u and Fi,j
x

correspond respectively to ∂fd
∂u

and ∂fd
∂x

, evaluated at the points (xi,uj).

3.1.2 Multiple-shooting methods

As opposed to single-shooting strategies, multiple-shooting methods solve the opti-
mization problem using both the control sequence and the prediction vector as decision
variables. Figure 3.3 provides a graphical example of how the prediction of future samples
is achieved during the optimization. First of all, one states is selected for each prediction
step and, gathered altogether, these states correspond to a candidate prediction vector.
In conjunction with a control sequence u, each state xk can be mapped into fd(xk,uk),
i.e., the following state that would be visited according to the model of the controlled

56



3.1. Model Predictive Control

system. Obviously, if both x and u were chosen arbitrarily, the prediction would be dis-
continuous, with the successor of xk not corresponding necessarily to xk+1. In order to
ensure continuity over the prediction horizon, constraint (3.10a) is therefore taken into
account explicitly, usually in the form:

dk
.= xk+1 − fd(xk,uk) = 0 ∀k = 0, . . . , np − 1 (3.15)

Given that multiple-shooting methods require both a higher number of decision vari-
ables and a set of nonlinear equality constraints, it may seem that they necessarily perform
worse than single-shooting solutions. However, it was shown that this is not the case and
that multiple-shooting methods can offer even superior performances [Die+06]. One of the
reasons for this is that they allow for a higher degree of parallelization. As an example,
given a decision vector, the entries of constraints (3.15) can be evaluated simultaneously
for different values of k, since they do not depend on each other. A similar example is re-
lated to the computation of the jacobians of the objective and of the equality constraints.
In the first case, the evaluation is trivial since the objective is now a quadratic form in the
decision variables directly. In the second case, since prediction samples are now indepen-
dent variables, the jacobians of the constraint vector d (being the stack of all individual
equality constraints) take the very simple and sparse forms reported in (3.16). The spar-

∂x
∂u

=



F0,0
u

F1,1
x � F1,1

u

F2,2
x � F2,2

x � F2,2
u

F3,3
x � F3,3

x � F3,3
x � F3,3

u
... ... ... ... . . .

Fnc−1,nc−1
x � Fnc−1,nc−1

x � Fnc−1,nc−1
x � Fnc−1,nc−1

x � Fnc−1,nc−1
x � Fnc−1,nc−1

u

Fnc,nc−1
x � Fnc,nc−1

x � Fnc,nc−1
x � Fnc,nc−1

x � Fnc,nc−1
x � Fnc,nc−1

x �
... ... ... ... ... ...


(3.14)
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Figure 3.3 – Pictorial example of state prediction in multiple-shooting methods. Given a
control sequence (not depicted here) and a set of initial samples (the points in magenta),
future states (in red) are evaluated using the model function fd. The result is a “discon-
tinuous signal”, whose jumps, each of height dk = xk+1 − fd(xk,uk), should be nullified
by the optimization algorithm.

sity is particularly important not only for the parallelization opportunity, but also because
it can be exploited in order to efficiently compute solutions to the optimization problem.
The result is potentially an algorithm that can converge to a solution in less time than
single-shooting methods and possibly returning more stable solutions [Gif+18].

3.2 Predictive Control in Visual Servoing

Visual Predictive Control consists in the application of MPC to Visual Servoing tasks.
In this section, a short summary of existing VPC schemes taken from the literature is
presented, starting from early works that formulated the optimization in terms of a desired

∂d
∂x

=



In
−F1,1

x In
. . . . . .
−Fnc−1,nc−1

x In
−Fnc,nc−1

x In
. . . . . .


∂d
∂u

=



−F0,0
u

. . .
−Fnc−1,nc−1

u

−Fnc,nc−1
u
...


(3.16)

58



3.2. Predictive Control in Visual Servoing

sensor pose in the Cartesian space. Afterwards, works that used sensor measurements
(image point coordinates) directly in the prediction model are illustrated. The section
then concludes with mentions on VPC approaches that introduced new ideas such as the
use of reference trajectories or the use of image moments as features.

3.2.1 Generalized Predictive Control

The application of Generalized Predictive Control (GPC) [CMT87] to visual control
proposed by Gangloff et al. [GDA98; GM00; GD03] is one of the first examples of Visual
Predictive Control, in which a velocity-controlled robot is considered. In this approach,
the objective is to control the value of a minimal parameterization of camera’s pose
with respect to an equilibrium configuration. This relative pose is denoted as p, and its
components are given as the 3D position and the roll-pitch-yaw angles of the camera frame
with respect to the desired configuration. Its time variation is related to the kinematic
screw of the camera by the relation v = Jpṗ, where Jp is defined as:

Jp =
 Rc? c

Φrpy

 (3.17)

wherein Rc? c is the rotation of the sensor frame with respect to the nominal desired pose,
and Φrpy transforms the rate of change of Euler’s angles into angular velocities.

Direct measurements of image points can then be taken into account. Assuming the
coordinates of the measured points to be collected in the feature vector s, their variation
is related to the pose vector by the interaction matrix and the relation above as:

ṡ = LsJpṗ (3.18)

An assumption is now made to simplify the problem, that the current value of p
is not considerably different from p? = 0, i.e., the current sensor pose is close to the
desired configuration. Since the value of Jp tends to the identity matrix when p → 0,
the authors propose therefore to approximate v with ṗ. After this simplification, a first-
order approximation defined around the desired equilibrium values p? = 0 and s = s? is
introduced to obtain an initial estimation of p from the sensor measurements:

p− p? ' L+
s (s− s?) (3.19)
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This estimation of p is used to initialize the state of the predictive model.

The next step in the modeling task is to consider the dynamics of the controlled
manipulator. The robot is supposed to be controllable in velocity, but to take into account
that a change in velocity is not immediate, an intermediate block is considered. Assuming
that each joint velocity is regulated independently, the input-output relation between the
reference command q̇ci and the actual velocity q̇i is described by a set of transfer functions
Fi(s). These are in turn collected in the diagonal transfer matrix F(s). The velocity in
the joint space is then linked to the operational space via the analytic jacobian J, such
that ṗ = Jq̇. This is used to transform both actual and reference operational velocities,
so that the transfer matrix from the command ṗc to the resulting rate of change ṗ is given
by JF(s)J−1.

Few additional blocks are also considered: a Zero-Order Holder (ZOH) models the
fact that a reference joint velocity command q̇c is applied for an entire control period,
while an integrator is used to produce the signal p from its derivative ṗ. The overall
sub-system obtained in this way is commonly referred to as Virtual Cartesian Motion
Device (VCMD) since its final objective is to track a given operational velocity set-point.
The model of the manipulator is completed by introducing two unit-delays, each one
representing respectively the control computation and the image-processing step. The
overall linearized model is depicted in Figure 3.4.

An equivalent discrete-time model of the VCMD is finally obtained using a step-
invariant transformation. Considering also the two unit delays, the overall discrete-time
transfer matrix from the sampled input ṗck to the predicted output p̂k is given by:

G(z) = z−2
(
1− z−1

)
Z
[
JF(s)J−1

s2

]
(3.20)

where Z [·] corresponds to the transformation of a continuous-time transfer function to the
discrete domain. At each control iteration, J is assumed to be constant, and, considering
the diagonal structure of F(s), the overall function is therefore rewritten as:

G(z) = z−2JH(z)J−1 = z−2Jdiag
{
ai(z−1)
bi(z−1)

}
J−1 (3.21)

with ai(z) and bi(z) representing a set of polynomials.

The model is then used for the prediction of np samples, given nc control inputs. The
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z−1 J−1 ZOH F(s) J 1
s z−1ṗc p̂

VCMD

Figure 3.4 – Input-output linearized model of the robot and of the visual system [GD03].
The central block is the Virtual Cartesian Motion Device.

objective is formulated using a quadratic stage cost and takes the form:

np∑
k=1
‖p̂k − p?k‖

2 + w
nc−1∑
k=0

∥∥∥ṗck − ṗck−1

∥∥∥2
(3.22)

with w > 0 being a weighting factor. The objective thus aims at minimizing the predicted
pose error as well as reducing variations in the control law.

Although the proposed method does not deal with constraints such as visibility or
retraction, it is still interesting as it takes into account the effect of low-level controllers
and of the joint dynamics. The validity of the prediction model is only local, as the transfer
matrix F(s) should be evaluated around a given configuration in order to get consistent
approximations of the joint dynamics, and has therefore to be identified for multiple local
configurations.

3.2.2 Features in the optimization objective

Even though the simple linear structure of the previous approach makes the problem
easy and efficiently solvable, more complex approaches based on nonlinear predictive con-
trols should be considered for enhanced performances. A work that explored this direction
was [Sau+06], in which the nonlinear dynamic model of a manipulator with 6 degrees of
freedom was considered to control the pose of its end-effector, assuming a eye-to-hand
configuration and four image points as visual features.

In the design of the prediction model, the VCMD is not used. Instead, a low-level
proportional regulator is considered directly at the joint level, which produces an auxiliary
acceleration signal that is then transformed into motor efforts by considering the IDM of
the manipulator. The joint position and velocity of the robot are updated directly from
the acceleration signal, assuming perfect identification of the dynamic parameters.

An interesting improvement proposed in this work is also the direct use of the visual
features to define the objective. To take into account the evolution of image points in the
image, two assumptions are made:
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1. The 3D properties of the object are well-known, i.e., the position Po i of each i-th
point in the object frame is available;

2. The transformation Tw c from the camera frame to the robot base is available.

From these assumptions, the 3D position of each feature point is built at each prediction
step from the geometric model of the robot. Image coordinates are then computed from the
classical pinhole camera projection. The overall prediction model, from the joint velocity
command to the predicted states, is reported in Figure 3.5.

kv
1
s

1
s DGM Sensor

Projectionq̇c
+

q̇q̈-

Low-level controller

q Tw o

Po i Tw c

s

b (q, q̇)

A(q)q̈

+

+
τ

IDMIDM

Figure 3.5 – Open-loop prediction model considered in [Sau+06]. The input is a joint
velocity command which is internally regulated via a low-level proportional controller.
Assuming the dynamic parameters to be perfectly identified, the current velocity and
position are obtained simply by integrating the acceleration, and a prediction of the effort
is obtained using the IDM. The geometric model of the manipulator in conjunction with
the camera perspective projection allows to obtain image features coordinates.

The nonlinear MPC is then built on top of the presented model. In order to accomplish
the visual task, a quadratic stage cost is considered directly on the feature error. In
addition, minimization of the control inputs is taken into account as well. Constraints are
also introduced in order to ensure features visibility and torque limits, as well as to keep
joints within their bounds.

This control strategy was compared in simulation against a PI controller, using a
sampling period of 5 ms. The control and prediction horizons were set to 1 and 10 re-
spectively, and the optimization was solved using a Sequential Quadratic Programming
(SQP) algorithm (refer to Appendix B.3 for additional details). Simulations showed the
effectiveness of the proposed approach, in particular concerning constraint handling. The
robustness of the controller was also analyzed against relatively large identification errors,
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both in dynamic parameters and camera calibration. Nonetheless, the computation time
was about 400 ms in average, unacceptable for a real-time implementation.

The work by Allibert et al. [ACT08] considered a similar setup. The studied system is
composed by a Scara-like robot equipped with an omni-directional visual sensor which is
mounted on the end-effector. The dynamics of the robot is not considered in this case, and
the joint state is simply obtained from the control input, i.e., a joint velocity command,
using Euler’s forward integration:

qk+1 = qk + ∆t q̇k (3.23)

The measurement of features is instead modeled by the following equation:

u
v

 =
αu 0 u0

0 αv v0



βX

βY

1

 β = ξ +m

Z + ξ
√
X2 + Y 2 + Z2

(3.24)

with X, Y and Z being the 3D coordinates of an observed point and the other constants
representing the intrinsic parameters of the sensor. As in [Sau+06], the position of the
image points are evaluated using the geometric model of the arm and knowledge of the
object structure and location.

This work also proposed to use the so-called Internal Model Control Structure to adjust
the desired value of the image features. When predicting the future state of observed
points, the approximations introduced in the model will induce an error in the new value.
Formally, at the current iteration τ the value of the feature vector s(τ) and the one
predicted by the model, sm(τ), will differ by a given quantity ε(τ):

ε(τ) = s(τ)− sm(τ) (3.25)

If we assume that this error is constant for the given model, then the task of tracking the
desired sensor configuration s? with the real output can be assumed to be equivalent as
tracking the modified reference s?m with sm. Therefore, it is suggested to use, as desired
state in the objective, the values:

s?m = s? − ε(τ) (3.26)

The simulations provided in this work clearly show the advantage of using nonlinear
predictive controllers to regulate the sensor output while taking into account constraints.
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In particular, when considering large displacements classical feedback control might cause
the features to leave the field of view, leading to failure. MPC strategies can instead
optimize the control input in a way that ensures visibility.

3.2.3 Models based on the interaction matrix

All prediction models presented so far require full knowledge of the observed object,
since the calculation of visual features is based on this information and on the use of the
geometric model of the controlled robot. However, to update the state of image features
one could directly consider the differential relation between their derivatives and the sensor
twist by using the interaction matrix. This idea seems to appear for the first time in two
different works [LB09; AC09].

In the former, the update model considers the robot as a VCMD whose continuous-time
transfer matrix corresponds to a proportional regulator G(s) = diag

{
kv
s+kv

}
– analogous

to the low level controller of Figure 3.5, but directly applied to sensor’s velocity. After
transforming it in the discrete domain, the update equation for the feature vector is given
as:

sk+1 = sk + ∆tLsG(z−1)vck (3.27)

in which vck corresponds to the desired velocity of the camera at step k, which is assumed
to be the control input of the overall system. The interaction matrix is computed at each
iteration, using the current feature prediction sk. To deal with depth changes, the authors
propose to use a scheme that gives the depth as a function of the desired point coordinates
and the current image projection [LB08].

After validating the proposed predictor, simulations were presented. They confirm as
well that MPC can outperform feedback strategies by finding better motions for the sys-
tem. In particular, a small pure rotation about the optical axis of the camera is considered.
Compared to a PI control, which tries to move the features along straight lines towards
their desired location, the MPC is able instead to optimize the motion so that a simpler
circular one is performed.

The approach presented in [AC09] is similar to that of [LB09], in the sense that an
update scheme analogous to (3.27) is exploited. The main differences in this case are
that the VCMD is not considered and that the depth at the desired configuration is used
to approximate the interaction matrix. Extensive simulations are included to analyze

64



3.2. Predictive Control in Visual Servoing

different test-cases, all considering a unitary control horizon.

A first set of simulations focuses on pure rotations around the optical axis of the
camera, with different parameters tuning. First of all, a unitary prediction horizon and
a 90° rotation are considered. In this case, the path followed by the features is close to
the one given by classical control strategies. However, the decay of the feature error is
not exponential, due to the fact that some camera velocities will be kept saturated to
achieve lower values of the objective. This result is rather interesting in the context of
this thesis, as it shows that the convergence rate of the servoing task can be improved
even with a unitary prediction horizon. The value of np is successively increased to either
10 or 20, with a stage cost matrix Qk = I. Thanks to the possibility of foreseeing future
samples, the features follow a circular path in the image space, with less retraction in the
z-direction. Finally, an increasing weighting policy is tested in the objective, by setting
Qk = 2kI. The 2D behavior of the features is similar to the previous case, but in addition
the 3D motion of the sensor appears nicer, with even less retraction than in the previous
case. This is justified by the fact that the optimization has to favor the minimization of
the error in future samples, thus discouraging “greedy behaviors” and leading to motions
that, despite being sub-optimal in the short-term, are globally more satisfactory.

A second set of simulations considered larger displacements, requiring both rotational
and translational motions of the sensor. Similarly to the case of a pure rotation, it is shown
that the use of a larger prediction horizon and of an increasing weighting policy can lead to
superior performances, with smooth motions and better decoupling in the sensor’s degrees
of freedom. The same scenario was also simulated in presence of calibration errors and
image processing disturbances to show the robustness of the proposed scheme.

The authors later extended the approach by considering new models in [ACC10],
classified in two categories: Local Models (LM) and Global Models (GM). First of all, the
previously proposed predictor, based on L|z=z? , was renamed LMp, and a new model was
introduced by assuming that depths are estimated at each iteration and used in place of
z?. This second local approach has been named LMc.

Global methods assume instead to know the 3D coordinates (X i, Y i, Zi) of the ob-
served points in the camera frame. In this case, point locations are assumed to evolve
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according to:

X i

Y i

Zi


k+1

= R (vk)


X i

Y i

Zi


k

+ t (vk) (3.28)

where R ∈ SO(3) and t ∈ R3 define a homogeneous transformation matrix. This matrix
corresponds to the local change of pose of the sensor between the steps k and k + 1 due
to the action of the control input vk. From the 3D information, the output is obtained by
normalizing the coordinates of the points:

sik =
ui
vi


k

=
X i/Zi

Y i/Zi


k

(3.29)

Similar to the case of Local Models, two schemes were considered depending on the avail-
ability of points depth at the current control iteration. GMp assumes that the 3D state is
initialized from the current image measurements s and the depth at equilibrium Z?i:


X i

Y i

Zi


0

=


xiZ?i

yiZ?i

Z?i


τ

(3.30)

whereas GMc substitutes Z?i with the current depth estimation Ẑi
τ .

Simulation results reported in [ACC10] show the benefits of predictive controllers,
especially when the depth is updated during the estimation. A remarkable observation
included in the analysis concerns the so-called Optimal IBVS strategy. This scheme corre-
sponds to a VPC with unitary control and prediction step. As already reported before, this
choice leads to a behavior that is generally similar to what a feedback control would do,
but with enhanced convergence rate. Nonetheless, a major advantage consists in the abil-
ity of Optimal IBVS to deal with constraints such as visibility. As shown in Figure 3.6(a),
the controller is able to find a solution that accomplishes the visual task without letting
features leave the field of view. There is however a drawback: since the prediction horizon
is limited to a single step in the future, the control law is not smooth, with a sort of
“bang-bang” action (see Figure 3.6(b)).

The problem with Optimal IBVS is easily solved by extending the prediction hori-
zon, giving smoother and more effective results. In addition, the use of variable depth
in the prediction process allows to explicitly enforce better 3D behavior of camera’s mo-
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(a) Features evolution using Otimal IBVS. (b) Control inputs resulting from Optimal
IBVS.

(c) Features evolution using GMc with
np = 10 and nc = 1.

(d) Distance of the camera from the object
in two VPC simulations.

Figure 3.6 – Results from Visual Servoing simulations using either Optimal IBVS or GMc

VPC [ACC10]. Visibility constraints are enforced during the motion using both strategies,
which is generally not the case in classical feedback controllers. However, when using
Optimal IBVS, input control signals are highly discontinuous (b), resulting in an irregular
features evolution (a). On the other hand, with a larger prediction horizon (np = 10) the
resulting motion is much smoother (c). Finally, in (d), a comparison of the distance of
the camera from the object along the vertical axis with and without workspace bounds
to explicitly limit retraction.
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tion. Considering the case of large rotational displacements, previously existing VPCs
were exploiting the simple idea that when a short control horizon is selected, the optimal
input sequence generally corresponds to an almost pure rotation with reduced transla-
tion components, at least in comparison with classical approaches. However, once depth
is considered the retraction problem can be handled explicitly by imposing workspace
bounds. As an example Figure 3.6(d) includes results from the study in which both 2D
and 3D constraints are included. By constraining the vertical workspace of the sensor as
Zc ∈ [−0.6 m,−0.5 m], retraction is directly prevented.

3.2.4 Visual Predictive Control with reference trajectory

As stated in the beginning of this section, the stage cost for the optimization does
not need to consider a fixed setpoint. Instead, the predicted future states xk might be
required to track a given reference trajectory x?k (cfr. (3.9)). If a way to define such a
(possibly feasible) trajectory is available, this can be advantageous in order to help the
system evolve in a controlled way.

An example in this regard can be found in the work from Lazar et al. [LBC11] which
adds to the VPC presented in [LB09] a trajectory generator based on homographies as
described in [AF05]. It is well known that when a set of coplanar (and non-collinear)
points is observed from two different perspectives a and b, their coordinates obey the
homography relation [HZ03]:

Pb = H Pa =
(

Rb a + tb an
T
a

da

)
Pa (3.31)

where Rb a and tb a represent the homogeneous transformation from a to b, while the couple
na, da defines the plane equation in a, i.e., such that nTa Pa = da. By taking into account
camera intrinsic parameters by means of a matrix K, the relation between points given
in image coordinates becomes:

 sb
1

 = αKHK−1

 sa
1

 = G

 sa
1

 (3.32)

with α a scaling parameter (theoretically equal to the depth ratio of the points in the
two perspectives) and G named collineation matrix. By considering the feature set at
the current iteration and at equilibrium, a link is established by (3.32) involving the
current pose of the camera with respect to its desired one. In order to produce a suitable

68



3.2. Predictive Control in Visual Servoing

reference trajectory in the image space, it is possible to consider a continuous sequence of
homogeneous transformations in the form:

H (ρ) = R (ρ) + t (ρ)nTi
di

(3.33)

with di and ni defining the equation of the observed plane at the initial view, and ρ

a monotonic function of time ranging from 0 to 1. If we impose R(0) = I, t(0) = 0,
R(1) = R? i and t(1) = t? i, the resulting collineation matrix is such that G(ρ)si will
change from the current values of s to s?.

In order to obtain a smooth motion from the current time τ and the prediction horizon,
the interpolation variable ρ can be chosen, e.g., as a quintic polynomial in the normalized
time t−τ

Tp
, with initial conditions ρ(τ) = 0, ρ(τ + Tp) = 1 and ρ̇(0) = ρ̇(τ + Tp) = ρ̈(0) =

ρ̈(τ + Tp) = 0. An alternative design of the interpolation variable might impose a non-
zero initial condition on ρ̇ [CLB12]. This results in reference trajectories that approach
the equilibrium configuration in shorter time – obviously, the initial condition should be
selected not to cause overshooting.

Regarding the interpolation of R and t, three cases can be considered:

1. Pure translation: the rotation matrix R is kept as the identity, and linear interpo-
lation is performed as t(ρ) = ρ t? i.

2. Pure rotation: the translation is kept constant to zero, while spherical linear inter-
polation (SLERP) can be used for the rotation matrix (either in terms of Rodrigues’
formula or using quaternions).

3. Rotation and translation: the desired orientation is still obtained via SLERP, while
the translational path is computed using a helicoidal shape. The linear translation
axis of the helix is chosen aligned to the rotation vector θu corresponding to R? i.

The overall VPC strategy is then almost identical to previously presented approaches,
with s? being replaced by the generated time-dependent reference samples s?k.

