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Abstract—The navigation of autonomous vehicles around
pedestrians is a key challenge when driving in urban environ-
ments. It is essential to test the proposed navigation system
using simulation before moving to real-life implementation and
testing. Evaluating the performance of the system requires the
design of a diverse set of tests which spans the targeted working
scenarios and conditions. These tests can then undergo a process
of evaluation using a set of adapted performance metrics. This
work addresses the problem of performance evaluation for an
autonomous vehicle in a shared space with pedestrians. The
methodology for designing the test simulations is discussed.
Moreover, a group of performance metrics is proposed to evaluate
the different aspects of the navigation: the motion safety, the
quality of the generated trajectory and the comfort of the
pedestrians surrounding the vehicle. Furthermore, the success/fail
criterion for each metric is discussed. The implementation of
the proposed evaluation method is illustrated by evaluating the
performance of a pre-designed proactive navigation system using
a shared space crowd simulator under Robot Operating System
(ROS).

Index Terms—Autonomous vehicles, navigation evaluation,
shared spaces, simulation and testing

I. INTRODUCTION

AUTONOMOUS vehicles (AVs) have the ability to trans-
form urban lifestyle and reduce the carbon footprint of

cities by optimizing travel times, reducing congestion and
the overall requirement for vehicle ownership [1], [2], [3].
Furthermore, AVs are accessible equally to all demographics
(families, elderly, infirm), and they can reduce human losses
and injures caused by traffic accidents [4]. However, these
driverless vehicles cannot be fully integrated into our daily
lives without the capability to navigate safely and efficiently
around vulnerable road users. Developing a fully autonomous
vehicle navigation system that can operate around pedestrians
is an increasingly critical issue, especially with the growing ap-
pearance of the shared space concept in city planning [5]. This
growing interest is motivated by the premise of more green and
pedestrian-friendly cities where vehicles and pedestrians share
public spaces in a safe and efficient way [4], [6]. However,
building, testing and evaluating AVs navigation systems in
shared spaces with pedestrians are highly challenging tasks,
each task being a standalone multidisciplinary problem. These
steps of the development process (Build → Test → Evaluate)
are equally crucial before letting a potentially harmful system,
such as an AV, operate in proximity with humans.
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This work discusses the methodology of evaluating the
performance of a pre-designed AV navigation system in a sim-
ulated environment. The navigation system evaluation process
translates into ensuring that the system is functional, efficient
and above all safe in all possible working scenarios. However,
the evaluation in shared spaces is much more challenging
than in any other structured environment. In a more structured
environment, such as a highway, the structure of the space
itself and the strict driving rules limit the number of possible
use cases. On the contrary, the free and open nature of shared
spaces creates a wide range of possible working scenarios to
test and evaluate. Moreover, the concepts of efficiency, natural
and socially compliant behavior are much more challenging to
define in such a space.

Evaluating the navigation system in shared spaces with
pedestrians requires a set of adapted performance measures.
The metrics traditionally used for autonomous robots to val-
idate the navigation are necessary but not sufficient. The
validation process should consider the safety and comfort of
pedestrians around the navigating system, and of the passen-
gers inside the vehicle. This problem can be summarized in
selecting and/or designing a set of performance metrics that,
firstly, evaluate the system’s motion safety in proximity with
pedestrians. Secondly, the proposed set of metrics should eval-
uate the quality of the resulting AV motion in terms of traveled
distance, traveled time and even nature of the generated
trajectory. Moreover, the analysis of the AV’s trajectory should
assess the comfort and safety of the vehicle’s passengers.
Finally, the proposed metrics should be able to evaluate the
AV’s social compliance and comfort of the pedestrians around
the vehicle. This reduces the evaluation process in shared
spaces into three main categories: motion safety, trajectory
quality, and pedestrian comfort. In this work, a set of adapted
metrics is proposed to evaluate the performance of an AV
around pedestrians in a simulated environment using only the
spatio-temporal information for both the pedestrian and the
AV. The proposed evaluation process and the designed set
of metrics are applied to test the performance of a proactive
navigation system using a crowd-based simulator under ROS.

The structure of this paper is as follows: Section II gives
a background on the methods used in the literature for per-
formance evaluation in autonomous navigation applications.
Section III discusses the process of designing the set of
test simulations. After establishing the test set, Section IV
proceeds to the performance metrics required to evaluate the
different aspects of the AV’s performance around pedestrians.
Furthermore, this section presents how each metric can be
implemented and its evaluation criterion. The navigation sys-
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tem under evaluation along with the simulation environment
are presented in Section V. Finally, the implementation of
the suggested evaluation process and the analysis of the main
simulation results are discussed in Section VI.

II. RELATED WORK

The problem of AV navigation around pedestrians has only
started getting researchers attention in recent years. Therefore,
not many works in the literature arrived at the performance
validation step of an AV system around pedestrians. However,
works in robotics and transportation engineering have targeted
the issue of evaluating navigation systems around humans. To
conduct a thorough evaluation of the system, a combination of
different metrics is needed, quantifying different aspects of the
system. Therefore, we can classify the navigation performance
metrics into three main categories: motion safety, trajectory
quality and pedestrian comfort.

