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Abstract— Collision mitigation is an important element in
motion planning. Although Advanced Driver-Assistance Sys-
tems (ADAS) have a rich number of functionalities, they lack
interchangeability. There is still a gap on finding a way to
evaluate the best decision globally. This paper presents a novel
motion planning framework to generate emergency maneuvers
in complex and risky scenarios using active mitigation. The
classical MPPI algorithm is improved to be used in a proba-
bilistic dynamic cost map under limited perception range. A
cost map with global probability of injury to all road users is
used as a constraint to the problem in order to compute target
selection based on the global minimum risk considering all road
users. Real experiments introduce the use of virtual objects
by merging simulation and real sensor data to safely produce
collision and mitigation experiments. Results show that the
proposed algorithm can perform correctly, by finding collision-
free trajectories in complex scenarios and compute viable target
selection that minimizes global injury risk when collision is
inevitable.

I. INTRODUCTION

Advanced Driver-Assistance Systems (ADAS) have been
developed to raise safety and driving comfort. Primary safety
has been addressed over the years with the advancement of
safety technologies such as Autonomous Emergency Braking
(AEB) and Advanced Evasive Steering (AES) systems.

NCAP-2025 Roadmap contemplates the development of
Autonomous Emergency Braking and Steering Systems
(AEBSS), which integrate steering and/or differential braking
by taking action autonomously, shifting from a system based
assessment to a scenario-based assessment. Its aim is to
deliver improved passenger car safety but also on how it
might assist other road users. The main objective is to make
use of new technologies to minimize human error, which are
responsible for over 90% of road accidents [1].

Many works in the literature propose motion planning for
emergency scenarios considering collision avoidance, vehicle
stability and path tracking supposing collision-free scenarios.
However, not many works consider AEBSS application for
complex scenarios mitigation, such is the case in [2], [3],
These works however, limit the scope of the risk assessment
to the ego-vehicle occupants, disregarding the related risk to
all other road users.

On the other hand, works based in accidentology propose
a framework to quantify the benefits and efficiency of AEB
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[4] and AEBSS [5] towards vulnerable road users. Yet, these
studies comprise a posterior analysis of the probability of
injury in the event of a collision.

To develop our AEBSS framework we rely on the MPPI
technique developed by Williams [6]. It derives from Path
Integral Control [7] which transforms the value function of
the Optimal Control Problem (OCP) into an expectation over
all possible trajectories. It is a method that allows Stochastic
Optimal Control (SOC) problems to be solved with a Monte
Carlo approximation using forward sampling of stochastic
diffusion processes [8]. Thus, MPPI uses a path integral
method to find a control sequence by minimizing the running
cost, which corresponds to the integral of each individual
cost in each step, where the solution to the Hamilton-Jacobi-
Bellman equation is approximated by importance sampling
of these paths using Feynman-Kac theorem and KL diver-
gence [6].

The use of MPPI is appealing because it is a derivative-free
optimization method, which allows the use of non-linear and
non-convex models and cost functions. As MPPI has shown
good performance in aggressive driving situations, it seems
therefore particularly well adapted to emergency trajectories
in the ADAS context.

The original version of the MPPI algorithm [6] considers
an offline static cost map with previous knowledge of the
track configuration. It has been extended to environments
with dynamic obstacles in [9], and an online cost map
using on-board monocular cameras was considered in [10],
[11]. Also, a study on partially observable scenarios for
Quadrotors was introduced in [12].

The main contribution of this work is the development of
a novel motion planning technique for vehicle navigation in
a risky environment considering Active Mitigation, i.e, real
time target selection based on accidentology data.

In technological requirements, our methodology fulfills
Euro NCAP 2025+ specs for an AEBSS motion planning,
going beyond scenario-based assessment, since it can be
considered a generic assessment method. Therefore, our
work’s emergency trajectories planning considers the global
injury risk for all binary collisions between the ego vehicle
and a given object in the scene by using the Probability of
Collision with Injury Risk (PCIR) [13] as a constraint to the
problem.

To the best of our knowledge, this is the first time PCIR
is integrated into motion planning, as well as the use of
MPPI considering a probabilistic dynamic cost map with
limited perception range. In other words, from a classical



navigation algorithm, our work presents a novel AEBSS
general framework that integrates Active Mitigation (by the
use of PCIR) to compute either collision-free trajectories
when available, or a mitigation trajectory that comprises a
real-time target selection based on the global probability of
injury concerning all road users.