As a concluding remark on the reported procedure, it must be noted that in practice it
is possible to recover the relative translation t? i only up to a scaling factor. Therefore, in
the proposed approach the translational motion should actually be replaced by a scaled
version. Nonetheless, this does not alter the validity of (3.32), in the sense that the
obtained feature projection will be identical no matter the value of the unknown scale
factor.
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3.2.5 Visual Predictive Control with image moments

Image moments have been considered as well for the design of Visual Predictive Con-
trollers [CBL11; CLB12]. As already discussed, (planar) image moments can be evaluated
from a set of image points using either (1.17) or (1.18) depending on whether continuous
or discrete moments are considered, with the related interaction matrices given by (A.38).
Following the same notation adopted in related works, the transformation giving image
moments from a set of points will be denoted by the symbol M.

Two main approaches can be considered in order to establish a prediction model
[CLB12]. In the first case, a set of point features s is considered and their future value
is estimated using the interaction matrix as in [LB09] (see (3.27)). In this matrix, how-
ever, the inverse depth is replaced by the corresponding value computed from the plane
parameters A, B and C, i.e., for the i-th image point 1

Zi
= Axi +Byi +C. This strategy

gives a sequence of predicted states sk which can then be transformed into corresponding
image moments m, i.e., mk = M (sk).

The second strategy operates directly on moments sets. Starting from the current value
of point features, s0, corresponding momentsm0 are obtained using M. For future predic-
tions, the interaction matrix of image moments is assumed constant over the prediction
horizon, and is used to obtain predictions for the image moments as:

mk+1 = mk + ∆t L̂mvk (3.34)

In practice, the update model considers L̂m to be the half-sum of the interaction matrix
computed at the current iteration and at equilibrium, i.e.,

L̂m = 1
2 (Lm(m0) + Lm(m?)) (3.35)

Two VPC schemes were designed from the given prediction models. The objective can
be designed to either reach a fixed set-point as in the classical setup or to track a reference
trajectory using the generator illustrated in the previous section. In this case, to define
the target motion in terms of image moments, it is possible to exploit the homography-
based approach to firstly define a reference trajectory for the image points and then to
transform them into reference moments via M. Regarding the weighting matrices used in
the stage cost, it is proposed to use Qk = ekI when a fixed set-point is considered as target,
thus increasing the weight to achieve a faster response towards the goal. Conversely, when
considering a trajectory over the prediction horizon, Qk = e−kI is used, in order to enforce
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better tracking of the time-varying reference.

3.3 Proposed Contributions to Visual Predictive Con-
trol

In previous sections, an introduction to Model Predictive Control has been presented,
with a focus on Visual Servoing applications. The reason to consider such kind of control
strategy for the purposes of this thesis is that, as discussed, when the initial configuration
is characterized by large displacements with respect to the desired one, the optimization
generally leads to shorter and more effective motions of the controlled system. In addition,
the feature error usually decreases with a faster response than the one given by the
exponential decay even when the current configuration approaches the target one.

There are different directions that can be considered to extend existing approaches,
one of them consisting in considering new prediction models. In particular, the use of
second-order approximations of the discrete-time feature prediction seemed a viable new
method to be investigated. Another factor to be taken into account is related to redun-
dancy. While the outlined studies focused on manipulators featuring 6 degrees of freedom,
our experimental platform is instead redundant with respect to the visual task. As such, a
proper modified objective should be considered to properly exploit the additional degree of
freedom. Finally, it must be noted that the computational cost of the nonlinear optimiza-
tion can be relatively high. Given the objective of designing a fast control scheme, some
attention should be dedicated to an efficient implementation allowing to obtain control
inputs in real-time with sufficiently fast motions.

3.3.1 Predictors Based on Second-Order Models

The first proposed contribution to VPC in this thesis consists in taking into account
higher-order models in the predictive update equation. In fact, by taking into account also
the acceleration of the visual features, the resulting prediction should be more accurate
and therefore lead to better control sequences.

Similarly to what was proposed in [LB09; AC09], we propose to use a local model in
which the feature vector of the system is updated only using local information on the
features derivatives. However, contrarily to existing models, we propose to exploit not
only the interaction matrix of the feature set, but also second-order information in the
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update equations. More precisely, it is proposed to predict the value of the feature vector
at the next iteration using the following model, corresponding to a second-order Taylor
expansion of the features evolution:

sk+1 = sk + ∆tLsvk + 1
2∆t2 (Lsak + hs) (3.36)

In the formula, both Ls and hs are evaluated using the values contained in sk and zk,
i.e., the interaction models are updated at each prediction step.

Regarding the estimation of the features parameters zk along the prediction horizon,
there are mainly two possibilities. The first one is to keep their value constant, either to the
equilibrium value z? or to the last available estimation before starting the optimization.
Another strategy would be to predict their value as well, which we propose to do in a
similar fashion to (3.36):

zk+1 = zk + ∆tLzvk + 1
2∆t2 (Lzak + hz) (3.37)

In principle, the two prediction equations presented above require the spatial velocity
v to be a state of the model as well, and the spatial acceleration a to be the control
input. One could design a control scheme in this way and, at each iteration, recover
the joint commands to be sent to the manipulator by means of its geometric jacobian.
However, directly taking into account the evolution of the joint state of the robot during
the predictive optimization allows to consider a broader set of constraints, such as joint
limits. For this reason, we assume that the system is controlled via joint acceleration
commands, i.e., u = q̈. In this case, the full state of the manipulator can be selected as:

x =


q

q̇

s

z

 (3.38)

that is, by considering the joint positions/velocities and the observed features (with the
related parameters). Considering a piece-wise constant input, the joint state of the ma-
nipulator can be updated exactly from:

qk+1

q̇k+1

 =
qk + ∆t q̇k + 1

2∆t2 q̈k
q̇k + ∆t q̈k

 (3.39)
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whereas the second-order approximations (3.36) and (3.37) are used to evaluate the fea-
tures and the related parameters. Vectors vk and ak are evaluated in function of joints
positions, velocities and accelerations via the Forward Kinematic Model of the arm. Note
that keeping track of the time derivatives of s and z inside the state is not necessary,
since they can be obtained at each prediction step directly from the interaction matrix
and vk.

As it will be shown later, the new predictor proposed above has been implemented and
tested both in simulation and with the real robot, and, with the objective of evaluating its
performances against classical approaches, a predictor based solely on first-order informa-
tion was also considered. Its state consists in the joint coordinates q of the manipulator,
altogether with the features s and the visual parameters z. The control input is assumed
to be the joint velocity of the manipulator, i.e., uk = q̇k, and the prediction model thus
writes as:


qk+1

sk+1

zk+1

 =


qk

sk

zk

+ ∆t


I
Js
Jz

uk (3.40)

wherein Js is the feature Jacobian of s, as defined in (1.6a). Similarly, Jz corresponds to
Lz Tc wJ. In order to distinguish between this prediction model and the one that integrates
also features acceleration information, we will refer to the former asM1 and to the latter
asM2.

One disadvantage related toM2 compared toM1 is its larger state vector, which leads
to a higher computational burden in the optimization. To overcome this issue, a new model
is thus proposed, lying between classical approaches based solely on velocity information
and the acceleration-controlled model presented above. Its objective is to keep the state
vector of the same size as in M1, while integrating higher-order information similarly
to M2. In particular, the new model assumes the control input u to be the velocity of
the manipulator like in classical approaches. However, it also exploits the fact that the
second term in (2.13) depends only on the current features/parameters and the velocity
of the sensor. As it is done in classical local models, we assume that the twist of the
camera is piece-wise constant, and at the time-sample k it is thus possible to evaluate vk
as Tc wJuk. Altogether with sk and zk, this allows to approximate features acceleration
as s̈k ' hs (the acceleration of the sensor is therefore not taken into account). Using a
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similar procedure to evaluate z̈k, this provides the following update scheme:


qk+1

sk+1

zk+1

 =


qk + ∆t q̇k

sk + ∆tLsvk + 1
2∆t2 hs

zk + ∆tLzvk + 1
2∆t2 hz

 (3.41)

Since this model is a mix between those based on first and second order models, we like
to refer to it as “hybrid” predictor,MH.

To illustrate why the proposed models can lead to better results, Figure 3.7 shows
a simple example of predictions made using the three schemes detailed above. This case
considers a free-flying camera that observes four image points while retracting and ro-
tating about its optical axis. The velocity and acceleration of the sensor, which are both
continuous and non-constant, are sampled with a period of 50 ms, and fed to each model
to perform predictions for s and z in open-loop.M1 slightly drifts from the actual state
during time, whereasM2 provides the most reliable predictions. Finally, the hybrid pre-
dictorMH, despite being less accurate thanM2 due to the truncated approximation of
s̈, provides a rather good prediction of the real evolution.

(a) (b)

Figure 3.7 – On the left, the predictions of the evolution of a normalized point’s coor-
dinates. The solid black line is the ground-truth, while dashed lines are obtained using
different models fed with the applied control inputs sampled at ∆t = 0.05 s. On the right,
the prediction error of each model with respect to the ground-truth.
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3.3.2 Visual Predictive Control Scheme

The proposed overall VPC scheme solves the optimal control problem using a single-
shooting direct method, as presented in Section 3.1 and 3.1.1 in particular, with some
adaptations specific to our studied case.

First of all, the main objective of the controller is to steer the features from the initial
configuration to a fixed value s?. There is instead no need to ensure the convergence of
neither q nor z to any specific value. For this reason, the matrices Qk+1 in the stage cost
(3.9) are selected as diagonal, with the elements corresponding to the joint configuration
and to the features parameters equal to zero.

Regarding the weight associated to the features, the diagonal weighting matrix Q(s)
k+1 =

αkI is adopted, α being a tunable scalar parameter, similarly to what was done in some
of the related works presented in previous sections. More specifically, it appears that
decreasing weighting policies are beneficial when used altogether with an online trajectory
generator [CBL11; BCL14], while it was shown that increasing weights can bear to higher
decoupling in the camera motion, generally shorter paths and faster convergence [AC09;
ACC10]. As the scenarios presented in the following sections fall into this second category,
α > 1 was chosen.

Given the redundancy of the controlled manipulator, additional objectives can be
considered in the optimization. In particular, a contribution should be added to minimize
the velocity of the manipulator, since the visual task constrains only six degrees of freedom
and is thus not sufficient to fully stabilize the joint position. By minimizing the velocity
of the manipulator, once the robot has completed the visual task the optimal solution
becomes to stop all motors, thus solving the problem. To do that, it is possible to use
the constant diagonal matrix Q(q̇) = βI, β > 0 controlling the relative importance with
respect to the visual task. It must be noted that the objective is to minimize the joint
velocity independently from the model used for predictions. Since M1 and MH both
assume a velocity control, the matrices of the quadratic stage cost write in these cases as:

Qk+1 =


O

αkI
O

 Rk = βI (3.42)

On the other hand, when dealing withM2 the joint velocity is part of the state vector.
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As such, the weighting matrix is formally to be inserted as a part of Qk+1, i.e.,

Qk+1 =


O

βI
αkI

O

 (3.43)

with the desired state q̇?k simply being a zero-vector. Note that in this case, a term
that tries to minimize the input is not considered, i.e., Rk = O. Indeed, minimizing
the acceleration would lead to a conservative velocity behavior, resulting in potential
instability or longer time to convergence.

In principle, one could try to exploit the redundancy in other ways than to damp
the joint velocity of the controlled system. As an example, three other criteria have been
taken into consideration: the minimization of the joint efforts, of the gravitational potential
and of the kinetic energy. Despite these options being attractive in theory, it turned out
that they are not necessarily effective in practice. In fact, the first criterion encourages
the system to move according to its free dynamic evolution, which is almost always in
contrast with the Servoing task and does not guarantee the stabilization of the joint
angles to a given value. Similar issues are encountered when attempting to minimize the
gravitational efforts, since the optimal solution would “push” the manipulator downward,
which is generally in contrast with the visual task. The optimization thus ends up in a local
minimum that constitutes a compromise between the two components, without however
satisfying neither of them completely. Finally, the minimization of the kinetic energy can
be viewed as a special form of the quadratic stage cost, in which the weighting matrix
Q(q̇) corresponds to the generalized inertia matrix A(qk). In this sense, the criterion
is compatible with the formulation presented above, as it simply provides a different
weighting of the velocity components. However, it was found that in practice it does
not bear major differences with respect to the simpler, computationally lighter, constant
weighting matrix.

Two kinds of state constraints are considered during the optimization, in addition to
control input bounds. The first one is introduced to keep the joint configuration of the
robot within the allowed limits, i.e., qmin ≤ qk ≤ qmax, ∀k = 1, · · · , np. The second set of
state constraints is introduced instead to prevent the object to leave the field of view of
the camera. In particular, when servoing from image points this constraint simply writes
as smin ≤ sk ≤ smax, with s containing the x and y coordinates of the observed points.
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When polar coordinates are used, the constraints above are expressed for each point i in
terms of the features ρi and θi as:

xmin ≤ ρi,k cos θi,k ≤ xmax

ymin ≤ ρi,k sin θi,k ≤ ymax
(3.44)

3.3.3 Implementation Details

The optimization problem of the VPC scheme detailed in the previous section was
solved using a single-shooting direct method. More in details, the problem was formulated
as in Section 3.1.1, exploiting also the Internal Model Control Structure already adopted
in [ACC10] in order to reduce the effect of modeling uncertainties.

It must be noted that, in order to achieve relatively high performances, the optimiza-
tion needs to be solved rather quickly. In fact, assuming a desired control frequency of
50 Hz, the maximum allowed optimization time amounts to 20 ms. To solve the optimiza-
tion it was thus decided to use Sequential Quadratic Programming, which is a fast local
optimization strategy. The algorithm is well suited to the problem at hand for different
reasons, the main one being related to the iterative nature of the VPC scheme. In fact, if
on one hand a new optimization has to be solved at each control iteration, on the other
it is also reasonable to expect that successive problem definitions – and consequently
their solutions – will not differ too drastically, given the relatively high control frequency.
This allows to re-use the solution to one problem instance as the initial guess for the
following iteration, and to perform a local refinement to evaluate the new optimum. SQP
algorithms can provide quadratic convergence to a local optimum, while simultaneously
enforcing equality and inequality constraints, and they are thus an ideal candidate for
VPC optimizations.

Another interesting aspect of using SQP in a single-shooting method is that, during
a single optimization process, the objective is monotonically reduced during successive
iterations. The consequence is that, even if the optimization is halted prematurely for some
external reason, the algorithm can return a control sequence that cannot be worse than the
initial guess, and hopefully is “near enough” to the optimum. In addition, the returned
solution is consistent with the prediction model, since constraint (3.10a) is implicitly
enforced in single-shooting methods. This aspect is important, since, as it will be detailed
later in this chapter, under some circumstances the VPC optimization would have required
more than 20 ms to complete. Since this is incompatible with a real-time implementation
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on the real hardware, the optimization needs to be stopped even if the optimum has not
been reached. As it will be shown, this is not necessarily a hard limit and the proposed
schemes can still run in practice.

The only thing that is still required for the scheme to be effective, is a good initial-
ization of the control inputs. Here, it is proposed to let a further optimization algorithm
evaluate this initial guess. The computation is performed as an offline pre-optimization,
which is allowed to consume a large maximum time, while the system is held static in its
initial state.

To conclude this section, few details are now presented regarding the software imple-
mentation of the outlined control scheme, which ultimately resulted in a C++ library.
To solve the constrained nonlinear optimization problems, the open-source library NLopt
[Joh] was chosen. Among the large list of available algorithms, SLSQP [Kra88; Kra94]
and ISRES [RY05] were employed. In particular, the former is a SQP implementation
that was used mainly for the local optimization during each VPC iteration. It was also
used to obtain a candidate guess in the pre-optimization phase, starting from a null con-
trol sequence. The second algorithm, which is instead a global optimization routine, was
also exploited in the pre-optimization step to obtain a further initial guess of the control
inputs. In practice, the sequences returned by the two strategies were compared at the
end of the offline initialization and the best one was kept and used as seed for the VPC
iterative scheme.

SLSQP requires gradients, both for the objective and the constraints, to be supplied
in order to build and solve the optimization. These can be evaluated on top of (3.14)
since a single shooting method is used. Given the possibly large dimensionality of the
problem, the evaluation of the different functions and their gradients can become com-
putationally expensive. Therefore, a set of libraries was selected in order to speed up as
much as possible the process. In particular, the Eigen library [GJO10] was used for the
matrix arithmetic, allowing to exploit processor parallelization and resulting in overall
faster computations. Pinocchio [CM18; Car+19] was instead exploited to represent the
manipulator and to compute its geometric and kinematic models. Finally, the code gener-
ation utilities provided by CppADCodeGen [Lea19] were used to compile the prediction
models to further reduce the execution times.
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3.3.4 Simulations

To investigate the performances of the proposed models, several simulations were con-
ducted. The main goal was to gather preliminary data related to the behavior of the VPC
schemes resulting from the choices detailed in the previous sections, and also to study the
effect of the different parameters that appear in the problem formulation. This was also
convenient in order to obtain a rough initial estimation of the values that could then be
used in real experiments.

All simulations were run in a simple environment that updates the state of the robot
by integrating velocity or acceleration commands, therefore not taking into account the
dynamic model of the manipulator. Four image points were used as visual features, corre-
sponding to the vertices of a squared shape of side 0.2 m. In all tests, the arm was required
to reposition the camera in front of the squared object at a distance of 0.5 m, starting
from different poses depending on the simulation. The object was kept static for the en-
tire duration of each test, and thus the feature vector changed only due to the motion of
the manipulator. To simulate the visual feedback gathered by a camera, the coordinates
of the four points were evaluated using the geometric model of the Kuka arm, since all
transformations were perfectly known in simulation. The evaluated features were finally
sent at a rate of 50 Hz, to match the acquisition frequency used in real experiments, and
the control period ∆tc was thus set to 20 ms. As discussed in the previous section, the
optimization might require more time than the control period to be solved to the desired
precision. To achieve real-time feasibility a time limit of 0.9 ·∆tc = 18 ms was imposed in
NLopt as termination condition in addition to other stopping criteria.

Regarding the remaining parameters of the VPC scheme, the prediction horizon was
set to np = 10. This implies that the control horizon nc has to be chosen between 1 and
10, with smaller values corresponding to faster optimizations, but with less flexibility. In
the next sections, simulations are reported for the two cases nc = 1 and nc = 10.

The sampling time ∆t used in the three predictors could be chosen equal to the control
period ∆tc. However, it would lead to a prediction vector spanning a rather short time
period, i.e., Tp = np · ∆t = 200 ms. Larger values would lead to better performances
in theory, but it would require either to increment the prediction horizon or to use a
larger value for ∆t. While the first option implies an increase in the computational load,
the second one does not change the complexity of the optimization. However, it leads to
larger modeling errors due to a less accurate discrete-time approximation of the controlled
system. Nonetheless, it was shown by experimental comparison that this is not a critical
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issue for the proposed predictors, which are more accurate thanks to the inclusion of
acceleration information. To support this claim, the included simulations consider different
values for the prediction sampling time. In particular, both ∆t = ∆tc and ∆t = 5∆tc =
0.1 s have been used.

Finally, the coefficients α and β appearing in the objective were tuned by trial and
error. In particular, the process was split in two different steps, the first one consisting
in fixing α to 1 while tuning β. Its value was chosen to be small compared to the one
of α in order to allow motions to be rather fast in the beginning, thus achieving quicker
convergence to the desired feature configuration. It was noticed that depending on the
kind of control input, the value needed to be adjusted differently: β = 10−3 was used
for velocity-controlled models (M1 andMH). RegardingM2, a smaller factor proved to
work better in general, and thus β was set to 10−4 in that case. The second step in the
tuning procedure consisted in finding a suitable value for α. As discussed in Section 3.3.2,
it was decided to use a value greater than 1 in order to disfavor greedy motions that would
move the features straight towards the goal configuration. It was noticed that this is a
suitable choice especially when the camera has to perform large rotations, like in most of
the reported simulations. The parameter was tuned by considering the weight associated
to the last prediction sample, α′ .= αnp = α10. By considering few different values for it,
we could coarsely tune α. Our final choice was α′ = 2.5, leading to α ' 1.1.

First set of simulation results

This first set of simulations was used to form a base case for later comparison. The
prediction sampling time was set equal to the control period, i.e., ∆t = ∆tc, and a unit
control horizon was used. This corresponds to a reduced dimension of the decision vector
in the optimization, and consequently solutions can be evaluated in a relatively short
amount of time.

To test and compare the performances of the different predictors, three scenarios were
considered, each characterized by a different initial pose of the sensor. In the first two, the
camera was located in the correct position with respect to the object, but rotated around
its optical axis of either 90° or 180°. The last scenario also required the sensor to perform
a half-turn around the optical axis, as well as a small translation in all directions, for a
total displacement of 7 cm.

Figure 3.8 shows the results obtained in the first scenario. In the case of classical
feedback laws, the paths followed by image point features in the image plane would be
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almost straight lines, resulting in sensor retraction. Instead, the optimal motion would be
a pure rotation about camera’s optical axis, and as shown in Figures 3.8(a) and 3.8(g),
the predictive laws based on M1 and MH are almost able to perform it. Distortions
are likely introduced by the fact that the minimization of the velocity is done in the
joint space, and therefore the camera velocities are not perfectly decoupled. Nonetheless,
their performances are sufficiently satisfactory, especially in terms of convergence, which
is achieved in about 0.5 s.

On the other hand, with the current settings the controller based on M2 provides
unsatisfactory results. In particular, despite presenting a very smooth motion in the be-
ginning, the sensor retracts quite significantly. Moreover, when reaching a neighborhood
of the desired configuration the system shows an oscillatory behavior. The oscillations are
damped along the simulation, and are eventually suppressed after a significant amount of
time – more than the 3 s shown in Figure 3.8. This behavior can be explained by the fact
that, when nc < np, the last evaluated input is applied again for np− nc times. Since this
model assumes an acceleration command, a constant input over a relatively large time
interval leads to a growth in velocity and steers the system away from the desired features
configuration. In addition, the prediction time interval is not long enough to anticipate
and compensate for this unwanted velocity growth. It would be possible to reduce the
oscillations by increasing the weight of the velocity objective coefficient, but the time
required to complete the task would also grow significantly.

Before advancing, it is important to remark that the evolution of the two velocity-
controlled VPCs is almost indistinguishable. This is justified by the fact that the only
difference in the two predictors is given by the terms 1

2∆t2hs and 1
2∆t2hz introduced in

(3.41): given that the sampling period ∆t is rather small, these terms are not significant
enough to make a difference in the control scheme. This holds for the other two scenarios
presented in this section. However, as it will be shown later, with a larger value of ∆t
differences can finally be appreciated.

