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Platooning of Car-like Vehicles in Urban
Environments: Longitudinal Control Considering
Actuator Dynamics, Time Delays, and Limited

Communication Capabilities
Ahmed Khalifa, Olivier Kermorgant, Salvador Dominguez, and Philippe Martinet

Abstract—This paper proposes a longitudinal control frame-
work for platooning in an urban environment. The targetted
application is to redistribute vehicles involved in car-sharing
systems, where only the leader vehicle is human-driven. We
propose a platoon model and control law considering actuator
dynamics. This control relies on a hybrid Information Flow
Topology (IFT), where the leader broadcasts its state but each fol-
lower only measures the position of its predecessor. A consensus-
based control law incorporates the effect of the network/sensor
time delay and the variable velocity of the leader. Conditions for
the platoon internal and string stability are given. Experiments
demonstrate the efficiency of the framework in simulation and
real experiments with three commercial cars.

Index Terms—Longitudinal control, platoon, curvilinear coor-
dinates, hybrid information flow topology, string stability

I. INTRODUCTION

Shared transportation systems in urban environments are the
current trend toward an eco-friendly city. In car-sharing sys-
tems, one issue is to ensure the cars are always well distributed
in all stations. A potential solution that we investigate is to
have a single human-driven vehicle able to pick and place
autonomous cars. The driver can easily communicate high-
level orders (typically unpark, join, merge, follow, split, park)
to the autonomous cars, that will then activate the suitable
behavior. In this work, we assume the platoon is already set
up and we focus on the distributed platoon control.

Platooning consists in following a leader vehicle’s path,
with constraints on the inter-vehicle distances. This distance
is usually assumed to be constant as it achieves a high traffic
capacity [1]. The platoon should be string stable, meaning that
the error signals attenuate when propagating downstream the
platoon. String instability may result in a rear-end collision. An
efficient way to model the cars and the control law is the path
coordinates as it allows decoupling the longitudinal and lateral
control laws as illustrated in Fig. 1. Besides, distances between
vehicles are monotone along the path, while they are non-
monotone if using a Cartesian description [2]. In the sequel,
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we assume a suitable control [3] is used for the lateral control,
that steers the vehicle to stay on the leader’s path.

The goal of the longitudinal control is to output the required
throttle or brake that ensures the desired behavior is performed
along the path. Existing works focus on Vehicle Dynamics,
Distributed Controller and Information Flow Topology [4].

Nonlinear vehicle dynamic models [5], [6] make it difficult
to analyze the system performance against different spacing
policies and communications typologies. Linear models are
thus frequently used. The simplest ones are single integrator
[7] or double integrators [8], [9]. These approaches ignore
some of the vehicle dynamics which may affect the system
performance in real-time experiments. In third order models,
the power-train model is also considered [10]. An originality of
our approach is to consider a third order model for longitudinal
dynamics, expressed in the path coordinates. To the best of
our knowledge, path coordinates have mostly be used with
a first-order model for the vehicle dynamics [2], [11], [12].
Distributed control [13] assumes some information sharing
between vehicles to improve performance. These controllers
can be linear [14], optimal [15], sliding Mode [16], model-
predictive [17], and consensus-based controller [9], [10], [18],
[19]. The main drawback of existing works is that most of
them assume that the leader travels with a constant velocity,
which is usually valid for highways but not for urban en-
vironments. In this study, we consider a potentially highly
varying leader velocity. Besides, for the sake of simplicity the
longitudinal control is expressed in path coordinates.

The Predecessor-Leader Following (PLF) topology [1] cor-
responds to all vehicles receiving the state of the leader and of
their direct predecessor. An originality of our approach is to
assume all vehicles carry a LiDAR for localization in an urban
environment. We thus propose a hybrid PLF topology where
the leader broadcasts its state, but a follower only retrieves
the position of its predecessor through LiDAR. This is well-
suited for urban scenarios where the path can be highly curved
and where a radar would have too narrow a field of view.
The proposed control law thus only relies on the measured
predecessor’s position. A low-cost communication module can
hence be used to receive information from the leader.