The Motion Safety of a navigation system is mostly evalu-
ated by reporting the collision rate, i.e. how many pedestrians
who interacted with the vehicle had an accident [7]. The near
missed rate may be used instead of the collision rate, by
counting the occurrences of very close approaches between
pedestrians and the vehicle [8]. A more continuous metric like
the minimum and mean distance between pedestrians and the
AV can be used [9]. Other research qualifies the motion safety
by analyzing the severity of potential collisions. This can be
measured by the distance or the temporal proximity to the
collision when the evasive action starts. For example, the Time
To Collision (TTC) before the vehicle starts reacting [10], [11],
[12] or the Post Encroachment Time (PET) corresponding to
the TTC at the minimal approach distance [11], [12] have been
used. The speed of the vehicle before it starts reacting can also
be used, as proposed by [11].

The Trajectory Quality can be defined by the smoothness
of the trajectory produced by the vehicle along the navigation,
as well as its efficiency. Moreover, the trajectory quality
can also translate to measuring the level of comfort of any
passengers along the AV’s trajectory.

A smooth trajectory limits abrupt changes in direction and
speed. Trajectory smoothness has been measured by the total
AV acceleration along its trajectory in [8], by the number of
AV accelerations and decelerations in [7], or by the intensity of
acceleration and decceleration in [10]. However, these metrics
are insufficient to evaluate navigation in an open space, where
the AV can adapt its steering in addition to its speed. In
order to more thoroughly evaluate the trajectory smoothness,
a trajectory stability metric based on the turning angle, the
path’s length and duration, as well as the speed of the AV was
proposed by [13]. A metric used for mobile robots, based on
the bending energy and the smoothness of curvature of the
robot’s trajectory has also been reported in [9].

The most efficient, i.e. optimal, trajectory is a straight line
from the starting point to the goal, of minimal length, covered
in minimal time. To measure a trajectory’s efficiency, the
trajectory length or the travel time to reach the destination
can be used [9], as in [7] and [8]. [7] also used a success rate
metric, reporting the percentage of simulations where the AV

reaches its goal within an arbitrary time limit. However, in
order to obtain comparable measures for different trajectories,
it is preferable to use relative distances and times, as in [11].
The AV’s travelled trajectory can be compared to its optimal
trajectory, in order to obtain the delay and the excess distance
travelled.

Although passenger comfort is an important factor in the
acceptance and adoption of AVs, only a few studies have
addressed this point. To determine passenger comfort, studies
usually collect data through a survey of the passengers in the
vehicle. In simulation, only data from the vehicle trajectory
can be used to estimate passenger comfort. A metric including
the lateral acceleration of the AV can for example be used as
an indicator of passenger comfort, as shown by [14].

In addition to safety, the Pedestrian Comfort around the
vehicle is an important factor in the performance evaluation in
shared spaces. The conflict duration has been used as a comfort
metric by [11], based on the idea that the longer the conflict
with the vehicle, the less comfortable the interaction is for the
pedestrian. The minimal approach distance between the pedes-
trian and the vehicle can also be used, as in [10] and [11]. A
pedestrian discomfort metric has been proposed by [15]. This
metric reflects the average degree and frequency of pedestrian
velocity changes, due to avoidance maneuvers. Similarly, vari-
ations in walking speed and in pedestrian trajectory have been
used by [10], [11] and [12] to measure pedestrian comfort.
These metrics assume that changes in walking behavior to
avoid the car require effort from pedestrians, which may cause
discomfort. Following a similar idea, [10] has proposed using
the severity and complexity of the evasive action performed by
the pedestrian. The severity is the degree of speed change and
the complexity is related to whether the pedestrian performs
a change in speed, direction or a combination of both.

III. TEST CASES DESIGN FOR PERFORMANCE
VALIDATION

The first step of the performance evaluation is the process
of designing the tests themselves. The interpretation of the
test results is only valid in the context of the considered
test cases. Therefore, the designed test set should be diverse,
including all the possible user cases and scenarios in order to
be sufficient to validate the performance. Firstly, we start by
identifying the set of testing environments E = {ek}1≤k≤K .
Each test environment ek is defined by the static map of
the testing space that includes the grids occupied by static
obstacles, the free space and the semantics associated with
the occupied space. These semantics (exit/entry points, walls,
etc.) should drive the movement of the agents in the space.
Therefore, they can be used to evaluate the trajectory and
to estimate if it is socially acceptable and if it followed
the rules associated with the specific semantics. Secondly,
a set of test scenarios S = {sj}1≤j≤J is defined within
each environment. Each test scenario sj is defined by the
configuration of the interaction between the agents in the space
(pedestrians-vehicle and pedestrians-pedestrians). This is set
by defining the start and goal point of each agent in the space.

