
Towards Proactive Navigation: A Pedestrian-Vehicle Cooperation Based
Behavioral Model

Maria Kabtoul1, Anne Spalanzani1 and Philippe Martinet 2

Abstract— Developing autonomous vehicles capable of nav-
igating safely and socially around pedestrians is a major
challenge in intelligent transportation. This challenge cannot
be met without understanding pedestrians’ behavioral response
to an autonomous vehicle, and the task of building a clear
and quantitative description of the pedestrian to vehicle in-
teraction remains a key milestone in autonomous navigation
research. As a step towards safe proactive navigation in a space
shared with pedestrians, this work introduces a pedestrian-
vehicle interaction behavioral model. The model estimates the
pedestrian’s cooperation with the vehicle in an interaction
scenario by a quantitative time-varying function. Using this
cooperation estimation the pedestrian’s trajectory is predicted
by a cooperation-based trajectory planning model. Both parts
of the model are tested and validated using real-life recorded
scenarios of pedestrian-vehicle interaction. The model is capable
of describing and predicting agents’ behaviors when interacting
with a vehicle in both lateral and frontal crossing scenarios.

I. INTRODUCTION

Developing navigation systems for autonomous vehicles in
scenarios including interactions with vulnerable road users
is becoming more and more interesting with the growing
influence of the ”Shared Space” concept in city planning
across Europe [1]. Several studies have proven shared spaces
to be a way of improving road users’ safety and comfort [2].

Shared spaces introduce new dimensions to the navigation
task making it an interdisciplinary challenge, which requires
a study of the interaction between the vehicle and its con-
scious surrounding. Therefore, what was once regarded as a
purely reactive task becomes a cooperative task between the
vehicle and other agents in the space.

Cooperation has been shown to be a natural behavior
in human societies on different scales [3], [4], and the
task of navigating in a shared space can be viewed as
a cooperative task, as it involves pooling and sharing of
resources (space and time) between the pedestrians and the
vehicle. Recently, [5] has presented some advancement in
the domain of cooperative navigation. The work deals with
the navigation task as a cooperative task between the robot
and the human. The proposed method enables the robot to
navigate in a number of indoor scenarios that would fail
otherwise, albeit without presenting a quantitative measure
of this cooperative behavior.

Furthermore, another challenge in cooperative navigation
between a pedestrian and a vehicle is considering the psy-
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Fig. 1. Pedestrian-vehicle behavioral modeling as part of a global work
scheme for proactive navigation

chology of the pedestrian. [6] constructed a framework for
socially-aware navigation for any mobile robot starting from
sociological concepts and proxemics theory. Applications
requiring navigating around humans have exploited this
framework to optimize the navigation task based on new
social measures [7]. Including this aspect in the navigation
scheme is crucial for autonomous vehicle’s as well to ensure
the integration of the latter in our daily life. However, there
is an obvious lack of literature on studying human-vehicle
interaction, cooperation and social rules, compared to that
of human-robot interaction in general [8]. While the former
falls under the same category, it is important to consider
the particularity of the situation when working with an
autonomous vehicle governed by its special properties and
social conventions.

Some recent works have tackled the challenge of under-
standing and modeling the behavior of pedestrians around an
autonomous vehicle. [9] formulates a model for pedestrians
interaction based on social and psychological traits. This is
done by assigning a dominance percentage to each pedes-
trian in an interaction scenario. The main limitation of this
approach is that the model is based on pedestrian-pedestrian
interaction and the assumption that this model will apply
to pedestrian-vehicle interaction. However, the use of the
social and psychological traits to build the model is inspiring
and we construct our pedestrian-vehicle model in a similar
manner. A different method to model pedestrian-vehicle
interaction is based on extending the classical social force
model (SFM). [10] extends the SFM by adding a repulsive
force specific to the vehicle’s influence. This resulted in a
promising model, simulating several interaction scenarios in
a shared space, however it was not validated on real-life data.



In this work, a pedestrian-vehicle behavioral model is
established, in order to be exploited later in a larger scheme
for a proactive navigation application (Fig. 1). Proactive
navigation is a major challenge on the way to integrating
the autonomous vehicle in the shared space as an influential
agent, taking an active role in the scene and not merely
reacting to it.

This is achieved by first building a model capable of esti-
mating the cooperative behavior of an agent in an interaction
scenario with the vehicle (Behavioral Modeling in Fig. 1).
Afterwards, a decision is made on the ability and desirability
of increasing the current cooperation of the agent. In other
words, the vehicle either acts reactively or proactively.