The main contributions of the proposed solution with re-
spect to previous works are thus:
• A control algorithm is designed considering varying

velocity and high curvature and hybrid PLF topology
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Figure 1. Functional block diagram of the vehicle control sub-layer.

Figure 2. Kinematic model of vehicle. r is negative in this example.

• Conditions for both internal and string stability are pro-
vided under the effect of communication and sensor delay
and actuator dynamics.

• The proposed framework is validated via a realistic
simulation and experiments with commercial cars.

This work builds on the preliminary results presented in
[20]. The major improvements is to consider actuator dynam-
ics, and to provide realistic simulations and real experiments.

The paper is organized as follows: Section II formulates
introduces the notations for the kinematic and dynamic mod-
els. In Section III the proposed control law is presented, and
both internal and string stability are analyzed. Simulation and
experimental results are given in Sections IV.

II. PROBLEM STATEMENT

A. Vehicle Kinematic Model

The kinematic model of a vehicle can be simplified to that
of a bicycle model [3], see Fig. 2, in which the left and right
wheels are combined into a pair of single wheels at the center
of the front and rear axles.

1) Cartesian Coordinates Model: The configuration of the
vehicle, with respect to the world-fixed frame, {G}, O − xy,
is represented by the generalized coordinates [x, y, θ]T ∈ R3,
where its position (center Ov of the rear axle) is given by
[x, y]T and its orientation in the global frame is represented
by θ. δ is the steering angle. The kinematic model is given by

ẋ = v cos(θ), (1a)
ẏ = v sin(θ), (1b)

θ̇ =
v

L
tan(δ). (1c)

2) Path Coordinates Model: Let us define the curvilinear
coordinates [s, r, ψ]T , as shown in Fig. 2. The tracking path C,

defined in the Global Frame, can be represented as a function
of its length s (curvilinear abscissa) at the closest point M to
Ov , the relative angle (angular deviation), ψ = θ − θc, of the
vehicle with respect to the path, where θc is the angle between
the path tangent at M and the x-axis, and finally, the lateral
deviation, r, which is the signed distance, expressed in the
Frenet frame {F} (green in Fig. 2) from the center of the rear
axle Ov , to the closest point on the path M . The kinematic
model in the path coordinates is thus given by

ṡ = v
cos(ψ)

1− rκ(s)
, (2a)

ṙ = v sin(ψ), (2b)

ψ̇ = v

(
tan(δ)

L
− κ(s) cos(ψ)

1− rκ(s)

)
, (2c)

where κ(s) is the curvature of path at point M .

B. Vehicle Longitudinal Dynamic Model

The dynamic model is presented assuming:

Assumption 1. The vehicle body is rigid and symmetric.

Assumption 2. The driving and braking inputs are integrated
into one control input.

Assumption 3. Pitch and yaw motions are neglected.

Assumption 4. The power-train dynamics are lumped to be
a first-order inertial transfer function.

Therefore, longitudinal dynamics can be represented by

Mva+ Cvv +Gv = Fv, (3a)

τḞv + Fv = Fv,des (3b)

where τ is a parameter characterizing the actuator dynamics,
a = v̇ denotes the vehicle acceleration in the vehicle frame,
and Mv , Cv , Gv , and Fv are the vehicle Inertia effect, Coriolis
effect1, Gravity effect, and input force, respectively.

The inverse model compensation technique is frequently
used to eliminate the non-linearities in longitudinal dynamics
for the purpose of high-level control design. The control law
of the inverse dynamics technique is given by

Fv,des =Mvµ+ Cv(τa+ v) +Gv (4)

where µ is the new input signal after system linearization
which has to be designed. By replacing Fv and Ḟv from (3a)

1Note that for autonomous cars, the Coriolis effect can be neglected as
Earth can be considered flat with regards to the involved velocities.
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Figure 3. Block diagram of the vehicle longitudinal dynamic model, where S is the Laplace operator.

and its time-derivative, and Fv,des from (4) into (3b), we get
the third order dynamic model in the body coordinates:

τ ȧ+ a = µ (5)

We now detail the third-order model expressed in the path
coordinates. The corresponding controller is given in Fig. 3.