Real testing validation was conducted by using Virtual Ob-
jects and Augmented Reality. It is possible then to overcome
the adversity of real testing collisions with pedestrians and/or
other vehicles, making it possible to conduct real experiments
in safety while considering a virtual collision with objects in
the scene.

The remainder of the paper is organized as follows.
Section II introduces the system’s architecture. Section III ex-
plains the Emergency Trajectory MPPI (ET-MPPI) method-
ology. Section IV presents testing results and discussions.
Section V provides conclusion remarks.

II. SYSTEM ARCHITECTURE

Our proposed system for the motion planning framework
is depicted in Figure 1.

Fig. 1: System Architecture.

Inputs are: the Dynamic Environment Representation,
given by Conditional Monte Carlo Dense Occupancy Tracker
(CMCDOT) [14], a generic spatial occupancy tracker that
infers dynamics of the scene through a hybrid representation
of the environment; PCIR, which provides the probability
of collision between the ego-vehicle and an object while
also considering the probability of injury as a function
of the type of object (pedestrian, cyclist, another vehicle
etc.) and the impact speed between the ego-vehicle and the
corresponding object [13]; Vehicle Status and Localization,
which refers to ego vehicle information such as position,
velocity, acceleration and steering angle. In practice, the
odometry information is obtained by combining information
from an Xsens GPS and an Inertial Measurement Unit (IMU)
present in the prototype. The odometry estimator is based on
an Extended Kalman Filter (EKF) in order to infer the pose
of the ego vehicle.

Constraints to the system are: Vehicle Actuators and
Dynamics, i.e. vehicle model; objects in the scene and the
threshold of perception; and, vehicle controllability, further
discussed in IV-B.

The output of the system is an optimal trajectory that
considers either a collision-free trajectory when possible or a
mitigation trajectory that minimizes the global risk of injury
considering all binary collisions between the ego-vehicle and
each object in the scene.

III. EMERGENCY TRAJECTORY MPPI (ET-MPPI)
The original MPPI algorithm was developed to perform

aggressive maneuvers while maintaining the ego vehicle
speed as constant as possible. In emergency trajectories,
besides steering angle, one also needs to change the velocity.
To deal with emergency situations, our work makes use of
a large range of control inputs and due to the characteristics
of the MPPI approach, a significant number of trajectories
would be necessary to contain all the input variation needed.

It becomes too expensive to compose the two-dimensional
set comprising the desired extent for both the steering angle
and the velocity for each cell in the probabilistic occupation
grid [14]. For instance, let us imagine a pedestrian and the
reachability set of the vehicle. A vast number of trajectories
would be needed in order to contain all possible (combi-
nations of steering angle and velocity variations within the
desired scope for each cell representing an object.

The Emergency Trajectory MPPI (ET-MPPI) framework
for emergency scenarios, is presented in Algorithm 1. The
modifications allowing the use of MPPI in emergency sce-
narios are highlighted in red from the original algorithm
which can be found in [6]. Due to the lack of place, it
is not possible to detail it. The main idea of the proposed
algorithm is to compare all admissible evasive trajectories
with the full braking trajectory (by AEB) to determine the
best one. Further explanation on the definition of the cost
function is given later in this section.

Algorithm 1: ET-MPPI Algorithm
1 Procedure computeMppiControl(xinit ,uinit ,∆t)
2 for k← 0 to K−1 do // For all sampled trajectories

3 Sample εk
t ∈N (0,νΣ) // Generate Gaussian noise

4 for t← 0 to T −1 do // For prediction horizon

5 vt = ut + εk
t // Adding noise to control

6 vtbrake = ut + εk
tbrake

// Emergency braking control

7 x← x+F(x,g(vt))∆t // State update
8 xbrake← xbrake +F(xbrake,g(vtbrake ))∆t
9 if collision(xk) then

10 xk ← xkbrake // Replace by braking state

11 S̃k = S̃k +q(xt,k,ut,k) // Trajectory Cost

12 S̃k = S̃k +φ(x) // State dependent final cost

13 ρ ←min
k
(S̃k) // Find minimum cost

14 η ←
K−1
∑

k=0
exp

(
− 1

λ
(Sk−ρ)