It is now possible to consider the second scenario, involving a π rad rotation about the
optical axis, whose results are depicted in Figure 3.9. As anticipated in the remark,M1

andMH perform similarly, and, notably, worse than in the previous test. The reason is
likely to be found in the prediction period Tp not being long enough to properly optimize
the motion. Furthermore, the acceleration-controlled VPC is now unstable, with persistent
oscillations, for the same reasons detailed before. Again, one way to reduce the oscillations
could consist in increasing the weight associated to the velocity minimization task, but
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.8 – First simulation set (∆t = ∆tc, nc = 1), first scenario (90° rotation around
the optical axis). The rows correspond toM1 (top),M2 (middle),MH (bottom), while
the columns to the features trajectories in the image (left), the feature error (center) and
a 3D view of the manipulator (right).
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the total time needed to complete the task in this case would be significantly larger than
that needed byM1 andMH.

To conclude this first set of simulations, Figure 3.10 shows the results obtained in the
last scenario. Performances are not dissimilar to the previous case, with velocity-controlled
models converging to the desired configuration with a sub-optimal motion and M2 still
featuring large, uncontrolled, oscillations.

Second set of simulation results

Results reported so far seem to suggest that there is little interest in using the models
proposed earlier, sinceMH performs very similarly toM1 andM2 seems to be impractical
when medium-large motions have to be performed. However, the results reported in this
section will show that this is not always true, and that the performances of the proposed
models can fortunately be increased.

One issue that appears clearly in all approaches is that, having a high control frequency,
the prediction horizon is not long enough to foresee what the optimal motion should be
in the case of large displacements. In the presented setup, the prediction horizon allows in
fact to predict over a time interval of just 0.2 s. It is argued here that this is one of the key
factors limiting the performances of the models in the previous simulations. As already
mentioned, one possible way to improve performances would therefore be to increase np.
However, this would also imply a larger computational cost. One alternative is instead to
use a larger time discretization step ∆t in the prediction models, as this allows to increase
the time horizon without having to change np, thus keeping the same complexity for
the optimization. This second option has its own different drawback: it introduces larger
modeling errors, since the predictors are obtained from a truncated expansion of the real
features evolution. Nonetheless, it is claimed here that models including the acceleration
information are less affected by this issue, since they are intrinsically more accurate. In
conclusion, in the attempt to obtain better performances the tests shown in this section
all used a larger sampling time, ∆t = 5∆tc = 100 ms.

Note that the increased sampling time in the prediction does not mean that the control
frequency is lowered as well. On the contrary, the optimization is still repeated every ∆tc =
20 ms. Considering this fact, a slight change is also introduced in the definition of the seed
fed to the optimization algorithm at the next iteration. As remarked in Section 3.3.3, the
SQP algorithm used for the optimization successively refines an initial guess supplied
by the user, and providing a good starting point is important in order to achieve faster
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.9 – First simulation set (∆t = ∆tc, nc = 1), second scenario (180° rotation
around the optical axis). The rows correspond toM1 (top),M2 (middle),MH (bottom),
while the columns to the features trajectories in the image (left), the feature error (center)
and a 3D view of the manipulator (right).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.10 – First simulation set (∆t = ∆tc, nc = 1), third scenario (180° around the
optical axis and short translation). The rows correspond toM1 (top),M2 (middle),MH
(bottom), while the columns to the features trajectories in the image (left), the feature
error (center) and a 3D view of the manipulator (right).
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performances. Thus, to help the optimization start from a better point, we propose a very
simple heuristic in which the controls u(init)

k used for initialization of the next step are
evaluated from the last available solution samples uk by interpolation:

u
(init)
k =

uk + ∆tc
∆t (uk+1 − uk) (k < nc − 1)

uk (k = nc − 1)
(3.45)

The same tests presented in the previous paragraph were then repeated with the
increased time-step. Results from the first scenario, reported in Figure 3.11, show that
good motions are still found by both M1 and MH, apparently even a little smoother
than before. Interestingly, the motion obtained in the space using M2 is much shorter
than before, and the evolution in the image space is also closer to that of the other two
predictors. However, oscillations near to the target configuration are still present.

It must be noted that the convergence time is higher in comparison with the previous
simulations. A possible explanation for this behavior is the simultaneous use of a longer
sampling time ∆t and of a unitary control horizon. To explain why this might be the
cause for an overall slower evolution, imagine the system to be like a car that has to drive
at constant velocity v for a fixed amount of time Tp. If the goal is to reach a location
at distance d, then the “optimal” velocity at which the car should proceed in order to
be at the target after the time Tp would trivially be v = d/Tp. Even if this does not
exactly describe what happens in the simulations with the manipulator, it provides an
close enough example: if Tp is increased – which is exactly what has been done in this
section, by increasing ∆t – we can expect velocities to be lower, justifying the increment
in time to complete the task.

The results from the other two scenarios are particularly interesting. Specifically, when
the camera has to perform only the 180° rotation (see Figure 3.12) two facts should be
noted. First of all, the performances obtained withM2 are similar to those of the classical
predictor. Secondly,MH now performed a much shorter trajectory compared to the one
obtained previously and shown in Figure 3.9. Unfortunately, like in the first scenario,
the execution of the task is slower compared to the timing performances obtained in the
previous section.

The third scenario offers similar results. As depicted in Figure 3.13,M2 almost pro-
vides a nice motion, was not for the familiar oscillations that appear as soon as the camera
has reached a neighborhood of the desired configuration. Moreover,MH ranks first also
in this scenario, with the shortest motion among the three predictors.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.11 – Second simulation set (∆t = 5∆tc, nc = 1), first scenario (90° rotation
around the optical axis). The rows correspond toM1 (top),M2 (middle),MH (bottom),
while the columns to the features trajectories in the image (left), the feature error (center)
and a 3D view of the manipulator (right).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.12 – Second simulation set (∆t = 5∆tc, nc = 1), second scenario (180° rotation
around the optical axis). The rows correspond toM1 (top),M2 (middle),MH (bottom),
while the columns to the features trajectories in the image (left), the feature error (center)
and a 3D view of the manipulator (right).

88



3.3. Proposed Contributions to Visual Predictive Control

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.13 – Second simulation set (∆t = 5∆tc, nc = 1), third scenario (180° around the
optical axis and short translation). The rows correspond toM1 (top),M2 (middle),MH
(bottom), while the columns to the features trajectories in the image (left), the feature
error (center) and a 3D view of the manipulator (right).
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Third set of simulation results

It has just been shown that using a larger discretization step allows to obtain better
results with the proposed predictors, as they can take into account states that are farther
in the future and consequently optimize their motion. A side-effect was however found,
ultimately resulting in poorer timing performances. As discussed, this is likely due to the
fact that, as a single control sample has to be re-used over the whole prediction, it has to
ensure that no overshoots appear.

A better trade-off could be found by increasing nc. The optimization algorithm would
have in this way the ability to exploit larger inputs at least in the beginning of the
prediction horizon, slowing down the robot with the last control samples once the sensor
has already approached the desired configuration.

Another reason for considering the use of larger control horizons is related to M2.
Up to now, no stable behavior could be fully ensured using this model, ending up almost
always with oscillations. As already suggested, this might be due to the fact that a single
acceleration signal prevents the system to stably reach the desired image configuration and
stop the robot at the same time. Not forcing the optimizer to re-use the same acceleration
sample along the whole prediction horizon would hopefully allow to find better motions,
in which the system initially gains velocity and then decelerates as needed.

For the reasons above, a further set of simulations was run, featuring a larger con-
trol horizon. In particular, nc = np = 10 was used, providing the highest number of
degrees of freedom to the optimization. This came at the price of a heavier computational
load, causing the optimizations in each simulation to halt due to the time-limit criterion.
Nonetheless, this was not a major limitation, as discussed later.

Figure 3.14 depicts the results obtained with the increased control horizon in the first
scenario. The superiority of the proposed predictors is here arguably undeniable. First of
all, the features are moved byM1 along the sides of an almost rectangular shape, which
somehow reminds of the trajectories obtained with proportional controllers, also resulting
in retraction. On the other hand, bothM2 andMH lead to better motions: the motion
of the sensor is much closer to a pure rotation, with smooth movements and nearly no
retraction. Remarkably,M2 is almost no longer affected by oscillations, with just a slight
overshoot in the features error (see Figure 3.14(e)), yet far from what it used to be in
the previous tests. Finally, the timing performances are also satisfactory, suggesting the
correctness of the explanation for the longer execution times provided in the previous
section.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.14 – Third simulation set (∆t = 5∆tc, nc = 10), first scenario (90° rotation
around the optical axis). The rows correspond toM1 (top),M2 (middle),MH (bottom),
while the columns to the features trajectories in the image (left), the feature error (center)
and a 3D view of the manipulator (right).
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Similar results are found when the sensor has to perform a doubled rotation, as shown
in Figure 3.15, as well as in presence of translation, cfr. Figure 3.16. All VPC schemes
are able to quickly complete the servoing task in both scenarios. However,M1 appears to
be the worst strategy, in the sense that the observed image features present discontinu-
ities and the resulting 3D behavior is the one with the largest retraction. The proposed
predictors lead instead to smooth trajectories with a more decoupled sensor motion in
Cartesian space.

Discussion

Before presenting the experimental results obtained with the real robot in the next
section, few remarks are included to clarify the influence of some factors that were not
discussed in the previous sections.

Let us start with a note on the time required to solve the optimizations. Table 3.1
reports the average computation times needed by each optimization strategy depending
on the test set and the scenario. When considering a simple optimization with just a
single control sample (test sets 1 and 2) the optimization can be completed much earlier
than the maximum allowed time. However, when the control horizon is increased all
strategies do not actually converge to the minimum within the allotted time. Instead, they
simply return the best control sequence found so far. One obvious question is whether
the performances ofM1 could be improved to match those of the other models simply by
allowing longer computations, and in such case, how much time would be needed. The last
set of simulations was therefore repeated by changing the time limit, while keeping the
control frequency unchanged (this investigation was thus possible only in simulation). It
turns out that the performances of the three predictors are not significantly enhanced even
if the controller is allowed to take as much as 200 ms to solve the minimization problem.
Conversely, the time limit was also reduced to better understand when the premature
stopping can induce instability in the control. In this sense, the performances were not
heavily affected until the limit was reduced to less than 13 ms.

Another aspect worth discussing is the sensitivity of the three VPCs to changes in the
objective coefficients. Since these values are tuned by trial and error, it is interesting to
better understand how precisely (or coarsely) they need to be estimated. In this regard,
it was noted that the parameter β does not need to be finely tuned and that it is instead
sufficient to find a suitable order of magnitude. The situation is different when tuning
the value of α. Since it is the base of an exponential term, small changes can lead to
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.15 – Third simulation set (∆t = 5∆tc, nc = 10), second scenario (180° rotation
around the optical axis). The rows correspond toM1 (top),M2 (middle),MH (bottom),
while the columns to the features trajectories in the image (left), the feature error (center)
and a 3D view of the manipulator (right).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.16 – Third simulation set (∆t = 5∆tc, nc = 10), third scenario (180° around the
optical axis and short translation). The rows correspond toM1 (top),M2 (middle),MH
(bottom), while the columns to the features trajectories in the image (left), the feature
error (center) and a 3D view of the manipulator (right).
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Table 3.1 – Computation time (wall clock) for the different VPC strategies.
Test Set Scenario Model Average time

1

1
M1 2.06 ms
M2 6.30 ms
MH 3.54 ms

2
M1 1.43 ms
M2 3.72 ms
MH 3.38 ms

3
M1 1.80 ms
M2 3.79 ms
MH 2.83 ms

2

1
M1 1.20 ms
M2 4.20 ms
MH 3.09 ms

2
M1 1.18 ms
M2 4.30 ms
MH 3.01 ms

3
M1 1.32 ms
M2 3.53 ms
MH 2.69 ms

3

1
M1 18 ms
M2 18 ms
MH 18 ms

2
M1 18 ms
M2 18 ms
MH 18 ms

3
M1 18 ms
M2 18 ms
MH 18 ms
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completely different values of the individual state weights in the objective. This is why,
while discussing the tuning selected for the presented simulations, it was proposed to select
a value for αnp rather than a direct selection of α. Indeed, it was found that the predictive
schemes are much less sensitive to changes in the value of αnp , which also provides a more
intuitive way of tuning the feature weights.

Finally, in all simulations presented so far, no rotations around the X and Y axes of
the sensor were necessary, and the translational motion required in the last scenario was
rather small. The choice of focusing on rotational motions was justified by the ease of
interpretation of the results. However, in order to show that the performances obtained
with the proposed predictors are consistent with other types of scenarios, we conclude
this section by including a further test. In this case, the motion to be performed is more
generic. A longer translation is required (20 cm in total), as well as a generic rotation of
15°, 30° and 165° around the X, Y and Z axes respectively. The motions are depicted in
Figure 3.17, and were obtained with the exact same parameters used in the third set of
simulations presented in Section 3.3.4. The proposed predictors provide smoother motions,
less retraction and take slightly less to complete the servoing task, confirming the results
found so far.

3.3.5 Experiments

This section details the experimental results obtained while comparing the different
models. Similarly to what was done in simulation, the task consists in positioning the
sensor in front of a planar object with four black circles, detected using the ViSP library
[MSC05]. In addition, in order to support the effectiveness and generality of the proposed
approaches, the controllers were tested with different features: standard image point coor-
dinates were firstly considered, as in the simulations included above. In a second moment,
also the polar coordinates of the centers of the four circles printed on the object were used
(their second-order models can be found in Appendix A.3). In both cases, our predictors
outperformed classical local models, confirming the validity of our work.

Let us mention for sake of completeness that since our hardware does not yet allow
to directly control the robot in acceleration, a simple workaround was exploited. In order
to testM2, we numerically integrated the acceleration commands produced by the VPC
and sent the resulting signal to the low-level velocity controller running on our robot.

Reported experiments all used the same settings as in the last simulations set, i.e., the
prediction and control horizon were both set to 10 samples, and the prediction sampling
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Figure 3.17 – Last simulation test, which uses ∆t = 5∆tc and nc = 10. In addition to a
20 cm translation, the sensor needs to perform rotations of 15°, 30° and 165° around the
X, Y and Z axes. The rows correspond toM1 (top),M2 (middle),MH (bottom), while
the columns to the features trajectories in the image (left), the feature error (center) and
a 3D view of the manipulator (right).
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time ∆t was set to 0.1 s. The weights in the objective were the only parameters that
needed to be adjusted, as it will be discussed in each experiment.

Servoing from Image Points

The tests reported in the following were performed by placing the planar object in
front of the robot and rotating it multiple times about its normal axis, of an angle of
almost 90°. Since the configuration s? was still kept to a constant value, the robot is
ideally supposed to follow the motion of the object.

As anticipated, experiments were run with almost the same settings used in the last
sets of simulations. In particular, in this this test only the value of β needed to be modified.
It was in fact noticed that a larger value better suits real experiments in which noise is
also present. Increasing the value of this parameter mainly reduces the overall speed of
the system, but also smooths the resulting trajectories. In practice, the parameter was
modified from the original 10−3 to 10−2 for the two velocity-controlled schemes,M1 and
MH. In the case ofM2, it was necessary to increase it slightly more in order to reduce
oscillations and prevent the velocity to grow excessively. The final choice was β = 5 ·10−3,
which, although not sufficient to completely remove all oscillations, was found to be a
good trade-off in order to maintain acceptable time to convergence.

(a) M1 (b) M2 (c) MH

Figure 3.18 – Features trajectory in the image using respectivelyM1,M2 andMH. Blue
segments correspond to features displacements induced by the object rotation, while green
ones are due to the control moving the camera.

An example of features trajectories obtained with the three predictors is visible in
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Figure 3.18 1. Note that the points in the image can change not only due to the motion
of the robotic arm, but also due to the aforementioned rotation of the object itself. While
analyzing the recorded image streams produced by the camera, it was noticed that con-
trollers necessitate a short amount of time before reacting to the object motion. To help
interpreting the results, the paths crossed by the features in these phases are colored in
blue, and correspond to nearly perfect circles. Features motions induced by the action of
the VPCs are instead colored in green.

As the results show, the features behavior is quite different depending on the involved
predictor. M1 is not able to perform a nice rotation, with the features going either too
near or too far from the ideal circumference. This also results in an undesirable motion in
Cartesian space. On the contrary, the trajectories obtained usingM2 are much closer to a
pure rotation about the optical center of the camera, and the motion in 3D is satisfactory
as well. Finally,MH gives intermediate results, with features paths that, despite not being
as nice as in the case of the acceleration-controlled predictor, are not deviating too much
from a pure rotation. Furthermore, the motion of the sensor features almost no retraction.

The evolution of the feature error during time for the first rotation of the object is also
reported in Figure 3.19. It can be seen that the predictor based solely on the interaction
matrix is outperformed by MH, taking almost half a second longer to reach the same
error magnitude. It should also be noted that M2, besides being the slowest controller,
presents a rather large overshoot, which is hard to observe from Figure 3.18(b) alone.
Such oscillatory behavior, as mentioned in the beginning of this section, could be reduced
by increasing β, but at the cost of further sacrificing time performances. We believe that
one explanation for these oscillations is to be found in the use of the numerical integrator
to obtain the velocity command from the acceleration. As neither this block nor the
low-level velocity controller are taken into account in the prediction, model uncertainties
become larger and predictions are thus less reliable, finally leading to lower performances
in practice.

Servoing from Polar Coordinates

The goal of this last set of experiments is to check if the performances of the pro-
posed predictors remain consistent also when different features are selected. In particular,
the polar coordinates of the point centers, whose second-order models are reported in
Appendix A.3, are used in the sequel.

1. A video is also available online at https://youtu.be/xJhzVkGdXPw
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Figure 3.19 – Evolution of the features error norm, while servoing from four image point
coordinates. The plotted data correspond to the signals obtained during the first rotation
of the object.

In these experiments almost all parameters were kept unchanged from the previous
section, with only a small modification in the objective being necessary. In fact, when
considering polar coordinates as features, the angles eθi (expressed in radians) tend to
vary more than the radii ρi for the same displacement. For this reason, their weight in
the objective was reduced, so that angular and radial errors bore more homogeneous
contributions to the objective. Specifically, the matrix Q(s)

k+1 was updated from being
simply αkI to:

Q(s)
k+1 = αk diag(1, 1/5, 1, 1/5, 1, 1/5, 1, 1/5) (3.46)

It is well-known that, in classical servoing via feedback linearization, polar coordinates
perform well when the object is subject to a pure rotation around the optical axis of the
camera. Hence, the experiment of this section focus on the complementary case, in which
the object performs a relatively large translational motion. This is known to lead to less
satisfactory trajectories for the system due to the non-linearities in the interaction matrix.

The results obtained in this experiment, visible in Figures 3.20 and 3.21, are coherent
with previous findings. In terms of points trajectories,M1 is the predictor that features
the worst results, while motions obtained withM2 andMH are more regular and closer
to straight lines. The motion in Cartesian space is also better when using the proposed
predictors, with the controller inducing firstly a rotational motion that points the the sen-
sor in the direction of the target, and subsequently a translational motion that completes
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the positioning task.

(a) M1 (b) M2 (c) MH

Figure 3.20 – Trajectory of the point centers in the image using respectivelyM1,M2 and
MH when servoing from polar coordinates. Blue segments correspond to displacements
induced by the object translation, while green ones are due to the control moving the
camera.

In terms of features errors (cfr. Figure 3.21) it is worth noticing that all models
present a less smooth evolution compared to the case of servoing from image coordinates.
A possible explanation for this fact can be found in the optimization being harder to
accomplish due to the rather high non-linearities corresponding to polar coordinates.
Nonetheless, the benefits coming from considering the acceleration in the predictors are
still evident, withM2 andMH being characterized by lower maximal errors with respect
toM1.

3.4 Conclusions

This chapter, and more specifically the last section, proposed two new models for
Visual Predictive Control that lead to better robot motions thanks to the inclusion of
features acceleration in the feature space. To support this claim, the performances of
these models have been compared against another local predictor based solely on the
first-order interaction matrix. By means of simulations, it was shown that convergence
can be achieved in a short time while avoiding undesirable behaviors even in presence of
large displacements, which is in line with the objectives of this thesis.

Moreover, the results were validated thanks to real experiments with an industrial
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(a)

(b)

Figure 3.21 – Evolution of the feature error norms, while servoing from polar coordinates.
In (a), the error associated to ρ, while in (b) the one associated to θ.
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redundant robot, not only confirming the benefits of integrating acceleration informa-
tion into the predictors, but also demonstrating the practical feasibility of the control
schemes. In addition, by considering different features to describe the observed object, it
was practically demonstrated that the approach is general and that its effectiveness is not
bound to a specific parameterization of the observed object. The work was proposed to
the scientific community in the form of an article which was peer-reviewed and accepted
for publication [FKM20]. The article was also accepted for presentation in IROS 2020.

There is still room for future improvements in different forms. As an example, it would
be interesting to test the proposed approach using image moments as features, a case that
is more complex due to different reasons. First of all, the number of intermediate calcu-
lations required to compute the second-order models is rather large, cfr.Appendix A.5,
since each image moment depends on a large parameter vector. A second reason is to
be found in the structure of the interaction matrix: it depends on higher-order moments,
theoretically leading to a parameter vector z of infinite dimension.

In addition, as mentioned in the last section, the controllers are not able to react
immediately to object motions. This is most likely because such event is not foreseeable
by the VPC schemes, as it is not modeled in the predictors. In order to achieve high speed
performances in dynamic environments, it is believed that a key improvement would be
to actively estimate the kinematics of the observed object [AA+06; Dah+08], and to take
it into account explicitly inside the prediction models.

A further development might consider time-varying features references, rather than
fixed configurations as it was done in simulations and experiments. This will likely re-
quire to adapt the formulation of the optimization problem, since the objective function
currently contains a contribution that tries to minimize the joint velocity of the manipula-
tor, which is in contrast with a task that requires the manipulator to continuously move.
Remember that the second term is needed due to the redundancy, and it would not be
sufficient to simply remove it. A possible solution would be to formulate the problem as
a hierarchical, multi-objective, optimization in which the visual objective has the highest
priority.
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PARAMETERIZED MODEL PREDICTIVE

CONTROL

The previous chapter focused on the use of Model Predictive Control in Visual Ser-
voing, since it provides means to complete the relative positioning task faster, while also
ensuring the satisfaction of constraints. As explained, the optimization required by pre-
dictive schemes can be computationally demanding, and as a result the complexity of the
problem should be kept as small as possible so as to obtain solutions quickly enough to
keep up with the target control frequency of the robot. However, the optimization should
be able to consider a long enough time interval for the prediction process. In this sense,
the predictors proposed in the previous chapter allowed to use a larger sampling time in
the prediction models, allowing to extend Tp without necessarily increase the complexity
of the optimization in terms of decision variables.