In each test scenario, a set of variable test parameters
should be identified. This set of parameters P = {pm}1≤m≤M
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represents the different testing conditions that can occur in the
identified use cases of the system. This can include the space
density or the speed and acceleration limits for example. Each
of these parameters is assigned a range of possible values Fm

identified based on experience and prior knowledge:

P = {pm : pm ∈ Fm, Fm ∈ R}1≤m≤M (1)

Afterwards a discrete set of test values is selected for each
parameter within its range of possible values. Let Lm be the
number of test values selected for the parameter pm, then the
set of test parameters is written as:

PT = {pm : pm ∈ {xm1, ..., xmLm
} ⊆ Fm}1≤m≤M (2)

For example, if the parameter of interest is the crowd density
in the space, the possible range of values can be assigned based
on the observations in highly dense crowds, which can reach a
limit of 9pedestrian/m2 in some dense gatherings [16]. The
discrete set of test values can be chosen closer to the range of
the expected normal crowd density ([0, 0.5] pedestrian/m2)
[17]. The set of test configurations C is the union of all
possible combinations of the test parameters values, which
will have a total of NC configurations:

NC =

M∏
m=1

Lm (3)

Finally, each test simulation with a parameter configuration
ci ∈ C is repeated for i times to ensure the convergence of
the performance. Therefore, the total number of simulations
required to validate the performance in the context of the
designed tests is equal to:

Ntot = i×K × J ×NC (4)

IV. PERFORMANCE METRICS FOR NAVIGATION
EVALUATION IN SHARED SPACES

A. Motion Safety

The main indices used to validate the motion safety around
pedestrians are derived from analyzing the collisions occurring
in the simulations. A collision is detected in the simulation
when an overlap occurs between the footprints of both the
pedestrian and the vehicle. The footprint of a pedestrian in
the 2D plane is considered circular with a radius Rp whereas
the footprint of the rectangular AV is approximated with the
outer Löwner-John ellipse of the rectangle [18].

The Collision Rate is an important factor in estimating the
safety of the navigation policy. A near-zero collision rate is
required to validate the navigation. The collision rate in a set
of simulations is calculated as:

Collision Rate =

∑
i Number Of Collisions in simulation i

Number Of Simulations
(5)

However, when looking at the collision rate in a simulated
world it is important to evaluate if this collision could actually
occur in the real world. A number of non-cooperative purpose-
ful pedestrian collisions can be detected in the simulator that
resulted from a behavior on the pedestrian side and did not
result from an error on the vehicle’s side. Therefore, the rate

of such collisions does not evaluate the vehicle’s navigation
scheme. An example is shown in Figure 1a where the vehicle
is very slow and a pedestrian walks into the side of the vehicle.
This case is detected as a collision in the simulator whereas
in real-life this is highly unlikely to happen. Such a situation
would mean, for example, that a distracted person bumped
into a slow vehicle which is not considered as an error in the
navigation algorithm. An example of a Realistic Collision is
shown in Figure 1b. To assess if a collision is realistic or not,
a Velocity Obstacle based test is performed.

(a) (b)

Fig. 1: Two collisions detected at time tC and the state of
the AV and the pedestrian in the previous tCH period: (a)
Non-cooperative Purposeful Pedestrian Collision, (b) Realistic
Collision

The Velocity Obstacle (VO) is a well-known method in
robotics used for motion planning. The method calculates
the set of robot velocities that can lead to a collision with
another moving obstacle, or what is referred to as the collision
cone (Figure 2b). When planning a trajectory, the velocity
command is selected outside the collision cone for obstacle
avoidance [19]. The idea of the VO-based Collision Analysis
is to examine the AV’s velocity commands in a time period
preceding the collision with a pedestrian. If the AV’s velocity
belongs to the pedestrian’s collision cone, then the collision is
considered ”Realistic”. Otherwise, the collision is considered
”Non-cooperative Purposeful Pedestrian Collision” as the AV
is moving away from the pedestrian and the pedestrian still
collided with the AV. One main limitation of the VO method
is that it assumes a circular shape in the 2D plane for both of
the colliding objects. However, assuming a circular footprint
for the rectangular AV would result in large errors. Therefore,
the footprint of the vehicle is approximated with a minimum
number of enclosing circles (Figure 2a) [20].

Algorithm 1 shows how the approximated footprint Cfp of
the AV with a pose (xo(t), yo(t), θV (t)) is obtained in the
local frame of the AV then in the global frame using the
transformation matrix RG

L :

RG
L (t) =

 cos(θV (t)) − sin(θV (t)) xo(t)
sin(θV (t)) cos(θV (t)) yo(t)

0 0 1

 (6)

Once the set of footprint circles is obtained, the VO-based
analysis is applied to each circle. The collision is realistic if
any of the circles yields a positive result (Algorithm 2).

B. Trajectory Quality
Let Tj = {(xj , yj , tj) : j ∈ [0, ..,M ]} be the overall

trajectory of the AV during the simulation. The quality of the
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(a) (b)

Fig. 2: (a) Circular approximation of the AV footprint (Algo-
rithm 1), (b) VO method applied to one part of the AV footprint
with radius Ro, and a pedestrian with circular footprint of a
center P and radius RP

Algorithm 1 AV Footprint Circular Approximation

Input: AV’s pose: XV (t) = (xo(t), yo(t)), θV (t), AV’s di-
mensions: Length L, Width W

Output: AV’s footprint Cfp(t) = ∪i∈N+
(ci(t), Ri) ∈ R2 ×

R+

Set: LT ← L, i← 0
while LT > W do

cli ← (LT−W
2 , 0) ▷ Frontal circle (AV frame)

cli+1 ← (−LT−W
2 , 0) ▷ Rear circle (AV frame)

i← i+ 2
LT ← LT −W

end while
ci ← (xo(t), yo(t)) ▷ Middle circle (AV frame)
Cfp ← {(RG

L (t)c
l
j(t),

√
2
2 W ) : 0 ≤ j ≤ i} ▷ Transform to

global frame

AV’s trajectory refers to its cost (smoothness), its efficiency,
and to the comfort of the AV’s passengers along this trajectory.