)
// Normaliser

15 for k← 0 to K−1 do
16 wk ← 1

η
exp

(
− 1

λ
(Sk−ρ)

)
// Probability Weight

17 for k← 0 to K−1 do

18 U←
(

U+
K−1
∑

k=0
wkεk

)
// Weighted sum control

update

19 return etmppiTrajectory(xinit ,U) // Return trajectory

To start, the algorithm requires the status and localization
of the ego vehicle at instant tinit , here defined as (xinit ,uinit ). In
our case, it comes from the Vehicle Status and Localization
block. Then, KxT random control variations are generated
using CUDA’s random number generation library (line 3).
The variance ν of the noise N can be increased to avoid



local minima by shifting the range of the trajectory cost,
which leads to chattered control solutions.

Perturbation is added to the initial control sequence (line
5). The Gaussian noise generated for the acceleration in the
original algorithm is replaced by the maximum deceleration
in εbrake (line 6), whereas the Gaussian noise for the steering
angle remains the same.

The next state is found for each sampled trajectory (line
7) and updated according to each timestep t. The Same is
valid for K conservative trajectories xbrake (line 8), which
always consider the maximal braking and the corresponding
random noise for the steering angle. F(·) represents the
vehicle model, in our case, a kinematic bicycle model and
g(·) the clamping function for actuators saturation.

Every trajectory xk is checked for collisions. If the kth

trajectory collides against one of the objects of the scene, it
is replaced by the conservative trajectory xkbrake (line 10).

A running cost for each sample trajectory k at a given
timestep t is then computed and added to the final cost (lines
11:12). The cost of each sampled trajectory k is converted
to a probability weight wk (line 16), taking into account the
minimum weight trajectory (line 13). The optimal control
law is then defined via the probability weight wk averaged
over all the perturbation sequences (line 18).

The final trajectory is obtained by passing the final control
sequence trough a vehicle model (line 19), a kinematic
bicycle model in our case. Since the final optimal trajectory
depends on the probability weight of each k trajectory, it
is possible to compute pure evasive steering trajectories (or
a composition of braking and steering), otherwise, the ET-
MPPI algorithm guarantees that the worst-case scenario will
always have the maximal braking (same as in AEB), although
with the advantage of all possible range of steering for the
collision trajectories, which allows some maneuverability.

For the latter, since we apply PCIR as a constraint to the
system, it is possible to have a better contextualization of the
scene when dealing with mitigation scenarios and compute
a target selection considering the global minimal risk. So,
if the evaluation considers that no collision-free trajectories
can be computed, we need to compute the minimal global
risk associated with all K possible trajectories. Those criteria
are addressed by defining and tuning the cost function S̃k
coefficients as presented in the next subsection.

A. ET-MPPI Cost Functions
Our cost map takes into consideration both static and

dynamic objects given by a probabilistic grid. Furthermore,
the PCIR is used as a novel constraint to the problem. The
elements taken into consideration in order to develop our cost
map are the vehicle’s actuators and dynamics constraints,
objects and PCIR, perception limits and the ego-vehicle
predicted trajectory.

The actuator and dynamic constraints and variance cost
are already taken into consideration in the original algorithm
presented in [15] in the form of a convex cost function.

Our path cost q(x) is defined as:

q(x) = cpcir + cwhiteline + climits + cre f erence (1)

cpcir penalizes collision while considering injury risk:

cpcir = wpcir(PCIR) (2)

where wpcir is the weight and PCIR is computed according
to the impact speed and the type of object in the scene [13].
To avoid collisions as much as possible, wpcir gets a high
value, and if mitigation is needed, the value of PCIR will
become predominant over all other costs, which sets the
target selection.

cwhiteline assigns for ego-vehicle trajectory to remain on the
right side of the road. Trajectories surpassing the boundaries
are penalized as defined in equation (3).

cwhiteline = wwhiteline (3)

Where wwhiteline corresponds to the correct road lane cost. It
is set as a soft constraint to appease an emergency eviction
maneuver that requires crossing the middle lane to avoid
a collision. This is achieved by setting the corresponding
weight to a value that is between Reference and PCIR costs.

climits, defined in Equation (4) is used to ensure that the
ego-vehicle will not cross undesired areas, such as sidewalks,
which can lead to loss of control. In cases where a behavior
planning is used, this constraint can be replaced by the ones
issued by the behavior planner.

climits = wlimits (4)

Where wlimits corresponds to the road limit cost and its value
shall surpass wPCIR to assure that even in mitigation cases
the constraint will be respected.