Nonetheless, in order to further improve the results obtained in the previous chapter,
it could be necessary to extend the prediction horizon even more, or to slightly reduce
the time sampling. As previously discussed, the optimization currently needs to be halted
before the real minimum is attained, thus allowing to reach only a neighborhood of the
actual optimum. As the control and prediction horizons are gradually increased, the opti-
mization requires even more time to find solutions, meaning that, given the same amount
of optimization time, the approximated minima will lie farther away from the real ones,
ultimately leading in instabilities. Increasing only the prediction horizon clearly is a first
way to limit a growth in complexity, but there are limitations as well. Indeed, as shown
in the simulations of Section 3.3.4, when nc is small compared to np the performances can
deteriorate.

It seems that a stale has been reached: once the prediction horizon has been increased,
we cannot increase nc since it would prevent real-time feasibility, but at the same time
the limited control horizon leads to sub-optimal performances. The stale is due to the fact
that, according to the MPC formulation presented so far, incrementing the control horizon
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directly implies a growth in the number of decision variables used in the optimization.
However, what if a new, different, decision vector of equal dimension was used? Depending
on what new variables are selected, it could be theoretically possible to change the result of
the optimization – hopefully improving it – without significantly alter the computational
load. This is precisely the subject of the present chapter, in which the concept of control
parameterizations is studied. Rather than using the values of the first nc input samples
as optimization variables, the control sequence is synthesized from a set of parameters.
Some of these can be considered as design constants and are selected in advance, while
others are to be tuned online by the optimization algorithm. Since this concept is rather
new in the robotics field, this chapter will focus on presenting the topic and to test its
performances on simple, academic examples. In particular, the next section introduces the
general concept of control parameterization and then focuses on some examples of linear
parameterizations. Section 4.2 addresses the case of MPC with linear parameterizations for
the control of linear systems, in order to show the benefits of this new approach in a simpler
setup. Finally, the more challenging case of parameterized nonlinear MPC is presented in
Section 4.3, which includes simulation results obtained with both simple nonlinear model
– an inverted crane-pendulum – but also with a free-flying camera performing a visual
tracking task.

4.1 Control Parameterizations

The idea behind Parameterized Model Predictive Control [Ala06; Ala13] is to use, as
decision variables for the problem, not the control inputs directly, but rather a smaller
set of parameters which can define the entire control sequence. In other words, control
samples are obtained as functions of the set of parameters p ∈ Rnπ , i.e.,

uk = πk(p) πk : Rnπ → Rm (4.1)

The goal is thus to find a suitable parameterization that allows the controls to vary along
the whole prediction horizon without having to increase the complexity of the problem in
terms of number of free variables.

One sub-family of parameterizations that can be considered is the one of linear parame-
terizations, according to which control input samples are expressed as a linear combination
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of the parameters p:

uk = Πkp (4.2)

for a given set of matrices Πk ∈ Rm×nπ . An equivalent relation can be written to map
the parameter vector directly into the whole control sequence, simply by stacking the
individual combination matrices Πk:

u = Πp Π .=


Π0

· · ·
Πnp−1

 (4.3)

It is interesting to note that the classical way of selecting the input samples in Model
Predictive Control can be viewed as an example of linear parameterization. In particular,
with a control and prediction horizons of nc and np respectively, the combination matrix
takes the following block form:

Π =



I
. . .

I
I
...
I


(4.4)

nc

np − nc

wherein each block is of size m-by-m. In practice, the entries of p correspond to the free
input samples, with the lastm values being repeated as many times as needed to complete
the control sequence.

One issue with this “simple parameterization” 1 is that almost all degrees of freedom are
located at the beginning of the control sequence. The consequence is that, if the prediction
horizon is extended, the last control sample will be used for a significant amount of time.
This is not desirable, especially when considering unstable systems. In this sense, an
example is given by the first two sets of simulations presented in the previous chapter:
when considering M2, a single acceleration sample was not sufficient to stabilize the
system.

Parameterizations can thus be used to avoid the aforementioned issue, in particular
1. The name simple will be used throughout the chapter to label the classical approach, since it is

arguably the simplest conceivable parameterization.
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by distributing the degrees of freedom along the prediction horizon. In particular, in the
following sections three types of linear parameterizations are introduced, which can be
viewed as successive generalizations of the classical approach.

4.1.1 Zero-Order-Holder

This first parameterization is the most similar to the simple one. However, rather than
keeping all free control samples at the beginning of the sequence, the degrees of freedom
are distributed along the prediction horizon. Since the concept is better illustrated with an
example, Figure 4.1 depicts a possible control sequence produced by this parameterization.

0 1 2 3 4 5 6 7 8 9 10
k

free
held

Figure 4.1 – Example of sequence that could be produced by a ZOH parameterization.
Here, free samples are located at k = 0, 2, 5, 8, thus leading to a parameter vector of
dimension nπ = 4.

In practice, some “free indices” are selected within the available samples, with the
value of the corresponding control inputs being added to the set of parameters p. The
remaining, non-free, control values are evaluated simply by “holding” the same value of
their nearest preceding free sample. For this reason, the parameterization is named in the
sequel Zero-Order-Holder (ZOH).

The combination matrix Π writes in this case in a block-diagonal form that is similar
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to the following:

Π =



I
I

I
I
I

. . .
I
I



(4.5)

in which each sub-block consists in the vertical concatenation of as many identity matrices
as the times the corresponding parameters are held to produce control samples.

4.1.2 Linear Interpolation

One drawback of the ZOH parameterization presented just now is that, by construc-
tion, it alternates between sudden changes of the control input and flat regions in which
the value remains constant. It could be instead interesting to gradually change the values
from one free sample to another. This would still allow to distribute the degrees of freedom
along the control sequence, but also to obtain a smoother signal. One simple, intuitive,
way to achieve this goal is to generate intermediate values by linear interpolation from a
free sample to the following one. Once again, this new parameterization can be written
as a linear combination with a block matrix that is similar to the following:

Π =



I
1
2I 1

2I
I
2
3I 1

3I
1
3I 2

3I
I

. . .
I
I



(4.6)

The effect of this matrix is better visualized in Figure 4.2, which shows that the control
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sequence is obtained by firstly selecting the free samples (in red) and then by performing
interpolation in between to obtain the missing intermediate samples – with the exception
of the trailing input values, which are eventually taken as a repetition of the last free
sample.

0 1 2 3 4 5 6 7 8 9 10
k

free
held

Figure 4.2 – Example of sequence that could be produced by a LERP parameterization.
Here, free samples are located at k = 0, 2, 5, 8, thus leading to a parameter vector of
dimension nπ = 4.

This parameterization, whose name will be shortened to LERP, has an additional
benefit with respect to the simple and ZOH ones. Consider adding constraints on the
control inputs in the following form:

−∆ulim ≤ uk − uk−1 ≤ ∆ulim (4.7)

which simply sets a limit on how much successive input samples can differ in a control
sequence. Given a certain value of u−1, i.e., the last control sample used to actuate the
system, the constraint reduces the range of achievable control inputs, since free values are
no more independent from each other. Given that the simple and ZOH parameterizations
allw control changes only in a limited number of locations, the range of achievable inputs is
thus reduced substantially, as shown in Figure 4.3. Conversely, the LERP parameterization
allows to reach a broader range of inputs, since the control sequence is allowed to change
along the whole prediction horizon.
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0 1 2 3 4 5 6 7 8 9 10
k

lerp
simple
zoh

Figure 4.3 – Sets of achievable controls using the simple (red), ZOH (green) and LERP
(blue) parameterizations, under the variations constraints (4.7).

4.1.3 Basis Functions

In this section, rather than a single, specific, parameterization, a whole family of pa-
rameterizations is introduced, which relies on the concept of function spaces and function
bases. It is well known that certain classes of functions can be generated by the sum of
some (possibly infinitely many) functions. As an example, polynomials can be summed
together to generate any analytical function according to its Taylor expansion. Similarly,
sinusoidal signals with harmonic frequencies can be combined to form any periodic func-
tion as stated by Fourier’s series expansion.

Taking inspiration from this idea, it is possible to consider parameterizations that
combine a certain number of functions to generate at once the whole control sequence,
which can be viewed as an extension of the proposal by Alamir to parameterize the control
sequence with a decaying exponential profile [Ala13]. In practice, it is possible to select
a certain number nb of basis functions Bi : R → R (i = 1, · · · , nb) and, considering for
simplicity the case of a scalar-valued control input, combine them together to produce a
continuous-time signal:

u(t) =
nb∑
i=1

hi Bi(t) (4.8)

wherein the scalars hi represent combination coefficients. Intuitively, the use of a finite
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h1

hnb

+
· · ·

· · ·
· · ·

B1(t)

Bnb(t)
uk = ∑

hiBi(k∆t)

Figure 4.4 – Pictorial example showing how a control sequence is produced from a set of
basis functions with given combination coefficients.

number of functions will generally limit the shapes that can be produced as output.
However, it turns out that in practice even a reduced number of functions is sufficient to
define a sufficiently rich variety of signals that can be effectively used in predictive control
schemes.

Starting from (4.8), in order to produce the corresponding discrete-time control se-
quence it suffices to sample the generated function with proper time spacing ∆t:

uk =
nb∑
i=1

hi Bi(k∆t) (4.9)

Note that by adjusting the coefficients hi, it is possible to change the shape of the
resulting signal, which naturally leads to the idea of using h1, · · · , hnb as parameters. In
other words, rather than acting on individual samples as all previous parameterizations
did, the parameterization now acts on the components (the basis function) that constitute
the control signal. In addition, similarly to the case of the LERP parameterization, control
sequences obtained with these parameterizations tend to change more smoothly from
sample to sample if the basis functions are smooth themselves.

Interestingly, if the shape of each basis function Bi is fixed in advance, then the pa-
rameterization is linear in the coefficients hi. In fact, the control sequence vector can be
written as:

u =


u0
...

unp−1

 =


B1(0) · · · Bnb(0)
B1(∆t) · · · Bnb(∆t)

... . . . ...
B1 ((np − 1)∆t) · · · Bnb ((np − 1)∆t)



h1
...
hnb

 (4.10)
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showing that this indeed constitutes a linear parameterization, with the free parameters
p corresponding to the collection of all coefficients hi. Finally, even if only the case of
scalar-valued controls was discussed here, the extension to a multidimensional input is
trivial.

Coming now to the problem of choosing a proper set of basis functions, several op-
tions can be considered. One possibility would be to spread along the prediction horizon
Gaussians in the form

Bi(t) = e−(t−ti)2/σ2
i (4.11)

or any other kind of radial function. These are often used to interpolate unknown functions
from a given set of points, and are known for providing quite good approximations for a
large number of cases. In other words, when combined altogether they can produce a large
number of shapes, which is exactly what is required for the proposed parameterization.
Another example could be that of sinusoidal functions which, according to Fourier’s ex-
pansion, can be viewed as the building blocks of any function within a given time window.
A third option considered in the following is the one of exponentially damped Laguerre
polynomials [MD16], which take the following form:

Bi(t) = e−εt
i∑

j=0

(
i

j

)
(−2εt)j
j! (4.12)

Before concluding this section, let us remark that all “internal” parameters appearing in
the selected basis functions must be set prior to the optimization for the resulting param-
eterizations to be linear. As an example, the scaling factor ε in (4.12) or the variances and
centers ti and σi in (4.11) need to be fixed in advance using either some knowledge on the
problem or by trial and error. This is perhaps the biggest drawback of these parameter-
izations, as they introduce an additional user-based tuning which might affect the final
performances. One possibility to remove this additional step would consist in considering
these values not as constants to be set by the user, but within the set of parameters that
the optimization algorithm can use. This would lead to loss of linearity and likely higher
computation times, but almost surely enhancing the performances since the tuning of the
internal basis parameters becomes automatic and not delegated to the user.
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4.2 Linearly Parameterized Linear Model Predictive
Control

In this section, the simpler case of MPC for linear systems with linear parameteri-
zations is considered, which is still of high interest for robotics applications despite its
simplicity. In fact, even when dealing with generic systems, a simple tangent linearization
can be exploited to obtain an approximate linear systems, if the nonlinearities are mild.
Furthermore, some nonlinear systems, such as differentially flat ones, can be transformed
in equivalent linear models and a MPC scheme can be designed to control the new system
without having to deal with the nonlinear dynamics in the optimization problem [ACT07;
De +16]. As it will be shown, the specific structure of linear models allows to formulate
the optimization problem as a linearly constrained least squares minimization problem,
which can be solved using any quadratic programming approach.

Given that both formulating and solving this class of problems does not pose major
challenges, linearly parameterized linear MPC schemes are perfect candidates to bench-
mark the proposed parameterizations and gather insightful preliminary results. With this
objective in mind, the following sections thus focus firstly on stating the general optimiza-
tion problem and secondly on analyzing the performances with and without parameteri-
zations in the case of two specific linear systems: a triple integrator and an under-damped
oscillator.

4.2.1 Problem Formulation

We consider in the following the class of discrete-time linear-affine systems, written in
state-space form as:

xk+1 = Axk + Buk +w (4.13)

where A and B are matrices of appropriate dimension and w ∈ Rn. These quantities are
assumed to be invariant with respect to time, but a generalization of the following results
is trivial.

The goal is to show that the optimization problem that arises from a MPC scheme
applied to this class of systems is a quadratic program. For this purpose, the first step is
to show that the prediction vector x can be expressed concisely as a linear combination
of the initial state x0 and of the inputs. The first terms of the prediction sequence write
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as:

x1 = Ax0 + Bu0 +w = Ax0 +w +Bu0 (4.14a)
x2 = Ax0 + Bu1 +w =A2x0 +(A + I)w +ABu0 +Bu1 (4.14b)
x3 = Ax2 + Bu2 +w =A3x0+(A2 + A + I)w+A2Bu0+ABu1+Bu2 (4.14c)

from which a pattern clearly emerges, with the general formula being:

xk+1 = Ak+1x0 +
(

k∑
i=0

Ai

)
w +

k∑
i=0

Ak−iBui (4.15)

which precisely means that predicted samples are a linear combination of the initial state
x0 and of the control inputs (plus a constant term that depends on the affine term w).
Moreover, the whole prediction vector can be written in the following linear-affine form:

x = η + B̃u (4.16)

wherein η and B̃ are defined as

η
.=


A
A2

A3

· · ·

x0 +


I

A + I
A2 + A + I
· · ·

w (4.17a)

B̃ .=


B

AB B
A2B AB B
... ... ... . . .

 (4.17b)

We can finally introduce a linear input parameterization in the form of (4.3), leading to:

x = η + B̃Πp (4.18)

The objective is defined by the quadratic cost (3.9), while linear constraints in the
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control inputs and predicted states are introduced in the form:

Cuu ≤ du (4.19a)
Cxx ≤ dx (4.19b)

which, among others, allow to set limits both on the magnitude and on the variation of
the controls and states. After some trivial calculations, the overall problem can be finally
stated as:

min
p

1
2p

THp+ fTp (4.20a)

subject to:

Cpp ≤ dp (4.20b)

wherein the different matrices and vectors are defined as follows:

Dx
.= diag(Qk) (4.21a)

Du
.= diag(Rk) (4.21b)

H .= 2ΠT
(
B̃TDxB̃ + Du

)
Π (4.21c)

f
.= 2ΠT

(
B̃TDx (η − x?)−Duu

?
)

(4.21d)

Cp
.=
 Cu

CxB̃

Π (4.21e)

dp
.=
 du

dx −Cxη

 (4.21f)

The problem thus corresponds to a linearly constrained quadratic minimization, as
stated in the beginning of this section, which can be solved using, e.g., the active set
method described in Appendix B.2. Note that if the constraints are feasible, the problem
is convex and always admits a solution, since H is at least positive semidefinite.
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4.2.2 Control of a Triple Integrator

In this section, a first example of linearly parameterized MPC is presented, in which the
controlled system is a simple triple integrator. The continuous-time dynamics is discretized
assuming piecewise constant inputs due to a zero-order-holder device with sampling period
∆t = 0.1 s. The model in state-space representation is given by the following:

xk+1 =


1 0.1 0.005
0 1 0.1
0 0 1

xk +


0.000167

0.005
0.1

uk (4.22)

The objective of the control scheme is to track a variable reference using the first coor-
dinate of the state vector, or, with a little abuse of terminology, “position”. This reference
is initially constant and equal to 0 for the first 2.5 s of the simulation. Afterwards, it is
changed according to a sinusoidal profile with unitary amplitude and 1.25 s−1 pulsation
(' 0.2 Hz frequency).

Symmetric bounds on the scalar input are set so that it lies in the interval [−5, 5], and
in addition constraints in the form of (4.7) are added, with maximum variation set to
∆ulim = 1.

Finally, the prediction horizon is set to np = 20, allowing to predict over a period
of time of Tp = 2 s, and four types of parameterization are considered: the simple one
from classical MPC theory, Zero-Order-Holder, Linear Interpolation and one based on
the damped Laguerre polynomials (4.12) with ε = 0.75. These parameterizations are
compared in the sequel using a different number of parameters. More precisely, three sets
of simulations are proposed, with nπ equal to 6, 3 and 2 respectively.

First test: 6 parameters

In this first test, the decision vector in the optimization has size nπ = 6. Since the
control input is a scalar signal, this means that the control horizon nc is set to the same
value for the simple parameterization, while ZOH and LERP parameterizations feature
6 free-samples each. In particular, these samples were set to kfree = 0, 1, 3, 5, 10, 15 for
the holder parameterization and to kfree = 0, 2, 5, 10, 15, 19 when using LERP. Finally, a
total of nb = 6 Laguerre’s functions have been used.

A simulation was performed for each parameterization, recording the position of the
system as well as the tracking error, which are shown in Figures 4.5(a) and 4.5(b) respec-
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tively. In addition, the control signal used to command the system and its variation are
depicted with their respective bounds in Figures 4.5(c) and 4.5(d).

Note that, in addition to the data associated to the four parameterizations detailed
above, Figure 4.5 includes the results obtained with a classical scheme characterized by
nπ = nc = np = 20. Since it features the highest number of degrees of freedom, it is named
“full” parameterization for brevity. It provides the theoretically best case for the MPC
scheme, and is thus meant to serve as a reference to better interpret simulations results.
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(d) Control variation

Figure 4.5 – Control of a triple integrator using a simple (red), ZOH (green), LERP (blue)
and Laguerre (magenta) parameterizations, all having nπ = 6 parameters. An additional
case is reported for comparison, consisting in a full parameterization with nπ = np.

It is interesting to notice that parameterizations positively influence the evolution
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of the system. Focusing on the tracking error depicted in Figure 4.5(b) in the different
cases, the three proposed parameterizations exhibit, after the initial transient phase, a
lower error compared to the classical case. Furthermore, an interesting result is related
to the control inputs. When the reference changes from a constant value to a sinusoidal
profile, all optimized controls tend to vary significantly, becoming smoother only after this
transient phase. Nonetheless, the classical strategy features few spots in which the control
inputs experience rather large and abrupt changes even after the transient. The ZOH
parameterization suffers from a similar problem, but with more modest oscillations in the
control signal. Finally, LERP and Laguerre parameterizations nicely adapt to the output
and produce smooth and regular control inputs, apparently reaching steady-behavior even
before the full case.

Second test: 3 parameters

The simulations proposed above were all repeated, reducing the degrees of freedom to
just 3. The free samples were changed to kfree = 0, 2, 5 and kfree = 0, 4, 8 for the ZOH
and LERP parameterizations respectively, while the coefficient ε was left unchanged for
the Laguerre parameterization.

Having halved the total number of parameters with respect to the previous simulations,
clearer differences appear (see Figure 4.6). In particular, the classical approach provides
the least satisfactory performances, with peak errors that are almost twice as large as those
obtained with a holder parameterization. LERP and Laguerre parameterizations perform
rather nicely, with reduced errors and smoother control inputs, even though differences
with respect to the full parameterization are more evident.

Third test: 2 parameters

This third and last test considers as few as 2 degrees of freedom for the optimization,
with the free-samples for the holder and LERP parameterizations set to kfree = 0, 2 and
kfree = 0, 10.

The results are reported in Figure 4.7, in the same format used for previous simulations.
The holder parameterization presents large tracking errors in the first half of the test, while
in the end of the simulation it stabilizes closer to the reference. Other parameterizations
required less time to settle to a steady behavior, with the best performances being those
of LERP and Laguerre parameterizations.
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Figure 4.6 – Control of a triple integrator using a simple (red), ZOH (green), LERP (blue)
and Laguerre (magenta) parameterizations, all having nπ = 3 parameters. An additional
case is reported for comparison, consisting in a full parameterization with nπ = np.
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Figure 4.7 – Control of a triple integrator using a simple (red), ZOH (green), LERP (blue)
and Laguerre (magenta) parameterizations, all having nπ = 2 parameters. An additional
case is reported for comparison, consisting in a full parameterization with nπ = np.
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Final Comparison

To conclude the analysis of the parameterizations used to control a triple integrator,
a synthesis of the data collected from several simulations is now presented.

First of all, it must be noted that, for a given number of parameters, there is no
reason to expect significant differences when solving the optimization problem (4.20) with
different parameterizations, given that the matrices should be of equal size. However,
this is just a heuristic estimation, and the times might fluctuate depending on which
constraints are activated and deactivated to reach the optimum, as well as the current
CPU load. For this reason, tests similar to those included in the previous sections were run
multiple times to gather statistical information related to the time required to complete
the optimization. The resulting data is included in Figure 4.8, which shows, as solid
lines, the median optimization time of each parameterization in function of the number
of parameters nπ. Note that the times are scaled relative to the median time obtained
when using the full parameterization. In addition, semi-transparent regions are added to
provide the maximum and minimum times for each case. The presented data shows that
the optimization times obtained with each approach can indeed fluctuate, but within a
relatively small range. The LERP parameterization seems to be the best performing one,
while the Laguerre and simple parameterizations are the worst, the former when 5 or less
parameters are used and the latter when nπ ≥ 6. It is believed that one reason for the
initial gap between the performances of the Laguerre parameterization with respect to
the other strategies is to be found in the number of constraints. In fact, while control
limits can be applied simply at the free samples to ensure that other values will remain
within the given bounds, this is not necessarily the case when using the Basis function
approach. This means that in this case the number of control constraints is proportional
to np rather than nπ as it is with simple, ZOH and LERP parameterizations.