Let us recast (2a) as

ṡ = Jv, (6)

where J is given by

J =
cos(ψ)

(1− rκ)
. (7)

Thus, the acceleration in the path coordinates, η, is given by

η = Ja+ J̇v, (8)

where η = q̇ = s̈ and q = ṡ are the vehicle acceleration and
velocity in the path coordinates respectively. If the mapping
from the control signal (i.e., desired acceleration) in the path
coordinates, u, to that in the body coordinates, µ, is given by
differentiating (8) with regards to time:

µ =
1

J

(
u− J̇v − 2τ J̇a− τ J̈v

)
, (9)

then, the longitudinal dynamics in the path coordinates are

ṡ = q, (10a)
q̇ = η, (10b)

τ η̇ + η = u. (10c)

In practice, J̇ is obtained by differentiating (7) with regards
to time, and J̈ is computed by numerical differentiation. As
τ J̈v is a small term, the approximation does not affect the
behavior of the system.

C. Platoon Longitudinal Model

Consider a platoon with N + 1 vehicles, where the leader
has index 0 and N followers have indices i; i ∈ [1, N ] (see
Fig. 4). The vehicles share information by either sensor-based
or communication-based link. The vehicle dynamics in the
path coordinates are given by (10) and we now denote (.)i the
variables related to vehicle i.

The inter-vehicle distance, di = si−1−si, is the curvilinear
distance between vehicle i and its predecessor , di0 = s0−si,
is the curvilinear distance between vehicle i and leader, dr,i is

Figure 4. Platoon representation in the path coordinates.

Figure 5. Information flow topology: Hybrid PLF through communication
link between leader and followers and direct sensor-based measurements
between followers.

the desired inter-vehicle distance between vehicles i and i−1,
and dr,i0 is the desired inter-vehicle distance between vehicles
i and 0.

D. Control Objectives

The platoon has to track a leader that is either autonomous
or manually driven, and each follower vehicle, i, has the
following delayed information, see Fig. 5:
• position, velocity, and acceleration of the leader, s0,q0,η0;
• position of its predecessor si−1 due to the considered

limited communication capability.
Under these conditions, ∀ i = 1, . . . , N , the following goals
have to be achieved:
• asymptotic stability of the position and velocity tracking;
• string stability.

III. CONTROL DESIGN

This section introduces the proposed control algorithms.
Internal stability and string stability are then analyzed.
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A. Consensus-based Control Law

The information flow of the platoon is described by an
adjacency matrix M = [mij ], where mij = 1 if vehicle i can
obtain information from vehicle j, otherwise mij = 0. For the
Predecessor - Leader Following topology, M is defined as

mij =

{
1, j = 0 or j = i− 1,

0, otherwise.
(11)

The Laplacian matrix L ∈ RN×N associated with M is

L = [lij ] where lij =

{
−mij , i 6= j,∑N
k=1mik, i = j.

(12)

The pinning matrix P represents the information flow from
the leader, and is P = diag{mi0, . . . ,mN0} = IN , where IN
denotes the (N ×N) identity matrix.

Considering the hybrid Predecessor - Leader Following
topology, we propose the following control law

ui(t) = ηi(t) + k3(η0 − ηi(t))
+k2 (q0(t− td)− qi(t− td))
+k1 (si−1(t− td)− si(t− td)− dr,i)

(13)

where k1, k2, and k3 are positive tuning parameters, respec-
tively for position (inter-distance with predecessor), velocity
and acceleration (both compared to leader). We assume each
vehicle estimates its state from a sensor fusion algorithm, fed
from LiDAR, wheel encoders and IMU readings. The control
law assumes the state of the leader can be obtained, with
delays, from communication link. On the contrary, only the
position of the predecessor is obtained through LiDAR.