Figure 2 shows a diagram to exemplify cwhiteline and climits.
Trajectories which are generated and which remain in the
green zone (trajectory 3) are not penalized by either costs.
Trajectories that go beyond the green zone to the yellow zone
(trajectory 2) are penalized with cwhiteline. Trajectories which
are in the red zone (trajectories 1 and 4) are penalized with
climits.

Fig. 2: Road Boundaries and Limits.

cre f erence is used for having the evasive trajectory closer to
the projected real trajectory of the vehicle. It is defined as:

cre f erence = (x−xre f )
T wre f (x−xre f ) (5)

Where wre f corresponds to a positive define weight matrix
and xre f are the reference states in a three seconds horizon
trajectory prediction from a kinematic bicycle model and the
initial states provided by an odometry estimator based on an
Extended Kalman Filter (EKF).



IV. EXPERIMENTS AND TESTING

The ET-MPPI algorithm has been tested both in simulation
and real experiments. Table I presents the corresponding
parameters for the testing.

TABLE I: ET-MPPI Parameters Values

K 4000 T 45
λ 0.004 α 0.7
wwhiteline 5000 wPCIR 1.6E5
ν Diag(1.0, 1.2) wre f Diag(0, 400, 0, 0)
ΣCx Diag(1.0, 2.0) ΣCy Diag(1.0, 22.0)
Rterminal Diag(0, 2.5, 0, 400)

A. Experimental scenarios

We propose a pedestrian crossing scenario, shown in Fig-
ure 3, for our analysis. Scenario complexity grows from (a) to
(c) to evaluate ET-MPPI algorithm performance in generating
either collision free or mitigation optimal trajectories.

Scenario (a) Scenario (b) Scenario (c)

Fig. 3: Pedestrian Crossing Scenarios

The ego vehicle (white), has its field of view occluded
by the truck on its right. Therefore, the pedestrian (coming
from the right of the ego vehicle) perception happens for
Time-to-Collision (TTC) between 0.5 and 2 seconds.

B. Metrics

Two metrics are considered. The first is related to vehicle
controllability. Two different control constraints based on the
definition of controllability given by ISO 26262 standard [16]
had been chosen. Cx (simply controllable) and Cy (difficult to
control or uncontrollable), whose parameters for the steering
angle δ , the steering rate δ̇ and the acceleration a are
presented in Table II. These parameters are inserted in line
3 of Algorithm 1 in order to generate the noise εk

t that
will be added to the control input and thus influence the
variance importance sampling. The control input perturbation
along with the clamping function g(·) compose the vehicle
reachable set.

The second metric is a performance comparison between
AEB systems, Cx and Cy in terms of collision avoidance
and/or mitigation.

Each scenario was simulated twenty times for each control
constraint. A small offset was added to each of the objects’
initial position to observe the robustness of the method with

TABLE II: Control Constraints Cx and Cy

Constraint δ [degrees] δ̇ [degrees/s] a [m/s2]
Cx [-3 3] [-3 3] [-3 3]
Cy [-30 30] [-30 30] [-9 3]

respect to avoidance/mitigation and provide a comparison
with the full longitudinal braking AEB system.

C. Simulation Experiments

Simulations take into consideration noisy localization sen-
sors, such as GPS and IMU. Besides, the uncertainty in the
perception is also taken into consideration. All simulation re-
sults were obtained with the following specs: Intel® Core™
i9-9880H CPU @ 2.30GHz x 16 with NVIDIA Quadro RTX
3000/PCIe/SSE2 GPU under Ubuntu 18.04 ROS Melodic
[17] and Gazebo 9 [18].

1) Simulation Results: The graph in Figure 4 presents the
percentage of collision-free (blue) and mitigation trajectories
(red) for AEB case and those obtained with the proposed
ET-MPPI method with control constraints Cx and Cy, con-
sidering an ego-vehicle longitudinal velocity of 50 km/h .

Fig. 4: Percentage of collision-free or mitigation cases for 20
simulation runs for the given scenarios for AEB system and
ET-MPPI control constraints Cx and Cy.