The three sets of simulations proposed before suggest that the LERP and Laguerre
parameterizations lead to better results in terms of tracking performances, but it is hard
to quantify how much the performances depend on the number of parameters. For this
reason, average errors were calculated for different parameterizations with an increasing
dimension of the optimization variables. The resulting curves were then normalized with
respect to the average error obtained with the full parameterization, and are reported in
Figure 4.9. It must be noted that the solution to the optimization problem is deterministic,
and thus no statistical analysis was performed in this case.

The reported results support the claim that parameterizations bear improvements to
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Figure 4.8 – Optimization times obtained when controlling a triple integrator using differ-
ent parameterizations, as function of the number of parameters nπ. Solid lines represent
median times, while semi-transparent regions are used to show maximum and minimum
times. Provided values are relative to the median time required for the optimization using
the full parameterization.
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Figure 4.9 – Average tracking errors obtained when controlling a triple integrator using
different parameterizations, as function of the number of parameters nπ. Provided values
are relative to the average error obtained when using the full parameterization.

123



Chapter 4 – Parameterized Model Predictive Control

MPC. In particular, LERP and Laguerre parameterizations provide the best performances,
with an average error that is comparable to the one of the full parameterization already
with as few as 5 parameters. The Zero-Order-Holder parameterization does not provide
results that are as nice as those of the other two approaches, but nonetheless outperforms
the simple parameterization almost everywhere.

4.2.3 Control of a Mass-Spring-Damper

A linear system that often appears in robotics applications is the mass-spring-damper
model, which can be described by the following ordinary differential equation:

mẍ = −2mξωnẋ−mω2
nx+ u (4.23)

wherein m, ωn and ξ are respectively the mass, the natural frequency and the damping
coefficient of the system. The variable x represents the position of the mass, and the input
u corresponds to a force applied to the body.

This section briefly analyzes the use of parameterized MPC to control such kind of
system, with the objective of showing that the good performances obtained using the
parameterized approach were not limited to the case of the triple integrator, but are
indeed a characteristic of the proposed method. To simplify the test, the mass is selected
as m = 1 kg, while the natural frequency is chosen as ωn = 5 s−1. The damping coefficient
is selected as ξ = 0.3, thus leading to an under-damped system. The model is converted in
state-space representation and discretized, assuming a Zero-Order-Holder device for the
input, via matrix exponentiation. The frequency is chosen as 100 Hz, while the sampling
time used for predictions is set to ∆t = 0.05 s. The prediction horizon is set to np = 30,
thus allowing to foresee within a time interval of Tp = 1.5 s. Control inputs are bounded
in the interval [−30 N, 30 N], with a maximum variation ∆ulim = 1 N.

The considered parameterizations are again ZOH, LERP and Laguerre ones, in addi-
tion to the classical MPC parameterization. The objective is to track a variable reference
position, which corresponds to a “trapezoidal wave”. It starts at level 0 m, and shortly
after rises at a rate of 1 m s−1 until it has reached the value of 1 m. After 5 s, it starts
decreasing, attaining the value -1 m in 2 s, and the process is repeated periodically.
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First test: 6 parameters

In this first simulation, the optimization has to find the optimal control sequence using
a total of 6 parameters. The tuning of the parameterizations for this test was almost the
same as the one used in the first test shown with the triple integrator. The main difference
is that the Laguerre parameterization here uses one damped polynomial less than before.
Nonetheless, it features an additional static offset whose height is to be chosen by the
optimizer, thus still using a total of 6 basis functions.
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Figure 4.10 – Control of a mass-spring-damper system using a simple (red), ZOH (green),
LERP (blue) and Laguerre (magenta) parameterizations with nπ = 6 parameters, as well
as a full parameterization (yellow) with nπ = np = 30.

Results from the simulation are reported in Figure 4.10, which shows the position of
the mass along time and the tracking error obtained with the different parameterizations.
The simple and ZOH parameterization do not perform as desired, moving the mass too
early with respect to the desired reference. This fact can be explained by the tight control
variation limits, which, as briefly anticipated earlier in this chapter, can greatly reduce
the range of achievable control values, especially when using simple and ZOH parame-
terizations. To support this claim, the same simulation has been run also with increased
variation limits (∆ulim = 5 N). As visible in Figure 4.11, when these constraints are re-
laxed, all parameterizations provide better results in terms of convergence. In particular,
the issue previously encountered with the simple and ZOH parameterizations is no longer
present, and the mass is no longer moved before it is necessary. However, the relative per-
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formances are more or less unaffected, with the LERP and Laguerre parameterizations
that once again provide an evolution that is quite close to that of the full parameterization.
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Figure 4.11 – Control of a mass-spring-damper using nπ = 6 parameters. The control
variation limit has been increased to ∆ulim = 5 N.

Second test: 3 parameters

A final simulation is now presented to conclude the tests on linear systems. In here,
the variation limit of the control input is restored to its original value, ∆ulim = 1 N. The
parameters are reduced to nπ = 3, which is worth remarking is just a tenth of the samples
used for the prediction.

Figure 4.12 shows the results obtained with the discussed setup. The LERP parame-
terization shows issues similar to those of simple and ZOH ones, forcing the mass to move
in advance and thus resulting in peak errors that are twice as large as those obtained with
the full parameterization. On the other hand, the parameterization based on basis func-
tions seems almost unaffected by the decrease in the parameters number, with tracking
errors that closely resemble those obtained with the full parameterization.

Final Comparison

The last two sets of simulations offered a glimpse at the potential benefits coming
from the use of parameterizations that allow to cover broader sets of control samples
along the prediction horizon, especially when the distance between subsequent values is
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Figure 4.12 – Control of a mass-spring-damper system using a simple (red), ZOH (green),
LERP (blue) and Laguerre (magenta) parameterizations with nπ = 3 parameters, as well
as a full parameterization (yellow) with nπ = np = 30.

tightly constrained. In addition, so as to provide a wider analysis of the performances,
Figure 4.13 includes for each parameterization the average error (normalized by the one
obtained with the full parameterization) over the number of parameters used in the test.

Even at a first glance result are clear, with the Laguerre parameterization raking
first and followed by the LERP one. Moreover, the gap between these two strategies
and the classical one is much larger than in the case of the triple integrator. This is
encouraging, especially considering that the number of parameters used here is rather
limited, confirming the interest in further investigating the topic of Parameterized Model
Predictive Control.

Another fundamental remark is related to the ZOH parameterization being always
outperformed by the simple one. A possible cause for this could simply be that the holder
parameterization might not be well suited for this case of scenario, which involves a long
prediction horizon and small variation limits. This argument is supported by the evidence
that, when constraints are loosen, this parameterization can perform much better (recall
Figure 4.11). Moreover, this is the parameterization whose range of achievable inputs
is the smallest, as it had been depicted in Figure 4.3. With these two facts in mind, the
conclusion might be as stated: the holder parameterization is simply worse than the simple
one in this scenario. However, there is also another factor that plays an important role
and that has not been discussed yet: the choice of the “characteristic parameters” of the
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Figure 4.13 – Average tracking errors obtained when controlling a mass-spring-damper
system using different parameterizations, as function of the number of parameters nπ.
Provided values are relative to the average error obtained when using the full parameter-
ization.

parameterization, i.e., the free samples. As mentioned before, these values were chosen by
trial and error. This means that only a subset of the total possibilities has been analyzed,
and that a “human factor” was necessary in the process to heuristically choose which sets
of indices to consider for the trials. One better approach would be to design a systematic
tuning protocol, which nonetheless presents some critical aspects. The major issue is that
the set of possible unique choices of the free samples can be incredibly large. In fact, once
the prediction horizon and the dimension of the parameter vector have been fixed, the
total number of unique free samples selections amounts to 2

(
np−1
nπ−1

)
− 1. As an example,

in the first test presented in this section, where np = 30 and nπ = 6 were used, a total
of 118754 combinations was possible. With such a large set of potential candidates, it is
only natural to rule out brute force methods that explore all the possibilities and choose
the best one. It would be possible to design some sort of automatic procedure that, with
the help of some heuristic criteria, could reduce the set of candidates to an acceptable
amount. However, it does not seem worth the trouble, especially considering that, at least

2. The formula comes from the fact that the first free sample is always located at k = 0, and thus
one has to choose the other nπ − 1 samples from a total of np − 1 remaining possibilities. In addition,
one choice is removed, in which all samples are consecutive, since it would correspond to the simple
parameterization.
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up to now, the LERP and Laguerre parameterizations can lead to better results without
the need of complicated tuning procedures.

4.3 Nonlinear Model Predictive Control with Param-
eterizations

As shown in the previous section, the introduction of parameterizations positively af-
fects the results obtained with MPC schemes designed for linear systems. As a natural
extension of previous results, this section considers the broader class of nonlinear dynam-
ical systems. In particular, the following section briefly details the optimization problem
resulting from the parameterized formulation, while Section 4.3.2 focuses on simulations
that were performed on a simple nonlinear system. Finally, Section 4.3.3 applies the pa-
rameterization to visual servoing, considering a free-flying camera that has to perform a
given trajectory in front of a simple target.

4.3.1 Problem Formulation

The nonlinear problems arising from the use of parameterizations in predictive control
are not so different from those that were formulated in the beginning of Chapter 3 when
discussing direct methods.

A first possible formulation is the equivalent of single shooting methods when dealing
with parameterizations. In this case, given a particular value for the parameter vector p, a
first control sample can be evaluated using (4.1), which in turn is used to evaluate the first
predicted state. At the next step, (4.1) is used again to obtain a second control input, and
a new prediction is formulated from its value and that of the first predicted state sample.
The procedure is repeated for the whole prediction vector, and is conceptually equivalent
to the one that had been outlined in (3.11). Assuming the quadratic stage cost (3.9), the
objective function and the constraints can be evaluated on top of the parameterization,
and thus the optimization problem can be transcribed as:

min
p

∑
k

C(xk+1(x0,p),uk(p), k) (4.24a)
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subject to:

xk(x0,p) ∈ X ∀k = 1, · · · , np (4.24b)
uk(p) ∈ U ∀k = 0, · · · , np − 1 (4.24c)

wherein the explicit dependencies on p and x0 have been used to remind that u and x
are fully defined by the parameters and the initial state of the system.

A second possible problem formulation consists in extending multiple-shooting algo-
rithms to the case of parameterizations. As outlined in Section 3.1.2, the core concept is to
“promote” dependent variables to the role of decision variables, adding adequate equality
constraints to ensure that they are coherently linked to the original optimization variables
according to their previous definition. In practice, the whole optimization problem could
be written as:

min
p,x,u

∑
k

C(xk+1,uk, k) (4.25a)

subject to:

xk ∈ X ∀k = 1, · · · , np (4.25b)
uk ∈ U ∀k = 0, · · · , np − 1 (4.25c)

xk+1 − fd(xk,uk) = 0 ∀k = 0, · · · , np − 1 (4.25d)
uk − πk(p) = 0 ∀k = 0, · · · , np − 1 (4.25e)

Further options could be considered, e.g., by adding only either x or u to the decision
vector (and consequently removing (4.25d) or (4.25e) as needed). In addition, inspired
by what was done in [Gif+18], hybrid multiple shooting variants of problem (4.25) could
be considered in which only a subset of the control and state samples are added to the
decision variables.

The simulations presented in the next section all exploit the first formulation, and
are solved using a custom implementation of the Gauss-Newton minimization algorithm
(cfr. Appendix B.4), which can be viewed as a special case of Sequential Quadratic
Programming. Only linear parameterizations have been used up to now, subject to control
bounds and control variation limits. As a consequence, all constraints are linear, which
simplifies the problem at hand, ensuring that the returned parameter values are always
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within the valid domain.
Implementations based on the multiple-shooting formulation have yet to be tested,

mainly since the optimization algorithm needs to be created ad-hoc in order to properly
exploit the sparsity of the problem and to enhance parallelization.

4.3.2 Control of an Inverted Crane-Pendulum

We consider here an example in which an inverted crane is to be controlled. The
system, represented in Figure 4.14, consists in a moving support of mass M which can
slide along a rail under the action of a horizontal force u. A pendulum, which is able to
freely rotate thanks to a frictionless joint, is attached to the base. The rod of the pendulum
has length ` and is considered to be massless, while the terminal weight has given mass
m and inertia I. The system is underactuated, as the rotation of the pendulum is not
directly controlled by any actuation system.

M

`

m, I

ϕx

u

Figure 4.14 – Sketch of the crane-pendulum system.

The state of the system consists in the horizontal position of the base, denoted as x,
and the angle of rotation of the pendulum, ϕ. The derivatives of these two variables are
also part of the state vector, while the horizontal force u applied at the base corresponds
to the unique input of the system.

To obtain the equations of motions, the Lagrangian mechanics is used. In particular,
the kinetic energies of the moving support and of the pendulum write as:

E1 = 1
2Mẋ2 (4.26a)
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E2 = 1
2

m
∥∥∥∥∥∥
ẋ+ `ϕ̇ cosϕ

`ϕ̇ sinϕ

∥∥∥∥∥∥
2

+ Iϕ̇2

 = 1
2
(
mẋ2 + (m`2 + I)ϕ̇2 + 2m` ẋϕ̇ cosϕ

)
(4.26b)

Regarding the potential energy, since the moving support moves horizontally the only
contribution that needs to be considered is the one of the disc, and corresponds to:

U2 = −mg` cosϕ (4.27)

The Lagrangian L of the system is defined as the difference between the total kinetic
and potential energy, which, for the crane-pendulum, results in:

L = E1 + E2 − U2 = 1
2 (M +m)︸ ︷︷ ︸

mt

ẋ2 + 1
2
(
m`2 + I

)
︸ ︷︷ ︸

I0

ϕ̇2 +m` (ẋϕ̇+ g) cosϕ (4.28)

The following step consists in the evaluation of the derivatives of L with respect to the
generalized coordinates % .=

[
x ϕ

]T
:

∂L
∂%

=
 0
−sϕm` (ϕ̇ẋ+ g)

T (4.29a)

∂L
∂%̇

=
ϕ̇cϕm`+ ẋmt

I0ϕ̇+ ẋcϕm`

T (4.29b)

∂

∂t

∂L
∂%̇

=
ϕ̈cϕm`+ ẍmt − ϕ̇2sϕm`

I0ϕ̈+ ẍcϕm`− ϕ̇ẋsϕm`

T (4.29c)

wherein sϕ and cϕ have been used to shorten the notation, and correspond respectively
to the sine and cosine of the angle ϕ. Knowing these derivatives, the inverse dynamics
writes as:

u
0

 = ∂

∂t

∂L
∂%̇

T

− ∂L
∂%

T

=
 mt cϕm`

cϕm` I0

ẍ
ϕ̈

+
−ϕ̇2sϕm`

gsϕm`

 (4.30)
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By inversion of said model, the Direct Dynamics Equations of the system are finally found:

ẍ = I0 (ϕ̇2sϕm`+ u) + gm2`2sϕcϕ
I0mt − c2

ϕm
2`2 (4.31a)

ϕ̈ = −m` (cϕ (ϕ̇2sϕm`+ u) + gmtsϕ)
I0mt − c2

ϕm
2`2 (4.31b)

Despite this being a rather simple model with reduced dimensionality and a single
control input, the equations of motion present several highly nonlinear terms which justify
the use of this model as a first benchmark for nonlinear optimal control.

The crane was simulated in Gazebo via the Bullet physics engine, using the geometric
and physical properties reported in Table 4.1. To obtain more realistic results, the simu-
lation was updated at a much higher frequency (10 kHz) than the one used for the control
(50 Hz), holding the same input for the entire duration of a control period. A total of
np = 20 samples was used for predictions, with sampling time of 50 ms. Control inputs
were limited to a maximum of 0.1 N in absolute value, with a maximal allowed variation
of 0.02 N between consecutive control samples.

Table 4.1 – Constants used in Gazebo to simulate the crane-pendulum.
M m I ` mt I0

0.25 kg 0.1178 kg 0.001 25 kg m2 0.3 m 0.3678 kg 0.011 852 kg m2

The objective of the controller in each simulation is to move the base of the crane,
switching between the two positions x− = 0 m and x+ = 0.3 m. While doing so, the
pendulum should remain vertical and pointing upward, i.e., ϕ? = π rad. Since the goal is
to stabilize the system at fixed configurations, the desired linear and angular velocities
ẋ? and ϕ̇ are both set to zero. To mitigate the relative importance of each task, in the
objective the weights of the different state variables were set to 200, 10, 7 and 2 respectively
for the base position, the pendulum orientation, the linear velocity of the base and the
rotation rate of the pendulum.

In addition to the full parameterization used as reference for comparisons, the usual
four parameterizations have been considered:

1. The simple parameterization from classical MPC theory.

2. ZOH parameterizations with free samples located at various spots along the pre-
diction horizon. The goal is to have enough samples to steer both in the short and
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long term.

3. LERP parameterizations with free samples located similarly to ZOH.

4. Laguerre parameterization with ε = 1.5.

Similarly to the simulations performed with linear systems, the parameterizations have
been compared using different values of nπ. In particular, Figure 4.15 reports the results
from three specific cases, in which the number of parameters is respectively 3, 6 and 8. A
first necessary observation is related to the test presented in Figures 4.15(a) and 4.15(b),
in which nπ = 3. In this test, the simple parameterization is the only one that is not
able to properly stabilize the crane, with the base position deviating more and more from
the desired reference. It must also be remarked that the holder parameterization, despite
being able to at least bound the oscillations in the tracking error, provides results which
are far from satisfactory, with peak errors that reach the 0.4 m. On the other hand, the
Laguerre parameterization and especially the LERP one perform really well. Indeed, the
former features only small overshooting when a desired position is reached, while the latter
presents a behavior that is nearly indistinguishable from that of the full parameterization.

Increasing the number of parameters allows the simple parameterization to find sta-
bilizing controls, but, other than that, the results confirm what was found in the first
simulation. More precisely, in both remaining simulations, the ZOH parameterization
slightly outperforms the simple one, even though the maximum overshooting is still too
large, i.e., around 11 cm and 3.5 cm when using nπ = 6 and nπ = 8 respectively. On
the other hand, the LERP and Laguerre parameterizations perform as well as the full
parameterization in both remaining simulations.

To conclude the present analysis, an overall comparison of the average position error
as function of the number of parameters is provided in Figure 4.16. The overall perfor-
mances reflect what shown in the selected simulations, and provide similar conclusions to
those found when dealing with linear systems. The holder parameterization can provide
some benefits, but they are often marginal and less consistent. On the other hand, the
advantages in using a LERP or a Laguerre parameterization are clear, with performances
that are comparable to those of the full parameterization, but using as few as 3 or 4
parameters, i.e., 80 % less decisions variables than those used in a full parameterization.
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Figure 4.15 – Simulation results from the crane-pendulum control problem. Each row
corresponds to a different simulation set, with increasing number of parameters. For each
set, the position of the base and the corresponding tracking error are shown respectively
on the left and right graphs.
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Figure 4.16 – Comparison of four parameterizations while controlling a crane-pendulum
system. The four signals represent the average position tracking error of each parameter-
ization as function of the number of parameters nπ, normalized with respect to the full
parameterization.

4.3.3 Control of a Free-Flying Camera

In this last section, the use of parameterizations in a VPC scheme is investigated.
In particular, a set of simulations was run considering a free-flying camera with 6 dof.
The control input is assumed to be the sensor twist projected in its own frame, i.e., v.
The considered prediction model is a local model that updates both the features s and
the parameters z using the interaction matrix evaluated at each iteration. The model is
thus simpler than those considered in the previous chapter, since the manipulator and its
kinematics are not taken into account.

The observed object is once again a simple target with four black dots printed on it,
and the normalized coordinates of the four centers are used as features. As done in all
previous servoing simulations and experiments, the object is assumed to be motionless.

In each simulation, the camera is initially positioned in front of the target at a distance
of 2.5 m, with the task of performing a circular trajectory in front of the observed object
(the diameter of this circular motion being of 1 m). In terms of predicted visual features,
the objective is to ensure that the coordinates si of the i-th feature point follow the desired
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profile along the prediction horizon:

s?i,k = s
(0)
i +R

cos (t+ k∆t)
sin (t+ k∆t)

 (4.32)

wherein s(0)
i are the coordinates of the i-th point when the camera is located in front of

the object, at the beginning of the simulation. The parameter R is proportional to the
radius of the camera trajectory (R = 0.2 was used in the simulations), while t corresponds
to the time at which the current MPC problem has to be defined and solved. Finally, ∆t
is the sampling time used in the predictors. The desired features thus change continuously
during the simulation, as opposed to the cases considered in the previous chapter, in which
the values of s?i,k were kept constant. As explained before, a generic visual task constrains
6 dof, allowing in this case to fully determine the control input (the 6-dimensional sensor
twist) without the need of a secondary task, as it was done when controlling the 7 dof
LWR4+ manipulator.

The simulation was run with a control frequency of 50 Hz to simulate typical camera
acquisition frequencies. Since the task to be performed corresponds to the tracking of
a time-varying trajectory, it is important to use a rather precise sampling step for the
prediction. In particular, ∆t = ∆tc = 20 ms was used in all simulations discussed in the
following. If the tracking is performed properly, the prediction horizon needs not to be
extremely large. However, it would be desirable to still have a sufficiently long prediction
vector in case any perturbation leads to an increase in the feature error. This can happen,
e.g., if the observed object performs some kind of motion, since this is not modeled in
the predictor. It was decided to consider a prediction time of Tp = 1.5 s, thus leading to
a prediction horizon of np = 75 samples.

All parameterizations described so far were tested in simulation, with an increasing
number of decision variables. In particular, the simple parameterization was considered
with a control horizon nc ranging from 2 to 10, and thus the number of parameters nπ
varies from 12 to 60 (since a single control sample has dimension m = 6). Similarly, ZOH
and LERP parameterizations were considered, each featuring a number of free samples
ranging from 2 to 10, with the free samples being uniformly spread along the prediction
horizon. Finally, Laguerre parameterizations were also used, each featuring a static offset
(like in the case of the mass-spring-damper of Section 4.2.3) and as many basis functions
as needed to have the same amount of parameters as other control parameterizations. The
value ε = 0.5 was used to tune the damped Laguerre polynomials.
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The optimization problems were formulated using the single-shooting formulation
(4.24) and solved using an iterative Gauss-Newton method. Constraints on the control
inputs were added to limit the linear and angular velocities to 0.5 m s−1 and 1 s−1 re-
spectively. In addition, the maximum variations were set to 0.017 m s−1 and 0.033 s−1,
approximately corresponding to acceleration limits of 0.83 m s−2 and 1.67 s−2.

A synthetic representation of the results is represented in Figure 4.17, which pro-
vides the features error norm along time for different parameterization types and number
of parameters. In particular, each type of parameterization is plotted with a specific
hue component, with darker colors representing the use of fewer parameters. For ease of
comparison, the results obtained using the maximum number of optimization variables
(nπ = m · np = 6 · 75 = 450) are included as well.