The time required for data transmission, sensor-to-controller
delay, and controller-to-actuator delay are the sources of time
delays in this system. These delays can be combined and
represented by a single delay. The wireless communication
has the largest effect on the whole time delay, and is mainly
affected by the number of vehicles inside the platoon. As the
number of vehicles varies on a slow timescale, delays can be
considered as constant. For analysis purposes, we can assume

Assumption 5. td is the constant upper bound of the delays.

B. Internal Stability

Let us define the position error with the leader as es,i0(t) =
s0(t) − si(t) − dr,i0, the velocity error with the leader as
eq,i0(t) = q0(t)− qi(t), the acceleration error with the leader
as eη,i0(t) = η0(t) − ηi(t), and the position error with the
predecessor as es,i(t) = si−1(t) − si(t) − dr,i. es,i can
be represented in terms of the error with leader, es,i0, as
es,i(t) = es,i0(t)− es,(i−1)0(t). Applying the control law (13)
to the system (10), and assuming null jerk η̇0 ≈ 0, the error
dynamics with regards to the leader yield:

ės,i0(t) = eq,i0(t),

ėq,i0(t) = eη,i0(t),

ėη,i0(t) = −
2k1
τi
es,i0(t− td) +

k1
τi
es,(i−1)0(t− td)

−k2
τi
eq,i0(t− td)−

k3
τi
eη,i0(t)

(14)

Let us define es,0 = [es,i0]
T
i∈[1,n], eq,0 = [eq,i0]

T
i∈[1,n], and

eη,0 = [eη,i0]
T
i∈[1,n] as the position, speed, and acceleration

error vectors, respectively, then the error state vector, X(t) =
[es,0, eq,0, eη,0]

T , is given by

Ẋ(t) = AoX(t) +AdX(t− td), (15)

where Ao and Ad are represented as

Ao=

ON IN ON
ON ON IN
ON ON −k3T

 , Ad=
 ON ON ON

ON ON ON
−k1T H −k2T ON

 , (16)

where ON denotes the (N × N) null matrix, T =

diag
{

1
τ1
, . . . , 1

τN

}
∈ RN×N , and H = L + P reflects the

topology of the platoon.
From Leibniz-Newton formula, it is known that

X(t− td) = X(t)−
∫ 0

−td
Ẋ(t+ ε)dε. (17)

Substituting (17) into (15), given A2
d = 0 from (16) yields:

Ẋ(t) = AaX(t)−Am
∫ 0

−td
X(t+ ε)dε. (18)

where Aa = Ao +Ad and Am = AdAo.

Proposition III.1. The matrix Aa is Hurwitz stable if and
only if T H has positive eigenvalues with the control gains
satisfying the conditions k1 > 0, k3 > 0, and k2 > τik1λi

k3
.

Proof: The matrix H is lower-triangular with positive
eigenvalues λi = 1 if i = 1 and λi = 2 otherwise. Moreover,
T H also has positive eigenvalues as T is diagonal with strictly
positive terms. According to Schur’s formula for commuting-
blocks matrices [21], the characteristic equation of the matrix
Aa can be expressed as

det (SI3N−Aa)= det

 SIN −IN ON
ON SIN −IN
k1T H k2T SIN+k3T


=

N∏
i=1

(
S3+

k3
τi
S2+

k2
τi
S +

k1
τi
λi

)
.

(19)

According to Routh–Hurwitz stability criterion [22], (19) is
Hurwitz stable under the conditions k3

τi
> 0, k1λi

τi
> 0,

and k2
τi

> k1λi

k3
, and we previously prove that λi

τi
> 0. All

eigenvalues of Aa thus have negative real parts.
The conditions for the platoon internal stability can be

established by the following theorem.