1) Cost: The cost of the trajectory is estimated using two
metrics: the Path Cost which is based on the maneuvers along
a trajectory, and the Dynamic Cost which is a speed-based
trajectory cost estimate.

The path cost measures the smoothness of the path by
evaluating the average tangent of the path during the vehicle’s
maneuvers. This measure is defined using the formulas in [21],
where we used a tangent variation cost rather than the angle
variation cost defined in [21]. On the other hand, the dynamic
cost measures the average instantaneous variation of the speed
from the preferred driving speed vpref . This preferred speed
is equal to the driving speed in an obstacle-free space, which
corresponds to the maximum allowed speed in a shared space
vpref = vmax. The dynamic cost is defined based on the
energy consumption impact of this speed change along the
trajectory, similar to the cost adapted in [22].

The equivalent path cost EP , and dynamic cost ET are

Algorithm 2 VO-Based Collision Analysis

Input: Time step: tk, Collision time horizon: tCH , Collision
time: tC
AV/pedestrian pose and velocity respectively: {XV (t),
VV (t), XP (t), VP (t)}: t ∈ [tC − tCH , tC ], AV’s footprint:
Cfp, Pedestrian’s footprint radius: Rp

Output: Collision Type: IsReal ∈ {0, 1}

for (ci(t), Ri) ∈ Cfp do ▷ AV footprint circles
ts ← tC − tCH

Center ← ci(ts)−XP (ts)
DC ← D(Center,Ri +Rp) ▷ Collision disk
while ts ≤ tC do

if ts ∗ (VP (ts)− VV (ts)) ∈ DC then
return 1

end if
ts ← ts + tk

end while
end for
return 0

evaluated as:

EP =
1

M

M∑
j=1

(
yj − yj−1

xj − xj−1

)2

(7)

ET =
1

M

M∑
j=0

(
vpref − v(j)

vpref

)2

(8)

v(j) =
√
ẋ2(j) + ẏ2(j) : vpref = max

j≤M
v(j) (9)

When evaluated in the path’s Frenet frame fixed at the AV’s
starting point, EP ∈ R+ increases when a path contains more
frequent and sharp maneuvers (EP = 0 for a straight path).
Figure 3 shows some examples for the path cost corresponding
to a U-turn path with a Quadratic function, and a lane change
path with a Quintic function [23]. The limit accepted value for
EP is selected based on the working scenario. For example, in
the case of uni-directional road driving where the vehicle is not
supposed to do any 180o turns, the limit value can be selected
around 0.5 to ensure a low-cost lane change. On the other
hand, this limit is set higher in scenarios where the vehicle is
supposed to go on roundabouts or make u-turns. The dynamic
cost ET ∈ [0, 1] increases when the trajectory consists of large
instantaneous velocity variations and ET = 0 for an optimal
constant maximum velocity trajectory (v = vpref ). Therefore,
smaller values of the dynamic cost ET → 0 is desired from
a trajectory quality point of view. However, it is unlikely to
operate with the maximum velocity while interacting with the
pedestrians.

2) Efficiency: The efficiency of the trajectory can be ex-
pressed in terms of distance or time [22]. Firstly, the Relative
Traveled Distance (CL), also called sinuosity, measures the
length of the traveled path relative to the shortest distance path
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Fig. 3: Examples of path cost for U-turn and lane change

between the start and goal points:

CL =

∑M
i=0 D(Xi+1, Xi)

D(XM , X0)
(10)

D(X2, X1) =
√

(x2 − x1)2 + (y2 − y1)2 (11)

Secondly, the Relative Traveled Time (TTG) measures the
traveled time relative to the time to reach the goal at the
average speed:

TTG =
(tM − t0)× vavg

D(XM , X0)
(12)

In efficient trajectories, the length of the traveled distance
is close to the shortest path distance. This corresponds to
the optimal path between the start point and the goal, in
an obstacle free case CL → 1. Moreover, more efficient
trajectories do not introduce large time delays, i.e. TTG ≤ 1.

3) Passengers’ Comfort: The AV’s trajectory can further
entail information on the comfort of the AV passengers, which
is an important part of the trajectory quality evaluation. A
recent case study shows that passengers comfort is mainly
related to their experience of the centripetal force [14]. Passen-
gers experienced more discomfort when passing small radius
curves with high speed. Therefore, the average Centripetal
Acceleration is used as a passengers’ comfort measure:

aC =
1

M

M∑
i=0

v2(i)κ(i) (13)

where κ(i) is the curvature of the path at point i. The results of
the study in [14] recommends different aC values depending
on the driving speed range. For the case of shared space (speed
≤ 20 km/h), aC ≤ 1 m/s2 is recommended for a very com-
fortable drive and aC ≤ 1.75 m/s2 for an acceptable comfort
level. Finally, similar to measuring the passenger comfort by
the centripetal acceleration, the longitudinal acceleration and
even the longitudinal jerk can have a role in the passenger
comfort as well. Which is a point worth inspecting in future
studies to examine the dependency of the comfort index on
both the longitudinal and the lateral dynamics.