Control constraint Cy showed a better performance in
avoiding objects in the scene when compared to the other
control constraint Cx and the AEB system. This is due to
the fact that Cy presents a larger reachability set and an
avoidance is possible in many more cases. In most of the
cases, configuration Cx does as good as the AEB system,
since its output usually corresponds to braking, since its
reachable set is much more limited.

Another outcome is that an increase in scenario com-
plexity will lead to situations where collision might become
inevitable, and consequently, mitigation is needed.

Next, we discuss and present the output of the ET-MPPI
algorithm compared to the AEB for a collision-free trajectory
for scenario (a), and a mitigation case for scenario (c), both
considering the control constraint Cy at 50 km/h ego-vehicle
speed. Scenario (b) will not be discussed since its outcomes
tend to one of the presented results.

Scenario (a) is shown in Figure 5 on the left. The system
perception and output for the ET-MPPI generated trajectory
for Scenario (a) is shown in Figure 5 on the right. The AEB



trajectory is represented by the black band and the ET-MPPI
trajectory by the yellow band.

Fig. 5: Scenario (a): On the left the gazebo simulation, on the
right, perception, object prediction and ET-MPPI generated
trajectory

Although the given scenario is not complex, it is possible
to observe that the AEB system will only be able to mitigate
the collision, whereas an avoidance trajectory (yellow band
with footprint of the ego-vehicle) was generated by the ET-
MPPI algorithm. Besides the point of avoiding the obstacle,
the ET-MPPI trajectory might also avoid a rear collision to a
tailing vehicle, increasing the road safety. For the simulation
we consider that the pedestrian will cross the road at constant
speed. However, if the pedestrian reacts to the incoming
vehicle, the emergency trajectory is replanned (iteration time
of 0.05 seconds) and a new emergency trajectory is computed
in order to cope with the new changes.

Scenario (c) is depicted in Figure 6, where the scene
is shown on the left and the output with the elements of
the scene are displayed on the right. The truck on the
right, which is occluding the field of perception is pushed
closer to the pedestrian passing to decrease even further the
reaction time. The goal is to analyse a mitigation scenario
by observing how the algorithm generates the ET-MPPI
trajectory according to the injury risk associated with each
of the objects.

Fig. 6: Scenario (c) after small time: On the left the gazebo
simulation, on the right, perception, object prediction and ET-
MPPI mitigation trajectory

The ET-MPPI trajectory for this case is displayed in red,
since a mitigation trajectory is considered for the scene. Both
AEB and ET-MPPI trajectories will result in a collision,
however, for the latter, the stationary vehicle on the right

hand side is selected through the cost function parameter
cpcir, resulting in a trajectory that minimizes the global injury
risk.

Figure 7 displays the corresponding PCIR cost map based
on the type of object and the prediction. This cost map

Fig. 7: Scenario (c): PCIR cost map generated from ET-MPPI
trajectory cost

gives us an indication of the global probability of injury with
respect to the highest probability of injury in the scene. For
instance, the pedestrian presents the reference PCIR of 1
(or 100%), meaning that it is the most vulnerable road user.
The vehicles on the top (blue vehicle) present a very low
probability of collision with injury risk (close to white) if
compared to the pedestrian. The stationary vehicle on the
bottom presents a PCIR close to 40%. It takes precedence
over the blue vehicle but does not take precedence over the
pedestrian, but since the path to the blue vehicle is blocked
by the pedestrian prediction, target selection goes towards
the parked truck on the right.

In short, AEB trajectory will result in an ego-to-pedestrian
collision, which to the corresponding impact speed and
assumptions brings a higher probability of injury (around
80% probability of slight and 20% severe injury) to the
pedestrian. ET-MPPI algorithm had a better performance in
mitigating the collision due to the target selection based on
PCIR. For the given scenario, instead of colliding with the
pedestrian our algorithm selects the truck on the right, which
brings a less than 2% probability of injury to the occupants
of the vehicles.