Theorem III.2. Consider a platoon consisting of a leader and
N followers, the longitudinal model expressed as (1 - 10),
with assumptions 1 - 5, and control (13). Then, the system
is asymptotically stable as long as the control gains follow
Proposition III.1 and the upper bound of time delay is

td <
λmin(Q)

λmax(PAmP−1ATmP + bP )
. (20)

where P,Q are symmetric positive definite matrices and b > 0,
are detailed in the following lemmas, and λmin(Q), λmax(Q)
are the minimum and maximum eigenvalues of Q.
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Proof: The proof will mainly depend on the well-known
Lyapunov-Razumikhin theorem which is stated as follows.

Lemma III.3. (Lyapunov-Razumikhin Theorem) [23]. Given
a system of the form:

ż = f(zt), t > 0,

z0(δ) = φ(δ),∀δ ∈ [−β, 0],
(21)

where zt(δ) = z(t + δ), ∀δ ∈ [−β, 0] and f(0) = 0, the
following result holds:

Suppose that the function f : C([−β, 0],Rn) → Rn maps
bounded sets of C([−β, 0],Rn) into bounded sets of Rn. Let
σ1, σ2, and σ3 be continuous, nonnegative, nondecreasing
functions with σ1(h) > 0, σ2(h) > 0, σ3(h) > 0 for h > 0
and σ1(0) = σ2(0) = 0. If there is a continuous function
V (t, z) (Lyapunov-Razumikhin function) such that:

σ1(‖z‖) ≤ V (t, z) ≤ σ2(‖z‖), t ∈ R, z ∈ Rn, (22)

and there exists a continuous nondecreasing function σ4(h)
with σ4(h) > h, h > 0 such that

V̇ (t, z) ≤ −σ3(‖z‖), (23)
if V (t+ δ, x(t+ δ)) < σ4(V (t, x(t))), δ ∈ [−β, 0],

then the solution z = 0 is uniformly asymptotically stable.

Let P ∈ R3N×3N is a positive definite matrix and consider
the following Lyapunov–Razumikhin function

V (X) = XTPX. (24)

Lemma III.4. (Rayleigh-Ritz theorem) [24]. Let a symmetric
matrix Q = QT ∈ Rn×n and z ∈ Rn×1. Then, we have

λmin(Q)‖z‖2 ≤ zTQz ≤ λmax(Q)‖z‖2, (25)

If one considers σ1(h) = λmin(P )h
2 and σ2(h) =

λmax(P )h
2, thus according to Lemma III.4, we have

σ1(‖X‖) ≤ XTPX ≤ σ2(‖X‖). (26)

In addition, note that both σ1(h) and σ2(h) are continu-
ous, nonnegative, nondecreasing functions with σ1(h) > 0,
σ2(h) > 0, σ3(h) > 0 for h > 0 and σ1(0) = σ2(0) = 0.
Therefore, V (X) satisfies condition (22).

Substituting the derivative of V (X) from (18) gives

V̇ (X)=XT (PAa+A
T
a P )X−2XTPAm

∫ 0

−td
X(t+ε)dε. (27)

From Proposition III.1, the matrix Aa is Hurwitz stable, and
hence from Lyapunov theorem, we have

PAa +ATa P = −Q, (28)

where Q = QT > 0 and P = PT > 0.

Lemma III.5. [21]. From the arithmetic–geometric mean
inequality, for any positive definite matrix D, it holds

1

2
(aTDa+ cTD−1c) ≥ (aTDa) 1

2 (cTD−1c) 1
2 . (29)

One can also write:

aT c = (D 1
2 a)T (D

−1
2 c). (30)

Applying the Cauchy–Schwarz inequality to (30) yields:

|aT c|2= |(D 1
2 a)T (D−1

2 c)|2 ≤
∥∥∥D 1

2 a
∥∥∥2
2

∥∥∥D−1
2 c
∥∥∥2
2

≤ (aTDa)(cTD−1c)
(31)

Comparing (31) and (29), we can get:

2aT c ≤ aTDa+ cTD−1c (32)

Choose aT = −XTPAm, c = X(t + ε), D = P−1, and
integrating both side of the inequality, we have along (28)

(33)
V̇ (X) ≤ −XTQX + tdX

TPAmP
−1ATmPX

+

∫ 0

−td
XT (t+ ε)PX(t+ ε)dε.