C. Pedestrian Comfort

The first metric used to evaluate the pedestrian comfort
during the interaction with the AV is the Discomfort In-
dex Īucf suggested in [15]. This index reflects the aver-
age degree and frequency of the linear velocity change a
pedestrian experienced during the navigation. However, this
index only considers variations in walking speed, and not
variations in direction. The evaluation of pedestrian comfort

was therefore completed with an additional Directional Dis-
comfort Index Īucfθ . In a simulation defined at times {tj :
j ∈ [0, ..,M ]}, the two discomfort indices are evaluated as:

Īucf =
ȳi
h̄i
× 100% (14) Īucfθ =

z̄i
l̄i
× 100% (15)

with:

h̄i =
1

M

M∑
j=0

v2i (j) (16) l̄i =
1

M

M∑
j=0

θ2i (j) (17)

ȳi =
1

M

M∑
j=0

(vi(j)− ḡi)
2

(18)

z̄i =
1

M

M∑
j=0

(
θi(j)− f̄i

)2
(19)

ḡi =
1

M

M∑
j=0

vi(j) (20) f̄i =
1

M

M∑
j=0

θi(j) (21)

where h̄i and l̄i are the mean square velocity and the mean
square orientation of agent i respectively. ȳi and z̄i are the
average of the squares of the deviations from the mean speed
and the average of the squares of the deviations from the
mean orientation of agent i respectively. Finally, ḡi and f̄i
are the average velocity and average orientation of agent i
over the simulation period. When Īucf or Īucfθ is equal to
0%, this indicates that the pedestrian walks at his average
speed or orientation throughout the simulation, which is very
comfortable. On the contrary, higher values of one of these
indices indicate higher level of discomfort.

The average Īucf and Īucfθ are computed for pedestrians
who interacted with the AV and for pedestrians who did not
interact with the AV. A pedestrian has interacted with the AV if
the AV was perceived by the pedestrian during the simulation,
i.e. the AV was within the perception zone of 220° up to 10
metres or 360° up to 3.3 metres around the pedestrian [24].
This distinction helps to overcome differences in pedestrian
discomfort due to the context (e.g. crowd density) and to
identify discomfort specifically related the interactions with
the AV. In more comfortable trajectories, the AV does not
cause any change in pedestrians’ walking speed or direction,
i.e. the part of discomfort related to the AV is close to 0.

V. THE NAVIGATION SYSTEM UNDER EVALUATION & THE
SIMULATION ENVIRONMENT

A. The proactive navigation system

The proactive navigation system under study is a local nav-
igation system that works in combination with a higher level
path planner by locally modifying the global path based on the
perceived state of the dynamic space and the local interactions
with the nearby pedestrians. The system relies on the concept
of cooperation between the vehicle and the pedestrians. The
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concept is based on observed human behavior where individu-
als concurrently assist other individuals or robots and comply
with their trajectories when navigating a shared space [25].
Pedestrians can adopt similar cooperative behaviors around
vehicles to ensure safety or to facilitate the movement of this
bigger sized robot. The proactive navigation system starts by
quantitatively estimating the pedestrian’s cooperation during
an interaction with the vehicle [26]. In the proposed pedestrian
behavioral model, the cooperation of a pedestrian with the
vehicle is defined as the tendency of the pedestrian to modify
and adapt its optimal trajectory (both direction and speed) to
facilitate the movement of the vehicle in the space. Based
on this cooperation estimation the system drives the vehicle
proactively by invoking more pedestrian cooperation while
ensuring the safety of the surrounding agents and maintaining
a socially compliant vehicle trajectory.

Pedestrian cooperation is modeled with a time-varying pa-
rameter called the cooperation factor CF (t) ∈ [0, 1] (CF = 1
being the most cooperative). This factor varies for each agent
based on the behavior of the vehicle and other surrounding
pedestrians, as well as the agents own goal and state. This
cooperation estimation is then used to predict a short term
future trajectory for each pedestrian in the space, based on the
model proposed in [26]. The outputs of the behavioral model
are used to locally modify a global path provided by an A*
global planner based on ROS navigation stack as shown in
Figure 4.

Firstly, the longitudinal velocity is controlled using the
proactive controller proposed in [27]. This proactive controller
computes the longitudinal velocity using a cost function to
maximize the pedestrians safety and cooperation factors. Sec-
ondly, the proactive dynamic channel method proposed in [28]
is used to obtain the local steering control. The method finds
natural steering in the unstructured and open shared space by
imposing an imagined structure of the space and dividing it
into a set of navigation channels. This new imagined structure
resembles a road where each channel is similar to a lane.
The optimal navigation channel is selected based on a fuzzy
logic model and the transition between channels is performed
similarly to a lane change on a highway, which ensures that
a natural driving pattern is produced. The two parts of the
proactive local navigation system overcome the shortcomings
of reactive controllers and allow the AV to navigate pedestrian
populated environments while avoiding the freezing robot
problem in dense spaces.