0 2 4 6 8 10 12 14
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Figure 4.17 – Comparison of tracking error norms for different parameterizations in the
visual servoing simulations. The value of nπ wasm·j = 6j, with j ranging from 2 (nπ = 12)
to 10 (nπ = 60). In the graph, darker colors correspond to smaller numbers of parameters.

As visible, all parameterization feature two distinct peaks in the features error vector.
The first one is obtained at the very beginning of the simulation, and is simply due to
the features being initially located at the centers of the desired circular trajectories. In
addition, a second peak appears after 4 s of simulation. This is caused by the object,
which performs a rotational motion of 70° between t = 4 s and t = 5 s. The center of
rotation corresponds to the origin of the object itself and is performed around the unit
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axis
(√

1/6,
√

1/6,
√

2/3
)
at constant velocity. As mentioned before, this motion is not

modeled in the prediction and thus it cannot be anticipated. As a result, it leads to an
increased tracking error.

Two observations can be made from the results depicted in Figure 4.17. First of all, the
ZOH parameterization does not lead to satisfactory performances when a small amount
of parameters is used. The tracking error after transient becomes smaller than that of
the simple parameterization only if at least 8 free samples are used. As already discussed,
given the extremely high number of possible choices of the free samples, the existence of
a better selection cannot be easily ruled out. However, this once again shows one (and
perhaps the main) weakness of this parameterization, which seems to be effective only
after careful selection of the free samples locations.

The second observation is that very few parameters are needed to obtain good per-
formances with LERP and Laguerre parameterizations. In particular, using just 3 free
samples in a LERP parameterization leads to tracking errors that are almost equivalent to
those obtained with the full parameterization, which uses instead 75 samples. A slightly
worse, but definitely very close, behavior is obtained with Laguerre parameterizations.
This can be seen also in Figure 4.18, which compares the features trajectories obtained
with the different parameterizations when 3 parameters per input coordinate are used.
In particular, the motions obtained using the full 4.18(a), LERP 4.18(d) and Laguerre
4.18(e) are really close in the image. Moreover, it must be noted that the rate at which
peak errors are reduced is relatively high. Indeed, it generally takes around 0.5 s to almost
nullify the tracking error when LERP and Laguerre parameterizations are used, given
that a sufficient amount of degrees of freedom are used (again, this roughly corresponds
to a minimum of 18 or 24 total decision variables).

Finally, from a practical point of view it must be noted that even with the reduced
number of nπ = 18 parameters used to obtain the results of Figure 4.18 the optimization
time required to evaluate the control at each iteration is about 300 ms, which is evidently
too large for a real-time implementation. Nonetheless, it corresponds to just slightly more
than the 5 % of the time required when using the full parameterization, and thus it
provides a very significant relative improvement. Furthermore, the results were obtained
with a simple implementation written entirely in Python, and it seems reasonable that
real-time execution could be achieved with some additional code optimization and by
translating the source to a compiled language.

139



Chapter 4 – Parameterized Model Predictive Control

(a) Full (b) Simple (c) ZOH

(d) LERP (e) Laguerre

Figure 4.18 – View of the target as observed from the free-flying camera, with the desired
(red) and actual (green) trajectories of the dots. The first four images correspond to
parameterizations using 3 parameters for each control coordinate, for a total of nπ =
18 parameters. The last image corresponds to a full parameterization with nπ = 450
parameters.
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4.4 Conclusions

This chapter focused on the concept of control input parameterizations, which allows
to synthesize whole command sequences from a low-dimensional set of parameters. After
detailing some possible kinds of parameterizations, their performances were tested in
simulation, both in the case of linear and nonlinear systems, including a simple example
of visual predictive control. The discussed results show that better performances than the
classical formulation can be obtained even when using a small amount of parameters with
respect to the number of prediction samples.

This topic has not yet been considered extensively in robotics yet, but it is believed
that it deserves to be studied more in details, with few open questions that need to be
answered. First of all, the use of parameterizations for more complex nonlinear systems
should be considered in order to asses their performances in practical scenarios. Examples
might include underactuated systems or serial manipulators performing a visual servoing
task.

Another direction of investigation should focus on different formulations of the non-
linear optimization problem. In fact, as discussed before, only single-shooting methods
have been investigated so far, while it is worth to extend the analysis to multiple-shooting
approaches as well.

Moreover, the tuning problem should be addressed as well. All parameterizations con-
tain a certain number of “design constants” that are to be set before the optimization.
This task is currently performed by the user, which has to resort to his/her experience,
knowledge of the system and some intuition as well. Instead, it would be desirable to
have some tuning criteria or even some automatic procedures that can reduce the amount
of human intervention. In this sense, a first attempt could be to include the values that
define a parameterization within the decision variables of the optimization. An example
could be to consider nonlinear Laguerre parameterizations in which the scaling factor ε
is also optimized by the nonlinear programming routine.

Last but definitely not least, it would be of great interest to mix the concepts illustrated
here with those presented in Chapter 3, assessing the performances of parameterized VPC
schemes based on second-order feature models.
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This thesis dealt with the objective of increasing the productivity of manipulators
performing visual servoing tasks. In particular, different ways to allow faster execution of
the relative positioning of a sensor with respect to an observed object were investigated.
To address the problem, several strategies were considered, either involving the use of
new models to describe the interaction between the controlled robot and its environment,
or the employment of advanced control schemes that try to optimize the motion of the
robot. The contributions were validated via simulations and experiments, using mainly
a Kuka LWR4+ as target platform. It was shown that the proposed methods are well
suited for the control of such system, allowing to reach medium speeds and relatively
short execution times.

Contributions

More than few existing works suggest that a key to unlock high-speed performances is
the use of higher-order models that allow to establish a link between the features and the
acceleration and actuation efforts of the controlled system. Following this suggestion, this
thesis firstly investigated second-order models for visual servoing. In particular, a simple
procedure was proposed that allows to obtain these models for a generic eye-in-hand
system, detailed in the beginning of Chapter 2. It allowed to obtain second-order models
for various sets of features, cfr. Appendix A, including image points, polar coordinates
and planar image moments.

The use of second order models allows to create new classes of control schemes which
use the acceleration – either of the sensor or of the manipulator depending on the for-
mulation – as input. In these controllers, the state is not only given by the features, but
also by their velocities, which can in turn be estimated using existing first-order models.
One of the main interests in obtaining an acceleration control signal directly from the
features observations is that it can be used in conjunction with the dynamic model of the
controlled manipulator to establish a Computed Torque Control directly in the feature
space. As it was shown by means of simulations in [FKM19], such controller is less af-
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fected by sensor noise and allows to obtain satisfactory performances in terms of features
convergence.

One limitation of the feedback controllers proposed in Chapter 2 is that, similarly
to classical proportional velocity control laws, they constrain the features evolution in a
very specific way. In particular, controllers attempt to steer the features along straight
hyper-lines connecting the current configuration to the desired one, which can result in
unsatisfactory motions for the sensor in SE(3). In addition, the rate at which this motion
is performed is dictated by an exponential decay. As a consequence, if the control gains
are increased to reduce execution times, very high accelerations and velocities might be
produced for a short period of time, while near completion the sensor will tend to move
rather slowly.

To overcome these issues, predictive control strategies were examined. The principal
advantage over feedback controllers is the ability of MPC schemes to explore a set of
solutions and select the control inputs which optimally steers the system towards the
desired configuration. By properly shaping the cost functional of the optimization it is
possible to favor shorter paths and faster motions, both contributing in a reduction of the
execution time for a task. Moreover, as the control computation is the result of a nonlinear
optimization, arbitrary constraints can be added to the problem definition, thus ensuring
physical feasibility of the returned solution.

The main drawback of MPC is the computational burden that it introduces: rather
heavy nonlinearly constrained nonlinear minimization problems in several variables must
be solved in few milliseconds in order to allow feasible real-time implementations. To make
the problems manageable in this sense, two different strategies have been considered that
improve state of the art VPC techniques.

The first attempt was inspired by works on second-order models, which underlined
that features and sensor accelerations become non-negligible in more dynamic contexts.
It was decided to consider predictors that exploit also the second derivative of the fea-
tures to predict their future values. These models allow to use coarser time samplings
without sacrificing reliability of the predictions. As a consequence, less samples need to
be considered so as to cover a target period of time. The complexity of each optimization
problem can be reduced, and the problem can be solved within the allotted time with suf-
ficient precision. This is supported via several simulations and experiments, as presented
in Chapter 1 and [FKM20]. In particular, the results show that models that incorporate
acceleration information are associated with generally better and shorter motions, and
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can outperform predictive strategies based on velocity models. Moreover, the use of dif-
ferent features sets in real experiments suggest that this result is due to the proposed
methodology and not specific to a single type of descriptive features.

A second way to deal with the complexity of predictive strategies was analyzed as well,
based on the ideas introduced in [Ala06]. As opposed to classical predictive strategies,
which try to reduce the dimensionality of the optimization by using as decision variables
the first samples of the control sequence, this theory proposes to introduce a parame-
terization for the control inputs so that the “degrees of freedom” are better distributed
along the prediction horizon. Given that the concept was rarely applied to robotics and
very few related works are available, the majority of Chapter 4 has been dedicated to a
thorough analysis of these parameterizations on simple systems. In particular, they were
used in simulation to control two common linear systems. The results were discussed,
underlining the advantages coming from the use of two parameterizations in particular.
The method was then applied for the control of a simple nonlinear system – an inverted
crane-pendulum – and the results confirmed what was previously obtained when con-
sidering linear systems. The parameterized approach was finally exploited to perform a
simulated visual servoing task. In particular, a free-flying perspective camera was con-
trolled in velocity using different types of control parameterizations, subject to actuation
constraints. A relevant result was obtained in this case: using just a 25th of the maximum
parameters, it is possible to obtain very satisfactory tracking performances, comparable
to those obtained when all control samples are individually optimized. This allowed to
obtain reduced errors and fast responses in a short time (compared to that needed by
the full parameterization). The presented results have not been published yet, but a jour-
nal article is currently in preparation in order to share these findings with the scientific
community and valorize the thesis work.

Perspectives

This thesis contributed to the enhancement of visual servoing performances by follow-
ing three different directions. Even if the outcomes of these investigations were positive
and allowed to control sensor displacements at higher speed, there are still several aspects
that need deeper exploration.

First of all, it must be noted that the models and controls presented in Chapter 2
depend on the derivatives of the feature vector. In the present study, it was simply as-
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sumed that such derivative could be estimated by multiplication of the feature Jacobian
by the joint velocity, i.e., ṡ = Jsq̇. The assumption was not unreasonable in the pre-
sented simulations since perfect knowledge of the geometric model of the manipulator
was assumed, and the noise in the sensor measurements was relatively small. However, a
second possibility could be considered, consisting in using an estimation scheme to evalu-
ate ṡ from fusion of several measurements. As an example, an Inertial Measurement Unit
(IMU) could be used to obtain an estimation of the end-effector velocity, and an optical
flow strategy could provide a direct estimation of ṡ from image measurements. Fusing all
these signals altogether could provide a better overall estimation of the feature velocity.

As explained in Chapter 2, simulations were run using a very high sampling time,
assuming nonetheless that a rather reliable estimation of both the features and parameters
would have been available. Therefore, in order to validate the presented simulations also
on a real platform, a good estimation of the feature vector itself would be essential. To
obtain it, different solutions could be considered. A first possibility would be to use a
virtual visual servoing strategy similar to that presented in [Dah+12], or to use a solution
based on an extended Kalman filter which exploits both the first and second-order features
interaction models to perform simultaneous estimation of the features and of their velocity.

Simulations and experiments presented in this manuscript did not consider high-speed
systems, such as the parallel robots used in [Dah+12; Ozg+13]. Extending the results
obtained in this thesis to such class of manipulators would be of high interest, since their
mechanical design allows to reach very high speeds and accelerations. Of course, they
constitute a higher challenge with respect to the control of serial manipulators such as
the LWR4+ Kuka arm that was used in most of the simulations and experiments presented
in this thesis. As an example, the visual servoing controller based on the Inverse Dynamic
Model presented in this thesis did not take into account some behaviors that typically
appears in highly dynamic contexts such as flexibility in the joints and links. It would be
interesting to assess whether the performances obtained with the serial manipulators hold
also with higher dynamic excitation, or if more accurate models are needed. Furthermore,
if motions become significantly faster, the quality of acquired images might deteriorate.
As an example, motion blur and rolling shutter might rend the visual feedback highly
unreliable. A potential solution to this problem could consist in the use of event-based and
hybrid cameras such as the Dynamic and Active-pixel Vision Sensor (DAVIS) [Bra+14;
Ted+16].

Several improvements to predictive strategies are also possible. First of all, up to now
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only simple geometric primitives have been used as features, and the object used for
simulations and experiments was simplified to facilitate features extraction. Even though
image points can be used to represent many real-life objects, to deal with complex shapes
it might be better to consider image moments as descriptors. To extend the domain of
applicability of the presented predictive strategies, a relevant improvement would thus
be to develop new predictors for this class of features. This poses some challenges for
few reasons. A first, simple, one is the difficulty in obtaining second order models for
these descriptors. To support this claim, the reader is referred to Appendix A.5, which
contains the second order model of a generic moment feature mi/j, which is composed of
several terms. Fortunately, despite the large amount of factors which make the modeling
task tedious and error-prone, the algorithmic procedure detailed in Chapter 2 allows to
evaluate the necessary quantities with the help of symbolic tools. Nonetheless, a second
issue complicates the definition of predictors according to the formalism proposed in
Chapter 3: each moment mi/j depends on moments of higher order such as mi+1/j. As a
consequence, to predict mi/j one has to evaluate mi+1/j as well, which in turns requires
to predict mi+2/j. This chain of dependencies on higher-order moments is infinite, and
thus the predictor needs to be defined differently. One possibility would be, e.g., to use a
constant value for all moments of a specific order, or to use a constant interaction matrix
along the prediction horizon.

Another interesting development would consist in the application of parameterized
MPC to systems with unstable behaviors, such as an aerial vehicle performing a servoing
task. Being an underactuated and inherently unstable system, this case is similar to that
of the inverted pendulum of Section 4.3.2. In addition, such systems often have a limited
computational power. This makes them a perfect target for the methods presented in the
last chapter, whose aim is precisely to reduce the time required to evaluate control inputs.

Finally, several other technical improvements could be attempted. For instance, the
use of nonlinear parameterizations should be considered, as well as trying to solve the
optimization problem using a multiple-shooting technique. Moreover, a mix between the
parameterized approach and the new predictors presented in Chapter 3 should be con-
sidered, with the objective of further improving the performances during the execution of
servoing tasks.
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Appendix A

SECOND ORDER MODELS OF VISUAL

FEATURES

In the following some second-order interaction models are reported. In particular,
each section focuses on a specific feature set, detailing what are the features s and the
parameters z (if any), the corresponding interaction matrices Ls and Lz, and finally the
G-matrices that define the hs and hz vectors appearing in the second-order models.

A.1 3D Points

In this case, the 3D coordinates of a point are used as features, and no parameters are
present. The three G-matrices can easily be obtained by following the procedure detailed
in Chapter 2.

sT =
[
X Y Z

]
(A.1)

Ls =


−1 0 0 0 −Z Y

0 −1 0 Z 0 −X
0 0 −1 −Y X 0

 (A.2)

GX =



0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 0 Y

2
Z
2

0 0 1 Y
2 −X 0

0 −1 0 Z
2 0 −X


(A.3)
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GY =



0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 −1 −Y X

2 0
0 0 0 X

2 0 Z
2

1 0 0 0 Z
2 −Y


(A.4)

GZ =



0 0 0 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 1 0 −Z 0 X

2

−1 0 0 0 −Z Y
2

0 0 0 X
2

Y
2 0


(A.5)

A.2 Image Points

In the case of normalized image points, the interaction matrix is function not only
of the features coordinates x and y, but also of the 3D depth of the observed point.
Therefore, in order to obtain the required second-order model, the interaction matrix of
the depth is to be considered. It simply consists in the last row of the interaction matrix
of a 3D point, in which the Cartesian coordinates X and Y are replaced by xZ and yZ.
In this way, also Lz depends only on s and z, and the matrices Gx and Gy can finally
be obtained. The expression of GZ is also reported, since it is required by the predictors
presented in Section 3.3.

sT =
[
x y

]
(A.6)

z =
[
Z
]

(A.7)

Ls =
− 1

Z
0 x

Z
xy −x2 − 1 y

0 − 1
Z

y
Z

y2 + 1 −xy −x

 (A.8)

Lz =
[
0 0 −1 −Zy Zx 0

]
(A.9)
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Gx =



0 0 − 1
Z2 − y

Z
2x
Z

0
0 0 0 − x

Z
0 − 1

Z

− 1
Z2 0 2x

Z2
2xy
Z

−2x2

Z
y
Z

− y
Z
− x
Z

2xy
Z

x (2y2 + 1) −y(4x2+1)
2 −x2

2 + y2 + 1
2

2x
Z

0 −2x2

Z
−y(4x2+1)

2 2x (x2 + 1) −3xy
2

0 − 1
Z

y
Z

−x2

2 + y2 + 1
2 −3xy

2 −x


(A.10)

Gy =



0 0 0 0 y
Z

1
Z

0 0 − 1
Z2 −2y

Z
x
Z

0
0 − 1

Z2
2y
Z2

2y2

Z
−2xy

Z
− x
Z

0 −2y
Z

2y2

Z
2y (y2 + 1) −x(4y2+1)

2 −3xy
2

y
Z

x
Z

−2xy
Z
−x(4y2+1)

2 y (2x2 + 1) x2 − y2

2 + 1
2

1
Z

0 − x
Z

−3xy
2 x2 − y2

2 + 1
2 −y


(A.11)

GZ =



0 0 0 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 1 0 −Z 0 Zx

2

−1 0 0 0 −Z Zy
2

0 0 0 Zx
2

Zy
2 0


(A.12)

A.3 Polar Coordinates

This case is similar to the previous one, in which normalized points were used, and the
parameter vector still consists in the 3D depth of the observed point. Polar coordinates
and image points are linked by the well-known relation

x = ρ cos θ (A.13)
y = ρ sin θ (A.14)

151



Appendix A – Second Order Models of Visual Features

which can be used to obtain an expression for Lz and GZ that depends only on ρ, θ and
Z.

sT =
[
ρ θ

]
(A.15)

z =
[
Z
]

(A.16)

Ls =
− cos (θ)

Z
− sin (θ)

Z
ρ
Z

(ρ2 + 1) sin (θ) (−ρ2 − 1) cos (θ) 0
sin (θ)
Zρ

− cos (θ)
Zρ

0 cos (θ)
ρ

sin (θ)
ρ

−1

 (A.17)

Lz =
[
0 0 −1 −Zρ sin (θ) Zρ cos (θ) 0

]
(A.18)

Gρ =



sin2 (θ)
Z2ρ

− sin (2θ)
2Z2ρ

− cos (θ)
Z2

− sin (2θ)
2Z2ρ

cos2 (θ)
Z2ρ

− sin (θ)
Z2

− cos (θ)
Z2 − sin (θ)

Z2
2ρ
Z2

−(ρ2−1) sin (2θ)
2Zρ

ρ2 cos2 (θ)−2ρ2−cos2 (θ)
Zρ

2ρ2 sin (θ)
Z

−ρ2 sin2 (θ)+2ρ2+sin2 (θ)
Zρ

(ρ2−1) sin (2θ)
2Zρ −2ρ2 cos (θ)

Z

0 0 0

−(ρ2−1) sin (2θ)
2Zρ

−ρ2 sin2 (θ)+2ρ2+sin2 (θ)
Zρ

0
ρ2 cos2 (θ)−2ρ2−cos2 (θ)

Zρ

(ρ2−1) sin (2θ)
2Zρ 0

2ρ2 sin (θ)
Z

−2ρ2 cos (θ)
Z

0
(ρ2+1)(2ρ2 sin2 (θ)+cos2 (θ))

ρ
−(2ρ4+ρ2−1) sin (2θ)

2ρ −(ρ2+1) cos (θ)
2

−(2ρ4+ρ2−1) sin (2θ)
2ρ

(ρ2+1)(2ρ2 cos2 (θ)+sin2 (θ))
ρ

−(ρ2+1) sin (θ)
2

−(ρ2+1) cos (θ)
2 −(ρ2+1) sin (θ)

2 0


(A.19)
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Gθ =



sin (2θ)
Z2ρ2 − cos (2θ)

Z2ρ2 0 cos (2θ)
Zρ2

sin (2θ)
Zρ2 0

− cos (2θ)
Z2ρ2 − sin (2θ)

Z2ρ2 0 sin (2θ)
Zρ2 − cos (2θ)

Zρ2 0
0 0 0 − cos (θ)

Zρ
− sin (θ)

Zρ
0

cos (2θ)
Zρ2

sin (2θ)
Zρ2 − cos (θ)

Zρ
−(ρ2+2) sin (2θ)

2ρ2
(ρ2+2) cos (2θ)

2ρ2
sin (θ)

2ρ
sin (2θ)
Zρ2 − cos (2θ)

Zρ2 − sin (θ)
Zρ

(ρ2+2) cos (2θ)
2ρ2

(ρ2+2) sin (2θ)
2ρ2 − cos (θ)

2ρ

0 0 0 sin (θ)
2ρ − cos (θ)

2ρ 0


(A.20)

GZ =



0 0 0 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 1 0 −Z 0 Zρ cos (θ)

2

−1 0 0 0 −Z Zρ sin (θ)
2

0 0 0 Zρ cos (θ)
2

Zρ sin (θ)
2 0


(A.21)

A.4 Planes

3D Planes can be represented in Cartesian Space by the equation

nxX + nyY + nzZ = d
(
n2
x + n2

y + n2
z = 1

)
(A.22)

wherein (X, Y, Z) is any point belonging to the plane, d > 0 represents the distance of
the plane from the origin of the sensor frame and nT =

[
nx ny nz

]
is the normal of the

plane. There are no parameters in this case, and the feature vector consists in the normal
and the value of d.

sT =
[
nx ny nz d

]
(A.23)

Ls =
 0 [n]×
−nT 0

 =


0 0 0 0 −nz ny

0 0 0 nz 0 −nx
0 0 0 −ny nx 0
−nx −ny −nz 0 0 0

 (A.24)
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Gnx =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 ny

2
nz
2

0 0 0 ny
2 −nx 0

0 0 0 nz
2 0 −nx


(A.25)

Gny =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −ny nx

2 0
0 0 0 nx

2 0 nz
2

0 0 0 0 nz
2 −ny


(A.26)

Gnz =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −nz 0 nx

2

0 0 0 0 −nz ny
2

0 0 0 nx
2

ny
2 0


(A.27)