According to Lemma III.3, let us choose the following contin-
uous nondecreasing function σ4(h) = bh (for some constant
b > 1), such that the condition in (III.3) is satisfied and hence
we have

(34)

V (X(t+ ε)) = XT (t+ ε)PX(t+ ε)

≤ σ4(V (X))

= bV (X)

= bXT (t)PX(t).

Substituting from (34) into (33) and solving the integral, we
have

V̇ (X)≤ −XTQX + tdX
TPAmP

−1ATmPX + tdbX
TPX,

≤ −λmin(Q)‖X‖2+tdλmax(PAmP−1ATmP+bP )‖X‖2
≤ −σ3(‖X‖)

Let us define

σ3(‖X‖)=
(
λmin(Q)− tdλmax(PAmP−1ATmP + bP )

)
‖X‖2

which is a continuous nonnegative nondecreasing function
provided that it is constrained by inequality (20). Therefore,
condition (III.3) of V̇ (X) is also satisfied. Consequently, the
asymptotic stability of the tracking error X(t) is achieved.

C. String Stability

The platoon controller must guarantee string stability; oth-
erwise, the errors may amplify when propagating downstream
the vehicle string, which may result in rear-end collision.

Definition III.6. L2 String Stability means that the energy
(with L2 norm) of the position error es,i of vehicle i, is smaller
than the energy of the position error of its predecessor [25].
The string stability is thus guaranteed if ‖H(s)‖∞ < 1, since

‖H(S)‖∞ = sup
es,i−1∈L2

‖es,i‖2
‖es,i−1‖2

. (35)

For simplicity, let us define the following errors ei(t) =
si−1(t)−si(t)−dr,i, ėi(t) = qi−1(t)−qi(t), ei0(t) = s0(t)−
si(t)−dr,i0, ėi0(t) = q0(t)−qi(t), and ëi(t) = ηi−1(t)−ηi(t).
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It is known that the vehicles involved in the car sharing
system are often with the same type of small passenger
vehicles, or have very close dynamics, thus we can assume

Assumption 6. All the vehicles are assumed to have equal
dynamics, i.e., τi = τ ∀i = 1, 2, . . . , N .

From (10 and 13), considering the relation between the er-
rors with leader and those with the predecessor, and after some
algebraic derivations, one can find the following expression,

...
e i(t) = η̇i−1(t)− η̇i(t),

τ
...
e i(t) = −k3ëi(t)− 2k1ei(t− td) + k1ei−1(t− td)

−k2ėi(t− td).
(36)

Writing (36) in the S-domain gives

G(S) =
Ei(S)

Ei−1(S)
=

k1e
−tdS

τS3 + k3S2 + k2Se−tdS + 2k1e−tdS
.

(37)

Theorem III.7. Consider the platoon system presented in The-
orem III.2, with assumptions 1 - 6, and the control algorithm
proposed in (13) is applied to it. Then, the platoon is string
stable if the following conditions are satisfied

k22 − 4k1k3 > 0, (38a)

td <
k23 − 2k2τ

2k2k3 − 4k1τ
, (38b)

k23 − 2k2τ > 0, (38c)
k2k3 − 2k1τ > 0. (38d)

Proof: In the frequency-domain, the transfer function,
G(S), in (37), is given by

G(jw)=
k1e
−td(jw)

τ(jw)3+k3(jw)2+k2(jw)e−td(jw)+2k1e−td(jw)
.