B. SPACiSS Simulator
The SPACiSS simulator [29] is based on the pedestrian

simulator Pedsim ros [30] that has been adapted in order
to simulate pedestrians in shared spaces with an AV. The
pedestrian model in SPACiSS is built on the Social Force
Model [31], [32]. This model uses physical forces to describe
the internal motivations of a pedestrian to move towards its
destination and to avoid other pedestrians and obstacles, and
the sum of the forces drives the pedestrian motion in the
simulation.

The simulator integrates social models of pedestrian be-
havior in shared spaces [33]. The visual perception and

Fig. 4: Overview of the proactive navigation system and the
simulator under ROS

attention of pedestrians are modelled, as well as the concept
of personal space. It integrates social groups of pedestrians,
such as friends, couples, coworkers and families [34], as
well as interactions with a car in shared spaces. In shared
spaces, pedestrian–AV interactions are diverse. In a front or
rear interaction with a car, pedestrians slow down and deviate
from their trajectory to avoid the car’s path, while in a lateral
interaction, pedestrians may accelerate to cross in front of the
AV, slow down or stop to let it pass, or hesitate to cross and
step back. Pedestrians in social groups avoid the car together,
unless a collision with the AV is imminent. Pedestrian–vehicle
interactions are modelled in SPACiSS by combining the SFM
with a newly defined decision model that integrates these
empirical observations [24]. In this model, the pedestrian’s
decision depends on the time to conflict with the AV, on
their interaction angle and on their expected crossing order
at the conflict point. Depending on these parameters, simu-
lated pedestrians decide to run, stop, step back or turn. The
pedestrian’s decision thus depends on his individual properties
and on the vehicle’s properties (position, speed, orientation and
size).

The pedestrian model parameters have been calibrated on
the CITR dataset [35] that contains 16 scenarios of real-
world pedestrians-car interaction. The scenarios have been
reproduced in simulation and the pedestrian model parameters
have been calibrated using a 3-block cross-validation and an
optimization algorithm that minimize the distance between
simulated and real trajectories [24]. The model has then
been validated by comparing the simulated trajectories with
ground truth trajectories from several datasets [24]. As the
simulated pedestrians have validated behaviors, we assume
that the simulator is suitable for preliminary tests of navigation
systems.

A Renault Zoé car was used in the simulator using a realistic
car chassis and footprint along with the kinematic bicycle
model. This allows integrating an external navigation system
under ROS to control the car, as shown in Figure 4. The
AV model perceives in all directions, i.e. 360 degrees, for
a distance of 10 meters. The simulator provides pedestrians’
information in the AV perception zone as point clouds, as well
as vehicle odometry information, to simulate the AV sensors.
As a result, the navigation system can use the simulated
pedestrian information in its local planning, and the simulated
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pedestrians dynamically react to the AV movements.
In order to test the navigation system, SPACiSS can be

used to build realistic shared space scenes and simulate a
large variety of pedestrian–vehicle interactions. The simulation
model is stochastic, so each scenario can be simulated multiple
times, to assess the robustness of the navigation system in
a given environment. To perform such tests efficiently, the
simulator is designed so that several simulations can be
executed in parallel. Finally, all simulation data are recorded
and used for real-time visualization of the scene. Once the
simulation is complete, agents’ trajectories can be analyzed to
evaluate the performance of the navigation system.

VI. SIMULATION RESULTS

A. Designed Test Cases

To test and validate the proactive navigation around pedes-
trians, we selected one test environment E = {e1} (K = 1)
that represents a shared space with no specifically assigned
pedestrian or vehicle areas. This means that the space does
not contain any roads, sidewalks, pedestrian crossings, traffic
signals, etc. The space is bounded by two side barriers which
can represent a parking lot or a shared business area like the
shared space in Exhibition Road in London for example.

The navigation is tested in environment e1 in J = 7
interaction scenarios: Frontal Crossing (F), Back Crossing
(B), Frontal-Back Crossing (F-B), Lateral Crossing (Lat), Bi-
Lateral Crossing (Lat-Bi), 45o Uni-Directional Crossing (45o),
45o Bi-Directional Crossing (45o-Bi). The AV’s goal in all sce-
narios is to cross the shared space safely and efficiently, while
ensuring pedestrians’ and passengers’ comfort. Examples of
four interaction scenarios are shown in Figure 5.

(a) Frontal (b) Back (c) Bi-Lateral (d) 45o (Bi)

Fig. 5: Pedestrian-vehicle interaction scenarios

The variable test parameter set includes the space density
and the space sparsity (i.e. the distribution of the pedestrians
in the space). The density of the space D is measured as the
average number of pedestrians per m2. The space sparsity is
estimated with a Gini Index that measures the distribution of
pedestrians among the interaction space partitions [36].