D. Real Experiments

Experiments have been conducted on a dedicated test
vehicle, a Renault Zoe equipped with a Velodyne HDL64
LiDAR on the top, 3 Ibeo Lux on the front and 1 on the
back, which provides dense 3D point clouds of threshold
measurement. Besides, a Xsens GPS, an IMU and a SP90
RTK GPS system provide accurate position and orientation.
Same as in simulation, perception relies on the CMCDOT
spatial occupancy tracker [14]. The localization is based on
the fusion of the odometry and the RTK GPS to obtain a
coherent position, orientation and speed estimation.

The experimental validation of this work demands com-
plex test scenarios, where collision with pedestrians and
vehicles must be contemplated. For safety reasons, such
tests cannot be realized in real conditions. Therefore a novel



capability has been developed to make it possible to conduct
these experiments. Thus, virtual sensor data is merged with
actual sensor data to add pedestrians and vehicles in the test
scene using Augmented Reality (AR) by merging simulated
and vehicle’s LiDAR point cloud information. This represen-
tation of the AR is fed seamlessly to the perception software
of the actual vehicle, as depicted in Figure 8.

Fig. 8: Illustration of the augmented reality testing technique
with an additional virtual pedestrian. On the left, the Point
cloud generated by sensors and the point cloud of virtual
objects. In the center, the Visualization of the scene. On the
right, the Augmented reality point cloud which is directly used
by the perception software.

While simulated experiments are less meaningful and real
experiments too dangerous, experiments with AR present an
interesting compromise. As in simulation, it allows to realize
test scenarios that can include collisions with one or several
objects. The motion of the agents can be defined exactly
upon the test requirements and is repeatable. As in actual
experiments, perception provides dense and complex data
while localization is slightly uncertain.

Even if the simulated data in AR may be less represen-
tative than actual data, it is assumed that it will not affect
the experiments since perception is not the purpose of this
work. Upon these considerations, it appears that this testing
environment is relevant to evaluate the behavior of the MPPI
based motion planning in highly realistic conditions.

E. Real Experimental Results

The results for real experiments are shown in Figure 9.
On the left, the augmented reality includes the virtual objects
to the vehicle camera and on the right the virtual and real
objects perception and PCIR. The red band represents the ET-

Fig. 9: Scenario (c) real testing. On the left, camera view with
objects in Augmented Reality. on the right, perception, PCIR
for object prediction and ET-MPPI mitigation trajectory

MPPI mitigation trajectory. As in simulation, target selection

presents the pedestrian as the most vulnerable road user and
a collision with the parked truck on the right brings the least
global injury risk.

The virtual objects setup allowed real testing considering
collision while keeping driver security and prototype in-
tegrity. Terrain noise affected the result due to false-positive
detection. However, due to replanning we noticed that once
the perception grid filters the noise a new trajectory is
promptly generated.

Another remark is related to object prediction. We have
noticed a small delay that might be the result of GPU usage
for perception, virtual object simulation and MPPI algorithm
combined.

Considering all challenges of real time experiments, the
ET-MPPI algorithm has produced results consistent with
simulation for generating collision-free trajectories when
possible or mitigating the global probability of injury for
a collision in mitigation scenarios.

V. CONCLUSIONS

The present work presents a novel motion planning tech-
nique for vehicle navigation on risky environments consid-
ering active mitigation. Trajectory planning is based on the
classical MPPI framework, which is significantly improved
to contemplate a probabilistic dynamic cost map and global
probability of injury constraints.

Results show that trajectory generations complies with
Euro NCAP 2025+ requirements and with realistic driving
scenarios by providing an AEBSS scenario based framework
which generates collision-free trajectories when possible or
computes active mitigation target selection based on preex-
isting accidentology data.

Virtual objects are introduced in our work as an alternative
to conduct safe real experiments. By merging virtual sensor
data to actual real data to virtually present objects in the
scene, which allowed us to carry out real experiments without
putting in risk the driver or menacing prototype integrity.

One limitation of the study is the use of constant ve-
locity objects in simulation. A suggestion for improvement
includes a more liable simulation scenario with non-constant
velocities objects and pedestrians with random trajectories.
Also, for prototype experiments, false-positives on detection
interfered with the algorithm output, although the replanning
made it possible to correct it once filtering removed the noise.

Future development includes dealing with the mentioned
limitation on object tracking to improve object prediction,
and noise filtering to improve trajectory planning output
stability. It also includes the use of the generated trajecto-
ries as set points for a motion controller to be used in a
feedback loop in order to observe its feasibility in prototype
applications.
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