(39)

If one can prove that |G(jw)| =
√

gn(w)
gd(w) < 1, or gd(w)−

gn(w)>0, ∀w>0, then the condition ‖G(S)‖∞<1 holds.
After some algebraic manipulations, one can get

(40)
gd − gn = τ2w6 +

(
k23 − 2k2τ cos(tdw)

)
w4

+ ((4k1τ − 2k2k3) sin(tdw))w
3

+
(
k22 − 4k1k3 cos(tdw)

)
w2 + 3k21.

Exploiting the fact − cos(z) ≥ −1, it follows

k23 − 2k2τ cos(tdw) ≥ k23 − 2k2τ,

k22 − 4k1k3 cos(tdw) ≥ k22 − 4k1k3.
(41)

Moreover, given that − sin(z) ≥ −z, ∀z ≥ 0, the bound of
td must be positive, and given k2 >

2k1τ
k3

from the internal
stability conditions (see Proposition III.1 and Theorem III.2),
it follows that (4k1τ−2k2k3)<0, and hence one can deduce

(4k1τ − 2k2k3) sin(tdw) ≥ (4k1τ − 2k2k3)tdw. (42)

Substituting (41 and 42) into (40), after some algebraic ma-
nipulations, we have

(43)gd − gn ≥ τ2w6 +
(
k23 − 2k2τ +4k1τtd− 2k2k3td

)
w4

+
(
k22 − 4k1k3

)
w2 + 3k21.

Investigating (43), the constraint gd − gn > 0, and conse-
quently |G(jw)| < 1, ∀w > 0, is satisfied if the conditions
(38a and 38b) are hold.

Given 2k2k3 − 4k1τ > 0 from Proposition III.1 and
Theorem III.2, one can set another condition (38c).

Corollary III.8. The presented platoon control system is
asymptotically stable and string stable provided that the
control gains are positive and the following conditions hold

k2 < k23/(2τ), (44a)

k1 < min

{
k22
4k3

,
k2k3
τλi

}
, λi =

{
1 if i = 1
2 otherwise (44b)

td < min

{
k23 − 2k2τ

2k2k3 − 4k1τ
,

λmin(Q)

λmax(PAmP−1ATmP + bP )

}
.

(44c)

Proof: After some algebraic manipulations, this corollary
can be proved by checking the conditions given in Proposition
III.1, Theorems III.2 and III.7.

IV. RESULTS AND DISCUSSIONS

The proposed control strategy implemented in a vehicular
mobility simulator, based on the Robot Operating System
(ROS) with the following features:

• full vehicle dynamics;
• real maps of an urban environment (our campus);
• both low and high level measurement units with noises;
• low level communication module between different parts

of the vehicle and the on-board computer;
• vehicle communication modules;
• Human-Machine Interface to send high-level commands

to the vehicle in either simulation or real-time.

The platoon is composed of N followers (Renault ZOE)
plus a manually driven leader (Renault FLUENCE). The
parameters of the vehicles are given in Table I. The parameter
τ is identified from experimental tests.

The platoon is tested inside the Centrale Nantes (ECN)
campus, the map of which is initially available in all cars.

The vehicles are initially parked. While the leader moves,
its path is constructed online and broadcasted to the followers.

The lateral controller proposed in [3] is in charge of
producing the steering angle of the vehicle (by minimizing
both the lateral and angular deviations, ri and ψi, respectively).

The longitudinal controller is implemented at a rate of
100Hz. Control parameters (Table II) guarantee the stability
given in Corollary III.8. The theoretical upper bound of time
delay, satisfying the condition given in (44c), is 12.443ms. For
safety and comfortability, the vehicle velocity and acceleration
are constrained as given in Table II.
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Table I
VEHICLES PARAMETERS