Let a simulation be defined at times {tj : j ∈ [0, ..,M ]},
A the area of the shared space in m2 and N(j) be the number
of pedestrians in the space at time tj . Then, the average
pedestrian density and sparsity are measured as follows:

D =
1

M

M∑
j=0

N(j)

A
(pedestrian/m2) (22)

GI =
1

M

M∑
j=0

N(j)∑
i=1

|1−Ni(j)|
N(j) + 1

× 100% (23)

where the interaction space is first divided into a grid of N(j)
equal cells. Then, Ni is the number of pedestrians in a cell i
of the grid. For example, if the distribution of the pedestrians
in the space is homogeneous, then there is one pedestrian in
each of the equal grid cells, yielding GI = 0%. The rest of
the parameters that are required to define the scenario are set
to a constant value. The parameter values and the range of
values for the variable test parameters are as follows:

• Constants: AV max speed 5.5 m/s, Pedestrian max speed
6.5 m/s,

• Variables: Pedestrian density D ∈ [0.003, 0.56] ped/m2,
Pedestrian distribution (Sparsity) GI ∈ [6, 34]%.

Every simulation is run 20 times with 8 different values for
the pair (D, GI) resulting in 2240 test simulations. Figure 6
shows examples of the resulting trajectories in the XY-Plane
for the pedestrians and the AV in some of the testing scenarios.

(a) Frontal (b) Frontal-Back

(c) Lateral (d) 45o Bi-directional

Fig. 6: Examples of the resulting trajectories

B. Motion Safety

The collision rate and the analysis of the plausibility of each
collision is performed in the test simulations set. The realistic
collisions caused by the navigation system were analyzed.
This was done after discarding the non-cooperative purposeful
pedestrian collisions detected in the test simulations set. Table
I shows the detected collision rate in each interaction scenario.

Type F B F-B Lat Lat-Bi 45o 45o-Bi
CR 1e−5 0.16 0.13 0.025 0.2 0.62 0.32

TABLE I: Collision rate values across the testing scenarios

A higher rate of realistic collisions was detected in the
interactions including back crossing with pedestrians (B and
F-B). This can be a result of not accounting for the pedestrian
perception range in the navigation system [27]. The behavior
of the pedestrians in a back crossing scenario was assumed to
be similar to their behavior in frontal crossing. A higher colli-
sion rate was also detected in the 45o crossing scenarios (both
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uni-directional and bi-directional). This can be a limitation in
the pedestrian behavior prediction model used in the system
and which did not include such an interaction scenario [26].
Overall, in the interaction scenarios an average of 0.2 realistic
collisions per simulation was detected.

As a result of the motion safety test, the system requires
further development to avoid the percentage of detected col-
lisions. It is worth noting that the lowest collision rate was
detected in the case of frontal and lateral crossing, which
are the scenarios used to establish the pedestrian behavioral
model used in the system under evaluation [26]. Therefore,
the performance might be significantly improved by adapting
the pedestrian death cooperation model to account for all the
different interaction scenarios. Moreover, the previous system
might be implemented in combination with an emergency
braking system to take over in critical situations.

C. Trajectory Quality and Efficiency

The vehicle trajectory in each simulation was qualified by
analyzing its path and dynamic costs, the efficiency in terms of
the traveled distance and the traveled time, and the passengers
comfort using the centripetal acceleration. Table II shows the
corresponding performance metric values to the set of testing
simulations across all scenarios, density and sparsity levels.

Metric Mean Max 75% Std. Dev. Success Criterion

EP 0.14 1.10 0.16 0.06 ≤ 0.5

ET 0.13 0.23 0.17 0.05 → 0

CL 1.12 1.36 1.13 0.02 → 1

TTG 0.55 2.14 0.78 0.35 ≤ 1

aC 0.17 1.29 0.24 0.17 ≤ 1.75

TABLE II: Trajectory quality statistical results

Firstly, the navigation system resulted in low cost both in
terms of the manoeuvring (path cost) and the linear velocity.
The values of the dynamic cost ET are all within the desired
low limit to maintain a smooth linear velocity variation.
Although the maximum value of the path cost EP is a little
higher than the desired limit, most of the values fall within
a very low acceptable cost range. Secondly, the resulting
trajectories are efficient in terms of the traveled distance. We
can notice that CL has values close to 1, which means that the
vehicle did not deviate very far from its optimal path. For the
efficiency in terms of the traveled time, we can see that most
of the test simulations did not have large time delays. Only
a small portion had larger time delays with TTG reaching
over double the max desired value. Finally, the values of
the centripetal acceleration of the vehicle along its traveled
trajectory was overall within the desired range to maintain a
comfortable ride for any potential passengers.

D. Pedestrian Comfort and Social Compliance

Figure 7 shows the average discomfort index Īucf for pedes-
trians in each scenario. Mean values and standard deviations
are presented for pedestrians who interacted and for those who
did not interact with the AV.

Fig. 7: Average discomfort index Īucf for interacting (green)
and non-interacting (blue) pedestrians.

The pedestrians who did not interact with the AV have
an average Īucf ∈ [1.9; 6.1]% depending on the scenario,
as shown in blue in Figure 7. Pedestrians who did interact
with the AV have an average Īucf ∈ [1.6; 7.6]% depending
on the scenario. The average discomfort in case of interaction
with the AV is very close to the average discomfort without
interaction with the AV.