Gd = O (A.28)

An alternative, minimal, representation of a 3D plane can exploited, relating the co-
ordinates of normalized points as:

Ax+By + C = 1/Z (A.29)

It is linked to the previous definition of planes by

A = nx
d

B = ny
d

C = nz
d

(A.30)

The interest in considering this representation, and in obtaining the corresponding second-
order interaction models, is justified by the fact that these values appear as well in the
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interaction matrices of planar image moments.

sT =
[
A B C

]
(A.31)

Ls =
[
ssT − [s]×

]
=


A2 AB AC 0 −C B

AB B2 BC C 0 −A
AC BC C2 −B A 0

 (A.32)

GA =



2A3 2A2B 2A2C 0 −AC AB

2A2B 2AB2 2ABC 0 −BC B2

2A2C 2ABC 2AC2 0 −C2 BC

0 0 0 0 B
2

C
2

−AC −BC −C2 B
2 −A 0

AB B2 BC C
2 0 −A


(A.33)

GB =



2A2B 2AB2 2ABC AC 0 −A2

2AB2 2B3 2B2C BC 0 −AB
2ABC 2B2C 2BC2 C2 0 −AC
AC BC C2 −B A

2 0
0 0 0 A

2 0 C
2

−A2 −AB −AC 0 C
2 −B


(A.34)

GC =



2A2C 2ABC 2AC2 −AB A2 0
2ABC 2B2C 2BC2 −B2 AB 0
2AC2 2BC2 2C3 −BC AC 0
−AB −B2 −BC −C 0 A

2

A2 AB AC 0 −C B
2

0 0 0 A
2

B
2 0


(A.35)

A.5 Image Moments

We conclude this section by reporting the matrices of the second-order model of planar
image moments. Even though they were not used in the work presented in this thesis,
they have been included here for reference since extensions of the predictors considered
in [FKM20] could be based on these models. For the planar moment mi/j, the parameter
vector is significantly larger than those found for other features, and includes other image
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moments. This leads to second-order models containing several terms. In particular, all
entries of Gmi/j can be expressed as a linear combination of image moments whose order
varies from i+j−2 to i+j+2. Therefore, for each entry of (A.39), the linear combination
coefficients are listed, and the overall expression is then given. Note that only the upper
triangular portion of (A.39) has been reported, since the remaining terms follow from the
symmetry of Gmi/j . In addition, following the notation adopted in [TC05], the parameter
δ is used, whose value equals 1 or 0 respectively when dense or discrete moments are used.

s =
[
mi/j

]
(A.36)

zT =
[
mi/j−1 mi/j+1 mi−1/j mi+1/j mi−1/j+1 mi+1/j−1 A B C

]
(A.37)

LT
s =



−Aδmi/j − i
(
Ami/j +Bmi−1/j+1 + Cmi−1/j

)
−Bδmi/j − j

(
Ami+1/j−1 +Bmi/j + Cmi/j−1

)
−Cδmi/j + (3δ + i+ j)

(
Ami+1/j +Bmi/j+1 + Cmi/j

)
jmi/j−1 +mi/j+1 (3δ + i+ j)
−imi−1/j +mi+1/j (−3δ − i− j)

imi−1/j+1 − jmi+1/j−1


(A.38)

Gmi/j =



Gvx,vx Gvx,vy Gvx,vz Gvx,wx Gvx,wy Gvx,wz

Gvy ,vy Gvy ,vz Gvy ,wx Gvy ,wy Gvy ,wz

Gvz ,vz Gvz ,wx Gvz ,wy Gvz ,wz

Gwx,wx Gwx,wy Gwx,wz

Gwy ,wy Gwy ,wz

Gwz ,wz


(A.39)

Gvx,vx = G
mi/j
vx,vxmi/j +G

mi−1/j
vx,vx mi−1/j +G

mi−1/j+1
vx,vx mi−1/j+1

+G
mi−2/j
vx,vx mi−2/j +G

mi−2/j+1
vx,vx mi−2/j+1 +G

mi−2/j+2
vx,vx mi−2/j+2 (A.40a)
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G
mi/j
vx,vx = A2

(
−δ − i+ (δ + i)2

)
(A.40b)

G
mi−1/j
vx,vx = 2ACi (δ + i− 1) (A.40c)

G
mi−1/j+1
vx,vx = 2ABi (δ + i− 1) (A.40d)
G
mi−2/j
vx,vx = C2i (i− 1) (A.40e)

G
mi−2/j+1
vx,vx = 2BCi (i− 1) (A.40f)
G
mi−2/j+2
vx,vx = B2i (i− 1) (A.40g)

Gvx,vy = G
mi/j
vx,vymi/j +G

mi/j−1
vx,vy mi/j−1 +G

mi−1/j
vx,vy mi−1/j

+G
mi−1/j+1
vx,vy mi−1/j+1 +G

mi+1/j−1
vx,vy mi+1/j−1 +G

mi−1/j−1
vx,vy mi−1/j−1 (A.41a)

G
mi/j
vx,vy = AB

(
δ2 + δi+ δj − δ + 2ij

)
(A.41b)

G
mi/j−1
vx,vy = ACj (δ + 2i) (A.41c)

G
mi−1/j
vx,vy = BCi (δ + 2j) (A.41d)

G
mi−1/j+1
vx,vy = B2i (δ + j) (A.41e)

G
mi+1/j−1
vx,vy = A2j (δ + i) (A.41f)
G
mi−1/j−1
vx,vy = C2ij (A.41g)

Gvx,vz = G
mi/j
vx,vzmi/j +G

mi/j+1
vx,vz mi/j+1 +G

mi−1/j
vx,vz mi−1/j

+G
mi+1/j
vx,vz mi+1/j +G

mi−1/j+1
vx,vz mi−1/j+1 +G

mi−1/j+2
vx,vz mi−1/j+2 (A.42a)

G
mi/j
vx,vz = −AC

(
2δ2 + 6δi+ δj + δ + 2i2 + 2ij

)
(A.42b)

G
mi/j+1
vx,vz = −AB (δ + 2i) (3δ + i+ j) (A.42c)
G
mi−1/j
vx,vz = −C2i (2δ + i+ j) (A.42d)

G
mi+1/j
vx,vz = −A2 (δ + i) (3δ + i+ j) (A.42e)
G
mi−1/j+1
vx,vz = −BCi (5δ + 2i+ 2j) (A.42f)
G
mi−1/j+2
vx,vz = −B2i (3δ + i+ j) (A.42g)
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Gvx,wx = G
mi/j−1
vx,wx mi/j−1 +G

mi/j+1
vx,wx mi/j+1 +G

mi−1/j
vx,wx mi−1/j

+G
mi−1/j+1
vx,wx mi−1/j+1 +G

mi−1/j−1
vx,wx mi−1/j−1 +G

mi−1/j+2
vx,wx mi−1/j+2 (A.43a)

G
mi/j−1
vx,wx = −Aj (δ + i) (A.43b)

G
mi/j+1
vx,wx = −A (δ + i) (3δ + i+ j) (A.43c)

G
mi−1/j
vx,wx = −Bij (A.43d)

G
mi−1/j+1
vx,wx = −Ci (3δ + i+ j) (A.43e)

G
mi−1/j−1
vx,wx = −Cij (A.43f)

G
mi−1/j+2
vx,wx = −Bi (3δ + i+ j) (A.43g)

Gvx,wy = G
mi/j
vx,wymi/j +G

mi/j+1
vx,wy mi/j+1 +G

mi−1/j
vx,wy mi−1/j

+G
mi+1/j
vx,wy mi+1/j +G

mi−2/j
vx,wy mi−2/j +G

mi−2/j+1
vx,wy mi−2/j+1 (A.44a)

G
mi/j
vx,wy = C

(
3δi+ 3δ + i2 + ij + i+ j

)
(A.44b)

G
mi/j+1
vx,wy = B (i+ 1) (3δ + i+ j) (A.44c)
G
mi−1/j
vx,wy = Ai (δ + i− 1) (A.44d)

G
mi+1/j
vx,wy = A (δ + i+ 1) (3δ + i+ j) (A.44e)

G
mi−2/j
vx,wy = Ci (i− 1) (A.44f)

G
mi−2/j+1
vx,wy = Bi (i− 1) (A.44g)

Gvx,wz = G
mi/j
vx,wzmi/j +G

mi/j−1
vx,wz mi/j−1 +G

mi−1/j+1
vx,wz mi−1/j+1

+G
mi+1/j−1
vx,wz mi+1/j−1 +G

mi−2/j+1
vx,wz mi−2/j+1 +G

mi−2/j+2
vx,wz mi−2/j+2 (A.45a)

158



A.5. Image Moments

G
mi/j
vx,wz = Bj (i+ 1) (A.45b)

G
mi/j−1
vx,wz = Cj (i+ 1) (A.45c)

G
mi−1/j+1
vx,wz = Ai (−δ − i+ 1) (A.45d)
G
mi+1/j−1
vx,wz = Aj (δ + i+ 1) (A.45e)
G
mi−2/j+1
vx,wz = Ci (1− i) (A.45f)

G
mi−2/j+2
vx,wz = Bi (1− i) (A.45g)

Gvy ,vy = G
mi/j
vy ,vymi/j +G

mi/j−1
vy ,vy mi/j−1 +G

mi+1/j−1
vy ,vy mi+1/j−1

+G
mi/j−2
vy ,vy mi/j−2 +G

mi+1/j−2
vy ,vy mi+1/j−2 +G

mi+2/j−2
vy ,vy mi+2/j−2 (A.46a)

G
mi/j
vy ,vy = B2

(
−δ − j + (δ + j)2

)
(A.46b)

G
mi/j−1
vy ,vy = 2BCj (δ + j − 1) (A.46c)

G
mi+1/j−1
vy ,vy = 2ABj (δ + j − 1) (A.46d)
G
mi/j−2
vy ,vy = C2j (j − 1) (A.46e)

G
mi+1/j−2
vy ,vy = 2ACj (j − 1) (A.46f)
G
mi+2/j−2
vy ,vy = A2j (j − 1) (A.46g)

Gvy ,vz = G
mi/j
vy ,vzmi/j +G

mi/j−1
vy ,vz mi/j−1 +G

mi/j+1
vy ,vz mi/j+1

+G
mi+1/j
vy ,vz mi+1/j +G

mi+1/j−1
vy ,vz mi+1/j−1 +G

mi+2/j−1
vy ,vz mi+2/j−1 (A.47a)

G
mi/j
vy ,vz = −BC

(
2δ2 + δi+ 6δj + δ + 2ij + 2j2

)
(A.47b)

G
mi/j−1
vy ,vz = −C2j (2δ + i+ j) (A.47c)

G
mi/j+1
vy ,vz = −B2 (δ + j) (3δ + i+ j) (A.47d)

G
mi+1/j
vy ,vz = −AB (δ + 2j) (3δ + i+ j) (A.47e)
G
mi+1/j−1
vy ,vz = −ACj (5δ + 2i+ 2j) (A.47f)
G
mi+2/j−1
vy ,vz = −A2j (3δ + i+ j) (A.47g)

159



Appendix A – Second Order Models of Visual Features

Gvy ,wx = G
mi/j
vy ,wxmi/j +G

mi/j−1
vy ,wx mi/j−1 +G

mi/j+1
vy ,wx mi/j+1

+G
mi+1/j
vy ,wx mi+1/j +G

mi/j−2
vy ,wx mi/j−2 +G

mi+1/j−2
vy ,wx mi+1/j−2 (A.48a)

G
mi/j
vy ,wx = −C

(
3δj + 3δ + ij + i+ j2 + j

)
(A.48b)

G
mi/j−1
vy ,wx = Bj (−δ − j + 1) (A.48c)

G
mi/j+1
vy ,wx = −B (δ + j + 1) (3δ + i+ j) (A.48d)
G
mi+1/j
vy ,wx = −A (j + 1) (3δ + i+ j) (A.48e)

G
mi/j−2
vy ,wx = Cj (1− j) (A.48f)

G
mi+1/j−2
vy ,wx = Aj (1− j) (A.48g)

Gvy ,wy = G
mi/j−1
vy ,wy mi/j−1 +G

mi−1/j
vy ,wy mi−1/j +G

mi+1/j
vy ,wy mi+1/j

+G
mi+1/j−1
vy ,wy mi+1/j−1 +G

mi−1/j−1
vy ,wy mi−1/j−1 +G

mi+2/j−1
vy ,wy mi+2/j−1 (A.49a)

G
mi/j−1
vy ,wy = Aij (A.49b)

G
mi−1/j
vy ,wy = Bi (δ + j) (A.49c)

G
mi+1/j
vy ,wy = B (δ + j) (3δ + i+ j) (A.49d)
G
mi+1/j−1
vy ,wy = Cj (3δ + i+ j) (A.49e)

G
mi−1/j−1
vy ,wy = Cij (A.49f)

G
mi+2/j−1
vy ,wy = Aj (3δ + i+ j) (A.49g)

Gvy ,wz = G
mi/j
vy ,wzmi/j +G

mi−1/j
vy ,wz mi−1/j +G

mi−1/j+1
vy ,wz mi−1/j+1

+G
mi+1/j−1
vy ,wz mi+1/j−1 +G

mi+1/j−2
vy ,wz mi+1/j−2 +G

mi+2/j−2
vy ,wz mi+2/j−2 (A.50a)
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G
mi/j
vy ,wz = −Ai (j + 1) (A.50b)

G
mi−1/j
vy ,wz = −Ci (j + 1) (A.50c)

G
mi−1/j+1
vy ,wz = −Bi (δ + j + 1) (A.50d)
G
mi+1/j−1
vy ,wz = Bj (δ + j − 1) (A.50e)
G
mi+1/j−2
vy ,wz = Cj (j − 1) (A.50f)

G
mi+2/j−2
vy ,wz = Aj (j − 1) (A.50g)

Gvz ,vz = G
mi/j
vz ,vzmi/j +G

mi/j+1
vz ,vz mi/j+1 +G

mi+1/j
vz ,vz mi+1/j

+G
mi/j+2
vz ,vz mi/j+2 +G

mi+1/j+1
vz ,vz mi+1/j+1 +G

mi+2/j
vz ,vz mi+2/j (A.51a)

G
mi/j
vz ,vz = C2 (2δ + i+ j) (2δ + i+ j + 1) (A.51b)

G
mi/j+1
vz ,vz = 2BC (3δ + i+ j) (2δ + i+ j + 1) (A.51c)

G
mi+1/j
vz ,vz = 2AC (3δ + i+ j) (2δ + i+ j + 1) (A.51d)
G
mi/j+2
vz ,vz = B2 (3δ + i+ j) (3δ + i+ j + 1) (A.51e)

G
mi+1/j+1
vz ,vz = 2AB (3δ + i+ j) (3δ + i+ j + 1) (A.51f)
G
mi+2/j
vz ,vz = A2 (3δ + i+ j) (3δ + i+ j + 1) (A.51g)

Gvz ,wx = G
mi/j
vz ,wxmi/j +G

mi/j−1
vz ,wx mi/j−1 +G

mi/j+1
vz ,wx mi/j+1

+G
mi+1/j−1
vz ,wx mi+1/j−1 +G

mi/j+2
vz ,wx mi/j+2 +G

mi+1/j+1
vz ,wx mi+1/j+1 (A.52a)

G
mi/j
vz ,wx = Bj (3δ + i+ j − 1) (A.52b)

G
mi/j−1
vz ,wx = Cj (2δ + i+ j − 1) (A.52c)

G
mi/j+1
vz ,wx = C (3δ + i+ j) (2δ + i+ j + 1) (A.52d)
G
mi+1/j−1
vz ,wx = Aj (3δ + i+ j − 1) (A.52e)

G
mi/j+2
vz ,wx = B (3δ + i+ j) (3δ + i+ j + 1) (A.52f)

G
mi+1/j+1
vz ,wx = A (3δ + i+ j) (3δ + i+ j + 1) (A.52g)
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Gvz ,wy = G
mi/j
vz ,wymi/j +G

mi−1/j
vz ,wy mi−1/j +G

mi+1/j
vz ,wy mi+1/j

+G
mi−1/j+1
vz ,wy mi−1/j+1 +G

mi+1/j+1
vz ,wy mi+1/j+1 +G

mi+2/j
vz ,wy mi+2/j (A.53a)

G
mi/j
vz ,wy = Ai (−3δ − i− j + 1) (A.53b)

G
mi−1/j
vz ,wy = Ci (−2δ − i− j + 1) (A.53c)

G
mi+1/j
vz ,wy = −C (3δ + i+ j) (2δ + i+ j + 1) (A.53d)
G
mi−1/j+1
vz ,wy = Bi (−3δ − i− j + 1) (A.53e)

G
mi+1/j+1
vz ,wy = −B (3δ + i+ j) (3δ + i+ j + 1) (A.53f)
G
mi+2/j
vz ,wy = −A (3δ + i+ j) (3δ + i+ j + 1) (A.53g)

Gvz ,wz = G
mi/j+1
vz ,wz mi/j+1 +G

mi+1/j
vz ,wz mi+1/j +G

mi−1/j+1
vz ,wz mi−1/j+1

+G
mi+1/j−1
vz ,wz mi+1/j−1 +G

mi−1/j+2
vz ,wz mi−1/j+2 +G

mi+2/j−1
vz ,wz mi+2/j−1 (A.54a)

G
mi/j+1
vz ,wz = Ai (3δ + i+ j) (A.54b)

G
mi+1/j
vz ,wz = −Bj (3δ + i+ j) (A.54c)

G
mi−1/j+1
vz ,wz = Ci (2δ + i+ j) (A.54d)

G
mi+1/j−1
vz ,wz = −Cj (2δ + i+ j) (A.54e)
G
mi−1/j+2
vz ,wz = Bi (3δ + i+ j) (A.54f)

G
mi+2/j−1
vz ,wz = −Aj (3δ + i+ j) (A.54g)

Gwx,wx = G
mi/j
wx,wxmi/j +G

mi/j−2
wx,wx mi/j−2 +G

mi/j+2
wx,wx mi/j+2 (A.55a)

G
mi/j
wx,wx = j (3δ + i+ j − 1) + (j + 1) (3δ + i+ j) (A.55b)

G
mi/j−2
wx,wx = j (j − 1) (A.55c)

G
mi/j+2
wx,wx = (3δ + i+ j) (3δ + i+ j + 1) (A.55d)
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Gwx,wy = G
mi−1/j+1
wx,wy mi−1/j+1 +G

mi+1/j−1
wx,wy mi+1/j−1

+G
mi−1/j−1
wx,wy mi−1/j−1 +G

mi+1/j+1
wx,wy mi+1/j+1 (A.56a)

G
mi−1/j+1
wx,wy = i (−6δ − 2i− 2j + 1)

2 (A.56b)

G
mi+1/j−1
wx,wy = j (−6δ − 2i− 2j + 1)

2 (A.56c)

G
mi−1/j−1
wx,wy = −ij (A.56d)

G
mi+1/j+1
wx,wy = − (3δ + i+ j) (3δ + i+ j + 1) (A.56e)

Gwx,wz = G
mi−1/j
wx,wz mi−1/j +G

mi+1/j
wx,wz mi+1/j

+G
mi+1/j−2
wx,wz mi+1/j−2 +G

mi−1/j+2
wx,wz mi−1/j+2 (A.57a)

G
mi−1/j
wx,wz = i

(
j + 1

2

)
(A.57b)

G
mi+1/j
wx,wz = −(2j + 1) (3δ + i+ j)

2 (A.57c)

G
mi+1/j−2
wx,wz = j (1− j) (A.57d)

G
mi−1/j+2
wx,wz = i (3δ + i+ j) (A.57e)

Gwy ,wy = G
mi/j
wy ,wymi/j +G

mi−2/j
wy ,wy mi−2/j +G

mi+2/j
wy ,wy mi+2/j (A.58a)

G
mi/j
wy ,wy = i (3δ + i+ j − 1) + (i+ 1) (3δ + i+ j) (A.58b)

G
mi−2/j
wy ,wy = i (i− 1) (A.58c)

G
mi+2/j
wy ,wy = (3δ + i+ j) (3δ + i+ j + 1) (A.58d)
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Gwy ,wz = G
mi/j−1
wy ,wz mi/j−1 +G

mi/j+1
wy ,wz mi/j+1

+G
mi−2/j+1
wy ,wz mi−2/j+1 +G

mi+2/j−1
wy ,wz mi+2/j−1 (A.59a)

G
mi/j−1
wy ,wz = j

(
i+ 1

2

)
(A.59b)

G
mi/j+1
wy ,wz = −(2i+ 1) (3δ + i+ j)

2 (A.59c)

G
mi−2/j+1
wy ,wz = i (1− i) (A.59d)

G
mi+2/j−1
wy ,wz = j (3δ + i+ j) (A.59e)

Gwz ,wz = G
mi/j
wz ,wzmi/j +G

mi−2/j+2
wz ,wz mi−2/j+2 +G

mi+2/j−2
wz ,wz mi+2/j−2 (A.60a)

G
mi/j
wz ,wz = −2ij − i− j (A.60b)
G
mi−2/j+2
wz ,wz = i (i− 1) (A.60c)

G
mi+2/j−2
wz ,wz = j (j − 1) (A.60d)
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OPTIMIZATION ALGORITHMS FOR

MODEL PREDICTIVE CONTROL

This Appendix details the main algorithms that were used to solve the optimiza-
tion problems arising in MPC schemes. In particular, three algorithms are presented:
a Quadratic Programming method based on active set, a SQP for the minimization of
generic nonlinear problems and a Gauss-Newton algorithm for the solution of constrained
nonlinear least squares minimization.

B.1 Standard Problem & KKT Conditions

For the remainder of this Appendix, minimization problems are assumed to be written
in the following standard form:

min
x
f(x) (B.1a)

subject to:

g(x) ≤ 0 (B.1b)
h(x) = 0 (B.1c)

wherein x ∈ Rn is the decision vector, while f , g and h are twice-differentiable functions
that model the objective function and the inequality/equality constraints.

So as to determine the optima of the minimization, a fundamental quantity that is
defined for the problem is the Lagrangian function:

L(x,µ,λ) = f(x) + µTg(x) + λTh(x) (B.2)

where µ and λ are known as “Lagrange multipliers” or “dual variables” associated to the
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problem (B.1). This function is fundamental for the solution of constrained minimization,
since it can be used to determine a lower bound on the optima of the original problem.
In particular, denoting with D the set of points in Rn that satisfy the constraints (B.1b)
and (B.1c), the following holds:

min
x∈D

f(x) ≥ inf
x∈D
L(x,µ,λ) ∀µ ≥ 0,λ (B.3)

Furthermore, the Lagrangian can be used to define four necessary conditions that a triplet
x?,µ?,λ? must satisfy to be qualified as an optimum of (B.1). These conditions are known
as Karush-Kuhn-Tucker (KKT) conditions, and write as:

stationarity ∂f

∂x

∣∣∣∣∣
x?