Parameter/Vehicle FLUENCE ZOE

Mass 1605 kg 1428 kg

Width 1.545m 1.945m

Height 1.462m 1.562m

Length 4.748m 4.084m

Rear-axis to Rear-end 1.140m 0.657m

distance between axes 2.701m 2.588m

distance between wheels 1.545m 1.511m

Wheel radius 0.29m 0.29m

Inertia momentum 45.0 kgm2 28.0 kgm2

τ − 0.2

Table II
CONTROLLER PARAMETERS FOR BOTH SIMULATION AND EXPERIMENTS

Parameter Value Parameter Value

ui ∈ [−6, 1]m/s2 vi ∈ [0, 8]m/s

dr,i 10m k3 0.400

k2 0.380 k1 0.018

b 1.1 Q I3N

A. Simulation Results

Three followers are considered in simulation. The reference
and actual trajectories are shown in Fig. 6. Figures 7e and
7f present lateral and angular deviations and illustrate the
capabilities of the lateral controller.

Figures 7a − 7d show the longitudinal behavior. The leader
travels with variable velocity, see Fig. 7b. The vehicles start
from distances different from the desired inter-vehicle distance
and reach the consensus after about 10 s.

Table III
RMSE OF TRACKING ERRORS IN SIMULATION.

Follower
RMSE

es,i[m] eq,i[m/s] ri[m] ψi[rad]

1 0.2103 0.0763 0.0455 0.0092

2 0.0872 0.0297 0.0439 0.0091

3 0.0482 0.0219 0.0441 0.0087

Moreover, the followers achieve consensus in case of accel-
erations perturbations, see Fig. 7a. Table III presents the Root
Mean Squared Error (RMSE) of the tracking errors which
are in the acceptable ranges. The position tracking errors
are attenuated as the RMSE of es,3 < es,2 < es,1, which
enlightens the string stability of the platoon.

B. Experimental Results

For real experiments, we use two Renault ZOE follow-
ers, see Fig. 8. Each one is equipped with a radio module
(ARM-N8-SIGFOX with 868 Mhz 1/2 wave antenna), an IMU
(XSENS MTI-100), a GPS-RTK (PROFLEX-800), a LiDAR

0.9 1 1.1 1.2

0.6

0.65

0.7

0.75

0.8

Figure 6. Path tracking; L: leader actual path, and Fi: follower i actual
path. The followers track the path perfectly.
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0

0.02

0.04
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Figure 7. Platoon simulation results.

Figure 8. Platoon prototype in ECN campus.

(Velodyne VLP-16), and an onboard Computer (Doliath 1000
- Intel Core i5-3610ME 2.10GHz). The software architecture
is developed in C++ with ROS Kinetic on Ubuntu 16.04.

Figures 9e and 9f illustrate the tracking capabilities of the
lateral controller. Figures 9a − 9d illustrate the longitudinal
behavior with a manually-driven leader and accelerations
perturbations (see Fig. 9a). Table IV presents the Root Mean
Squared Error (RMSE) of the tracking errors. They are larger
than in the simulation study but still in the acceptable ranges.
Finally, string stability is validated as the RMSE of es,2 < es,1.
The full studies are depicted in this video.

https://box.ec-nantes.fr:443/index.php/s/sP3oBZeNzRrC4ny
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Figure 9. Platoon experimental results.

Table IV
RMSE OF TRACKING ERRORS IN REAL-TIME

Follower
RMSE

es,i[m] eq,i[m/s] ri[m] ψi[rad]

1 0.3416 0.3189 0.0794 0.0194

2 0.1306 0.1576 0.3801 0.0909

V. CONCLUSIONS

This paper presents a successful application of a distributed
third-order longitudinal controller for a platoon in an urban
environment. We assume a urban environment induces high
curvature path, hence only the predecessor’s position is mea-
sured by an onboard sensor (LiDAR). On the opposite, the full
state of the leader is obtained through communication link.
Conditions for both platoon internal and string stability are
given, under the assumption that all vehicles have the same
dynamics. Stability amounts to impose a higher bound on
the overall time delay of the system. The efficiency of the
proposed approach are demonstrated both in simulation and
experimental studies, with a leader and two followers.
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