Figure 8 shows the average directional discomfort index
Īucfθ for pedestrians in each scenario, for all parameter
combinations. Pedestrians who did not interact with the AV
have an average Īucfθ ∈ [5.4 ; 89.6]% depending on the
scenario, while pedestrians who interacted with the AV have
an Īucfθ ∈ [8.6 ; 86.3]%. Again, the average discomfort in
case of interaction with the AV is very close to the average
discomfort without interaction with the AV in all scenarios.

Fig. 8: Average directional discomfort index Īucfθ for inter-
acting (green) and non-interacting (blue) pedestrians.

With both metrics, pedestrian comfort varies according
to the interaction scenario. In frontal and back interactions,
pedestrians have a low Īucf , while in 45° and lateral in-
teractions, the average Īucf is higher. The Īucf index only
considers pedestrians’ speed adaptations and not direction
adaptations. Pedestrians mainly adapt their direction in frontal
and back interactions with vehicles, and their speed in lateral
interactions. A higher Īucf in lateral interactions is therefore
expected. Accordingly, in frontal, back and 45° interactions,
pedestrians have a higher Īucfθ than in lateral interactions.
Lateral interactions are more comfortable for pedestrians in
terms of variations in their walking direction as these interac-
tions require little directional adaptation from the pedestrian.
These results confirm the importance of using both metrics to
properly assess pedestrian comfort in various scenarios.

The statistical results for the discomfort related to the AV
(i.e. the difference of discomfort between interacting pedes-
trians and non-interacting pedestrians) are shown in Table III.

Note that in some scenarios, especially with Īucfθ , pedes-
trians who interacted with the AV have even slightly lower
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Metric Mean Max 75% Std. Dev. Success
Criterion

Īint
ucf - Īnonint

ucf % 0.26 1.60 0.01 0.01 → 0

Īint
ucfθ

- Īnonint
ucfθ

% -0.92 17.46 0.01 0.09 → 0

TABLE III: Pedestrian comfort statistical results

discomfort than those who did not interact. This is due to the
fact that sometimes the pedestrians stayed interacting with the
AV for a long time, e.g. waiting for the AV to pass. They
therefore had less discomfort due to interactions with other
pedestrians than those who did not interact with the AV.

Overall, the extra discomfort caused by the AV is very low,
with values close to 0. The AV trajectory is then considered
as comfortable for pedestrians.

VII. CONCLUSION

AV navigation in shared spaces introduces close interactions
with pedestrians. Therefore, it is essential to test and evaluate
the navigation system using simulation before allowing the AV
to operate around pedestrians. This leads to an imperative need
for an evaluation methodology. In this paper we formalized
the evaluation process for an AV navigation system in a
simulated shared space. The process starts with the design of
the test set to include different targeted scenarios and working
conditions. After running a sufficient number of simulated
tests, the evaluation of the performance is done based on the
spatio-temporal information for the recorded pedestrians and
AV trajectories. We divided performance evaluation into three
main categories: the AV’s motion safety, the quality of the
generated AV’s trajectory and the comfort of the pedestrians
around the AV during an interaction. A set of adapted metrics
along with the evaluation criteria was introduced for each
category.

Firstly, evaluating the motion safety using the detected
collision rate allowed us to identify the challenging scenarios
for the navigation system. Secondly, the AV’s trajectory was
evaluated using the suggested metrics based on the traveled
distance, traveled time and the generated path and trajectory
costs. While it is convenient to use the trajectory information
to evaluate its quality, it is less straightforward to evaluate
the comfort of the pedestrians or the passengers in simulation.
We suggested evaluating the comfort by using the concept
of interacting and non-interacting pedestrians with the AV.
The discomfort levels for each type of pedestrians is evalu-
ated. Then, the system was evaluated as comfortable if the
interacting and not-interacting pedestrians had similar average
levels of discomfort during the simulation. Meaning that the
navigation system maintained the comfort of the pedestrians
while interacting with them. The passengers’ comfort, on the
other hand, was evaluated based on the centripetal acceleration
as part of the trajectory quality evaluation.

The suggested evaluation process was used to study the
performance of a pre-designed proactive navigation system
using a crowd simulator under ROS. We found that the
proactive system produced good-quality trajectories that main-
tained an acceptable level of comfort for both pedestrians and

passengers. The system’s safety can be improved by including
more diverse interaction scenarios in the pedestrian behavioral
model used in the navigation framework, or by integrating an
emergency braking system in the framework.

Furthermore, the proposed metrics are relevant for the
evaluation of a navigation system in normal scenes. However,
the simulator and evaluation metrics would need to be fitted
if the case study is a mass-panic, emergency evacuation, or
stampede situation. In such scenes, pedestrians may have
very different behaviour (trying to escape, acting irrationally,
ignoring their environment, or being unable to move) and the
crowd may reach a very high density.

Moreover, the work was focused on evaluating the perfor-
mance of the AV around pedestrians and without the presence
of other vehicles on the scene. In future works, the evaluation
method can be generalized to a multi-vehicle scene. This
requires a re-calibration of the metrics and a re-formulation
to isolate the effect of the ego AV from the effect of other
vehicles on pedestrians.

Finally, future works can also consider using the evaluation
method for different simulated scenarios using multiple avail-
able simulators (such as [37] and [38]). The results of the
evaluation method in simulation can also be compared with
the results of real-life scenarios evaluation.
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