+ µ?T ∂g

∂x

∣∣∣∣∣
x?

+ λ?T ∂h

∂x

∣∣∣∣∣
x?

= 0 (B.4a)

primal feasibility g(x?) ≤ 0
h(x?) = 0

(B.4b)

dual feasibility µ? ≥ 0 (B.4c)
complementary slackness µ?g(x?) = 0 (B.4d)

The first condition can be written synthetically as ∂L
∂x

∣∣∣
x?,µ?,λ?

= 0, and has a geometric
interpretation that will be explained in the following, while the second condition trivially
states that if an optimum x? exists, it must belong to D, i.e., the set of feasible points
for the problem. The meaning of the third and fourth conditions will also be explained
below.

To understand the first condition, let’s focus for a moment on the case of problems
featuring equality constraints only. Condition (B.4a) states that, for x? to be an optimum,
the gradient of the objective function must be expressible as a linear combination of the
gradients of the constraints, i.e.,

∇f ∈ span (∇h) (B.5)

Or, equivalently, ∇f must not have any component that lies in the tangent space of the
constraints. An intuitive explanation is provided in Figure B.1(a): since the gradient of
the objective has a component that is tangent to the constraint, the depicted point cannot
be a constrained optimum. In fact, one could imagine to perform a small motion δx‖ in a
direction that is tangent to the constraint curve. In this case, the value of the constraint
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is not expected to change:

h(x? + δx‖) ' h(x?) + δxT‖∇h(x?) (B.6)

Since x? is a feasible point, it follows that h(x? + δx) ' h(x?) = 0, and thus the new
point x? + δx‖ should be feasible as well. However, using a similar argument, the value of
the objective is expected to change of a quantity δxT‖∇f(x?), which cannot be null since
∇f ∦ ∇h. This shows that there is always the possibility to locally change the value of f ,
and in particular to decrease it, which is equivalent to say that x? cannot be a minimum.
On the contrary, if ∇f has no component in the tangent space of the constraints as in
Figure B.1(b), then δxT‖∇f(x?) = 0 and thus x? is a candidate optimum point. Note that
one can also interpret the condition in terms of forces acting on a point mass. In practice
−∇f acts as a force pulling the point towards unconstrained minima, while −λ∇h as the
reaction force that is necessary to keep the mass “attached” to the constraint curve. In
this sense, a minimum corresponds to a stable static equilibrium point for the mass.

The previous explanation can be extended to inequality constraints, allowing to un-
derstand the remaining KKT conditions. First of all, note that if a point x? does not lie on
the boundary defined by an inequality constraint, then there exists a whole neighborhood
of x? which satisfies the constraint. In other words, at least locally, the constraint is said
to be inactive, and can thus be ignored. Using the analogy of gradients acting as forces
on a mass, the force produced by an inequality constraint behaves as a ground reaction,
the “ground” being the locus where the inequality turns into an equality. While the mass
is “in the air”, the ground cannot exert any reaction, and thus the associated Lagrange
multiplier must be zero. On the contrary, when the mass reaches contact with the ground,
the force activates, explaining the last of the KKT conditions. In addition, sticking to the
analogy of ground reaction forces, an active inequality constraint can exert a force only
in the direction opposite to the ground. As an example, in Figure B.1(c), the constraint
consists in keeping x over the depicted curve. At the represented point, the “objective
force” −∇f pulls the mass down, and thus the constraint can react with a force in the
direction −∇g, whose magnitude is regulated by the positive scalar µ. On the contrary,
in Figure B.1(d) the constraint requires the point to stay below the curve. To keep the
point exactly on the curve, the constraint force would require to pull the mass upward,
which requires µ < 0. However, this is not possible: the ground reaction can only push
the mass, which leads to (B.4c).
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@λ :
∇f + λ∇h = 0

∇h

∇f

(a)

∇f + λ∇h = 0

∇h

∇f

(b)

∇f + µ∇g = 0
µ > 0

∇g

∇f

(c)

∇f + µ∇g = 0
µ < 0

∇g

∇f

(d)

Figure B.1 – Pictorial explanation of the KKT conditions. The solid black line represents
an equality ((a) & (b)) or inequality (((c) & (d))) constraint. A point on the constraint
boundary is an optimum only if the gradient of the objective function can be obtained
as a linear combination of the constraint gradients. Additionally, the multipliers must be
positive in the case of inequality constraints.
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B.2 Active Set Quadratic Programming

A quadratic minimization problem is a special case of nonlinear optimization in which
the objective function is linear-quadratic in the decision vector. In addition, unless other-
wise specified, it is almost always assumed that constraints are linear. According to this
definition, the goal of Quadratic Programming is to find the solution to the following
special form of (B.1):

min
x

1
2x

TQx− rTx (B.7a)

subject to:

Cx ≤ d (B.7b)
Ax = b (B.7c)

wherein the squared matrix Q is assumed to be symmetric and positive semidefinite.
One strategy that can be employed to solve this special class of problems is the one

known as Active Set Quadratic Programming. It is an iterative algorithm which works by
taking steps within D while activating or deactivating inequality constraints as needed
and, as it will be shown in the following, it is closely related to the KTT conditions
illustrated before. In each iteration, given a valid point xi−1, the procedure mainly consists
in the following steps:

1. Determine a step direction zi.
2. Evaluate a step length αi.
3. Perform the step: xi = xi−1 + αizi.
4. Activate or deactivate constraints as needed.

B.2.1 Solution Algorithm

Determine a step direction zi.

In order to find the step direction zi, a change of variable is performed in the original
quadratic problem, introducing the variable z as in x = xi−1 + z. After substitution into
(B.7), the new (quadratic) sub-problem is obtained:

min
z

1
2z

TQz − sTi z (B.8a)

169



Appendix B – Optimization Algorithms for Model Predictive Control

subject to:

Cz ≤ ei (B.8b)
Az = 0 (B.8c)

wherein in the objective si .= r−Qxi−1 and the constant term 1
2x

T
i−1Qxi−rTxi−1 has been

discarded, since it does not change the solution. Regarding the constraints, ei .= d−Cxi,
while the fact that Axi−1 = b (xi−1 ∈ D) has been used to obtain the equality constraints.

The KKT condition of stationarity and primal feasibility for this problem can be
written altogether as:


Q CT AT

C
A



z?

µ?

λ?


=
≤
=


si

ei

0

 (B.9)

wherein trivial zeros have been removed for readability. As stated in the previous section,
inequality constraints can be divided into inactive ones (in which the inequality is strict)
and actives (which locally act as equality constraints). One can thus partition, at the
current point xi−1, the inequality constraints as:

Ca,iz = ea,i
Cna,iz < ena,i

(B.10)

Note that also the associated Lagrange multipliers are to be partitioned in a similar
way. In addition, since the constraints are all smooth, the partition will be constant at least
in a neighborhood of z = 0. Using this fact, and considering condition (B.4d) (comple-
mentary slackness), it directly follows that µ?a,i = 0, ultimately leading to a simplification
of (B.9) to:


Q CT

a,i AT

Ca,i

A



z?

µ?a

λ?

 =


s

ea,i

0

 (B.11)

Solving this linear system of equations leads to the optimal solution of the sub-problem,
with the primal optimum z? being the desired step direction zi.
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Determine a step length αi

The solution zi found at the previous step is valid only if the partition of active and
passive inequality constraints does not change. As mentioned above, it is true at least in a
neighborhood of z = 0, but the question is whether it holds also at zi. Finding an answer
to this question is equivalent to determine if there exist a value α ∈ [0, 1] such that the
set of active constraints changes at z = αzi.

To solve the current problem, each of the currently inactive constraints is written as
cTj z ≤ ej. While “moving” from the origin to zi, the current configuration z could either
approach the boundary of an inactive constraint or not. The second case corresponds to
situations in which cTj zi does not move towards the value ej, which can happen only if
cTj zi ≤ 0. In fact, by definition, ej .= dj − cTj xi. Moreover, by assumption xi is a feasible
point such that cTj xi ≤ dj, which implies 0 ≤ dj − cTj xi, i.e., ej ≥ 0. Since in this step we
are considering z = αzi, with positive α, then cTj zi ≤ 0 implies αcTj zi ≤ 0 ≤ ej.

One case has yet to be checked, i.e., when cTj zi > 0. Recall that the problem at hand
is to determine if at some point z = αzi there are any constraints that activate. By
definition, for each j such that cTj zi > 0 we must ensure αcTj zi ≤ ej, which corresponds
to α ≤ ej

cTj zi
. To satisfy this system of inequalities, it suffices to take the smallest of the

right hand sides. In addition, since α ∈ [0, 1], the desired value is finally:

αi = min
(

1,min
{

ej
cTj zi

s.t. cTj zi ≥ 0
})

(B.12)

Note however that there exist a “degenerate case”, so as to speak, in which zi = 0. In
this case, looking for a step size using the outlined procedure is pointless, and αi = 1 can
directly be selected. In practice, any value in the interval [0, 1] could be chosen. However,
using 1 allows the following step to be performed “safely” without having to treat this
case separately.

Activating or deactivating constraints

The new iterate xi can now be formed as xi = xi−1 + αizi. By construction, it is a
valid point and is such that f(xi) ≤ f(xi−1). Before continuing with the new iteration, it
is necessary to check the current active set of constraints.

If αi < 1, then the current iterate xi has reached the boundary of one of the inequality
constraints. In other words, it is has now become active, and it is necessary to include it
in the active set.
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If instead αi = 1, then the “full step” did not cause any constraint activation. In princi-
ple this could mean that the optimum has been found. However, there is still one condition
to check: according to the dual feasibility (B.4c), all Lagrange multipliers associated to
inequality constraints must be non-negative at the constrained optimum. Therefore, if any
entry of µa is negative, the associated constraint must be removed and a new iteration has
to be performed. Otherwise, if µa ≥ 0, the algorithm can terminate, returning x? = xi.

Note that, from a practical point of view, the active set must be modified only at this
step. This is necessary because, when defining the partition (B.10), one must not include
constraints that have just deactivated. Based only on their value, these constraints would
evaluate as 0 and erroneously selected as part of the active set.

B.2.2 Practical Notes

Initialization

The detailed strategy based on the active set iterates by stepping within the valid
domain D. While this is enforced by construction for the values xi with i > 0, it is crucial
to find a valid point x0 to start the algorithm. One way to do it would consist in solving
a simple linear optimization problem similar to the following:

x0 = arg min
x

0 (B.13a)

subject to

Ax = b (B.13b)
Cx ≤ d (B.13c)

If instead the user was able to provide an initial guess xu, it could be desirable to
initialize the algorithm using the following procedure:

x0 = xu + ‖z‖∞ (B.14a)

subject to

Az = 0 (B.14b)
Cz ≤ d−Cxu (B.14c)
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x0

(a)

x0 + z1

x1 = x0 + α1z1
α1 < 1

(b)

α2 < 1
x2 = x1 + α2z2

x1 + z2

(c)

µ
<

0

µ > 0

(d)

α3 = 1
x3 = x2 + z3

(e)

x3 = x?

µ
=

0

µ > 0

(f)

Figure B.2 – Different phases during the solution of a constrained quadratic optimization.
The dark regions represent the invalid domain according to two linear constraints. The
minimum value of the objective is found at the red point, which violates the constraints.
The optimization starts at the yellow point shown in (a), and moves within the valid do-
main until the constrained optimum is reached in (f). Along the process, some constraints
need to be activated (they are highlighted in red) and deactivated.
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which can be useful especially if Q is only positive semidefinite and thus admits multiple
solutions. In fact, it initializes x0 so that it is as close as possible to the user-supplied
value xu, and hopefully returns a final solution which is in turn closer to it.

Finally, if similar quadratic problems have to be solved in succession, a last option is
available, consisting in using the last active set from a previous solution to define the seed
iterate x0. In practice, by denoting as Ca,w and da,w the matrix and vector corresponding
to the last active constraints, one possibility is to use

x0 =
Ca,w

A

+ da,w
b

 (B.15)

as starting point. Of course, the value should be tested to confirm that it does in fact
correspond to a feasible point according the remaining constraints, and, if this is not the
case, one of the solutions above can be used instead.

Finally, this warm start can be used not only to evaluate an initial solution x0, but
also to initialize the active set. This can greatly reduce the computation times, e.g., when
QP is used for the solution of linear MPC problems – in which most of the constraints are
likely to remain active between successive iterations – or when the active set algorithm
is used for the solution of a series of sub-problems, which is true in the case of SQP and
Gauss-Newton methods presented later.

Efficient handling of equality constraints

Since the equality constraints (B.7c) of the original problem do not change across
subsequent iterations, it is possible to perform a simple substitution that reduces the
dimension of the sub-problems to be solved at each iteration. In particular, the decision
vector can be parameterized as:

x = xeq + ZAy (B.16)

wherein xeq is any vector that solves the equality constraints, i.e., Axeq = b, while ZA is a
basis of the kernel of A and y is a new vector of free variables. With this parameterization,
problem (B.7c) can be formulated in the lower-dimensional variable y as:

min
y

1
2y

TZT
AQZAy − (r − xeqQ)T ZAy (B.17a)
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subject to:

CZAy ≤ d−Cxeq (B.17b)

Solving the quadratic sub-problem

While detailing the overall active set algorithm, it was simply stated that at each
iteration the step zi defined by the quadratic sub-problem is given by the solution of the
following linear system:


Q CT

a,i AT

Ca,i

A



z?

µ?a

λ?

 =


s

ea,i

0

 (B.18)

without providing hints on how to solve it. In practice, there are two main possible
solutions, the first one being to perform a Cholesky decomposition with pivoting (also
known as LDLT decomposition) on the overall matrix, and to solve the problem using
that factorization.

An alternative approach is similar to the one detailed in the previous section, and
consists in firstly finding a particular solution zeq to the sub-system

Ca,i

A

 z =
ea,i

0

 (B.19)

and then to perform the change of variable defined by:

z = zeq + Zeqy s.t.
Ca,i

A

Zeq = O (B.20)

This new parameterization can then be injected in the original sub-problem and a solution
can be obtained in the lower-dimensional vector y.

B.3 Sequential Quadratic Programming

As already mentioned in Chapter 3, Sequential Quadratic Programming is an opti-
mization algorithm that can be used to solve generic non-linearly constrained nonlinear
minimization problems. The principle of this method is to locally approximate the prob-
lem at hand with a quadratic minimization, which can be solved using any QP algorithm.
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The obtained solution allows to update the current guess for the minimum point of the
problem, and the whole procedure is sequentially repeated until termination criteria are
met.

In particular, at each iteration i the value xi−1 is assumed as an approximate solution
of the problem, and, similarly to what was done in the iterations of the active set QP
algorithm, the goal is to find a step direction zi and a step length αi to produce a new
iterate in the form xi = xi−1 + αizi.

First of all, the objective function f is approximated in a neighborhood of xi−1 via a
second-order Taylor expansion as:

f(xi−1 + z) ' f(xi−1) + ∂f

∂x
z + 1

2z
T ∂

2f

∂x2z (B.21)

wherein all derivatives are evaluated at xi−1. In addition, with some abuse of notation, ∂2f
∂x2

has been used to compactly represent the hessian of f , whose correct expression should
be written as ∂

∂x

(
∂f
∂x

)T
.

On top of the quadratic approximation of the objective function, a minimization prob-
lem in the step variable z can be formulated. Constraints are approximated as well, using
a linear-affine first order expansion centered at xi−1. The i-th sub-problem thus writes as:

min
z

1
2z

T ∂
2f

∂x2z + ∂f

∂x
z (B.22a)

subject to:

∂g

∂x
z ≤ −g(xi−1) (B.22b)

∂h

∂x
z = −h(xi−1) (B.22c)

The problem is clearly quadratic in z, and, assuming the hessian to be at least positive
semidefinite, can be solved by standard QP algorithms to produce the step zi. This fact
is crucial, and might be false in general. For this reason, an approximation of the hessian
is often used [Pow78; Kra88], which is ensured to always be positive definite and also
depends only on first-order derivatives of the objective.

The second phase in the SQP algorithm consists in determining the step length αi ∈
[0, 1] to be used to update the current iterate. In practice, a cost (or merit) function is
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used to assign a score to new points. An example of such cost is given by [Han77]:

m(x) = f(x) +
∑
j

rj max(gj(x), 0) +
∑
j

sj |hj(x)| (B.23)

wherein gj and hj are the j-th inequality and equality constraint. The values rj and sj are
instead weights that penalize constraints infringement. They can be simply assigned the
value of the j-th dual variable, i.e., rj = µi and si = λi. Alternatively, [Pow78] proposes
to use weights that depend also on their past values rpastj and spastj :

rj = max
(
µj,

µj + rpastj

2

)

sj = max
(
|λj| ,

|λj|+ spastj

2

) (B.24)

The step size is finally obtained by a line search in the following form:

αi = arg min
α∈[0,1]

m(xi−1 + αzi) (B.25)

and the new iterate xi is set to xi−1 + αizi.

The procedure is repeated until one or more termination criteria are met, common
choices in this sense being to set a time limit or a maximum number of iterations. In
addition, it is possible to determine if a constrained local minimum has been attained by
checking the norm of the update step αizi or by checking the KKT conditions.

One last important remark is related to handling of linear constraints. In the formu-
lation of (B.22) it was assumed that g and h were generic, possibly but not necessarily
nonlinear, functions. However, it is more efficient to make an explicit distinction between
linear and nonlinear constraints. In fact, no linearization is needed when formulating the
quadratic sub-problem (B.22). Furthermore, and possibly more importantly, they do not
contribute to the value of the merit function. In fact, assuming that xi−1 is in the valid
domain defined by linear (in)equalities, it follows that the point xi−1 + zi will also be
valid since the QP subroutine always enforces the validity of subsequent iterates. Finally,
since domains defined by linear equalities and inequalities are convex, it follows that any
point in the form xi−1 + αzi is necessarily valid for α ∈ [0, 1], and therefore they do not
participate to (B.23).
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B.4 Iterative Gauss-Newton Method

This method can be used to solve nonlinear optimization problems in the following
special form:

min
x
‖φ(x)‖2 (B.26a)

subject to:

g(x) ≤ 0 (B.26b)
h(x) = 0 (B.26c)

wherein φ is a generic vector-valued function. The method can be viewed as a special
case of the SQP algorithm, as it will be shown below, and works by formulating the
quadratic sub-problem using a slightly different methodology. In practice, a first-order
approximation of φ around xi−1 is performed and substituted in the objective:

‖φ(xi−1 + z)‖2 '
∥∥∥∥∥φ(xi−1) + ∂φ

∂x
z

∥∥∥∥∥
2

(B.27)

After expansion, and by approximating the constraints as in the general SQP method,
the minimization sub-problem is obtained:

min
z
zT
∂φ

∂x

T ∂φ

∂x
z + 2φT ∂φ

∂x
z (B.28a)

subject to:

∂g

∂x
z ≤ −g(xi−1) (B.28b)

∂h

∂x
z = −h(xi−1) (B.28c)

To see that it indeed corresponds to a SQP method, the derivatives of the objective
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can be evaluated:

∂

∂x
‖φ‖2 = 2φT ∂φ

∂x
(B.29a)

∂2

∂x2 ‖φ‖
2 = 2∂φ

∂x

T ∂φ

∂x
+ 2

∑
j

φj
∂2φj
∂x2 (B.29b)

wherein φj represents the j-th component of φ. Comparing (B.22a) and (B.28a) reveals
that this Gauss-Newton method corresponds to a SQP one in which the hessian is ap-
proximated by discarding the second summation appearing in (B.29b). Note also that the
approximated hessian is by definition at least positive semidefinite, and thus it can be
used in alternative to the approximation method proposed in [Pow78].
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Titre : Asservissement Visuel Dynamique pour Bras Manipulateurs Rapides

Mot clés : Asservissement Visuel, Commande par Modèle Prédictif, Manipulateurs Redon-

dants

Résumé : Cette thèse traite de l’augmentation
de la productivité des robots manufacturiers,
lors de l’exécution de tâches référencées cap-
teurs. De telles tâches peuvent provenir de la
cible non positionnée de manière absolue ou
d’un environnement mal connu.

Les commandes par asservissement vi-
suel sont bien connues pour leur robustesse
et leur précision, mais nécessitent générale-
ment de longs temps d’exécution en raison de
différents facteurs. La commande est généra-
lement formulée uniquement à un niveau ciné-
matique et caractérisée par des vitesses dé-
croissantes de façon exponentielle. De plus,
l’application non linéaire de l’espace opéra-
tionnel à l’espace des capteurs peut conduire
à des chemins sous-optimaux et plus longs.

Pour augmenter les performances de com-

mande et réduire le temps nécessaire à la réa-
lisation d’une tâche, cette thèse étudie l’uti-
lisation de modèles d’interaction de second
ordre. Leur utilisation dans une commande
au niveau dynamique est étudiée et compa-
rée aux approches classiques. Ils sont en-
suite utilisés dans des schémas de commande
par modèle prédictif, permettant d’obtenir des
vitesses plus élevées tout en générant de
meilleures trajectoires. Cependant, un incon-
vénient des techniques prédictives est leur
charge de calcul. Afin d’obtenir de pallier ce
défaut, un nouveau type de commande pré-
dictive est étudié. Il conduit à une réduction du
nombre de variables impliquées dans les pro-
blèmes d’optimisation grâce à l’utilisation d’un
paramétrage des séquences d’entrée.

Title: Dynamic Visual Servoing for Fast Robotic Arms

Keywords: Visual Servoing, Model Predictive Control, Redundant Manipulators

Abstract: This thesis deals with increasing
the productivity in manufacturing robots, when
performing sensor-based tasks. Such tasks
may be coming from the target not being ab-
solutely positioned.

Visual servoing control schemes are well
known for their robustness and precision, but
generally require long execution times due to
different factors. Control laws are generally for-
mulated only at a kinematic level and charac-
terized by exponentially decreasing velocities.
Moreover, the nonlinear map from the opera-
tional space to the sensor space can lead to
sub-optimal and longer paths.

To increase control performances and re-

duce the time required to complete a task, this
thesis investigates the use of second-order in-
teraction models. Their use in dynamic feed-
back control laws is investigated and com-
pared to classical controllers. They are then
employed in Model Predictive Control (MPC)
schemes, allowing to obtain higher veloci-
ties and better sensor trajectories. However,
a drawback of MPC techniques is their com-
putational load. In order to obtain even better
results, a new type of predictive control is thus
investigated, leading to a reduced number of
variables involved in MPC optimization prob-
lems thanks to the use of a parameterization
of the control input sequences.
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