The cooperation model is constructed based on social rules
and cognitive studies [6], as well as the VCI-CITR1 data-
set which includes top-view trajectory data of pedestrians
in groups under vehicle influence in a shared space [11].
The evaluation of the pedestrians cooperation is then used to
predict their trajectories. Later on, based on this cooperation
model, the vehicle’s controls can be computed to achieve a
desired cooperative interaction.

The structure of this paper is as follows: Section II presents
the main concepts and notations used in this work. Sections
III and IV include the methodology of the pedestrian-vehicle
behavioral modeling. Finally, section V discusses the main
results of the work.

II. BACKGROUND, TERMS AND NOTATIONS

For modeling the interactions between the pedestrians, the
concept of the personal zone is used. The personal zone (zone
P in Fig. 2) is a space around the pedestrian in which any
human intrusion would cause discomfort. Different works
may consider different shapes for the personal space around
a pedestrian [6]. However, in this paper, a circular shape for
all the zones is considered as the simplest case.

Inspired by the concept of the personal zone, we introduce
the cooperation zone, which is a new zone specific to the
pedestrian’s interactions with a vehicle (zone C in Fig. 2). As
the pedestrian tends to clear the personal zone from human
intrusion, (s)he tends to clear the cooperation zone of any
vehicle intrusion.

Another concept used in building the model is the concept
of the deformable virtual zone (DVZ). This concept was

Fig. 2. The Deformation of the cooperation zone due to vehicle intrusion

1Vehicle-Crowd Interaction data-set - CITR lab: https://github.
com/dongfang-steven-yang/vci-dataset-citr

first introduced in [12] and it has been used since to model
systems’ maneuvers in both 2D and 3D spaces [13],[14],[15].
The idea is to surround the system under study with a
virtual zone, and any body entering that zone will cause
a deformation. The system can be driven in the direction
minimizing this deformation or changing it in a desired way.

By applying this concept to the two previous zones, four
parameters are defined: two scalars expressing the defor-
mation of the zones and two angles expressing the mean
orientation of the deformation of each zone with respect to
the pedestrian. First, the deformation of the cooperation zone
due to vehicle intrusion (zone IV in Fig. 2): a scalar IV :

IV (t) =
1

2π

∫ 2π

α=0

DV (α, t)

RC
dα (1)

where RC is the radius of the cooperation zone, and
DV (α, t) is the deformation at angle α and time t:

DV (α, t) =

{
RC − dv(α, t) if dv(α, t) < RC

0 Otherwise
(2)

and dv is the deformation radius computed as the distance
between the pedestrian and the deformed zone, as shown in
Fig. 2.

Secondly, the cooperation zone weighted deformation an-
gle is defined as:

ΘV (t) =
1

2π

∫ 2π

α=0
DV (α, t)αdα

IV (t)
(3)

Finally, in a similar manner, IaP (t) and Θa
P (t) are defined

as the deformation of the personal zone and the deformation
angle respectively, of an agent a due to pedestrian intrusion.

III. PEDESTRIAN-VEHICLE COOPERATION MODELING

To model the cooperative behavior, a Cooperation Factor
(CF ) is assigned to each agent a through a simulation
CFa(t). A larger CF indicates a more cooperative behavior
from the vehicle’s point of view. The goal is to find a model
that expresses the cooperation of an agent a as follows:

CFa(t) = fc(P
a
cf (t)) (4)

where fc is a first order linear function:

fc : [0, 1]4×1 → [0, 1]
P acf 7−−→AP acf +B

(5)

A ∈ R1×4, B ∈ R, and the cooperation parameters of
agent a (P acf ) are the following:

P acf (t) =

[
P[a,veh](t),Da(t), IaP (t),

V am(t)

VPmax

]T
(6)

where: P[a,veh](t) is the probability of collision of agent a
with the vehicle, Da(t) is the density of the space surround-
ing the agent, IaP (t) is the deformation of the personal zone
around the agent, V am(t) is the mean velocity of the agent
(m.s−1) and VPmax is the maximum allowed velocity of a
pedestrian in the shared space.

https://github.com/dongfang-steven-yang/vci-dataset-citr
https://github.com/dongfang-steven-yang/vci-dataset-citr


Our choice of parameters can be viewed as a time-varying
extension and a new adaptation of the motion parameters
proposed in [16] to the case of a human-vehicle interaction.
Where the choice of P[a,veh](t) is based on the straightfor-
ward correlation between a cooperative behavior of a pedes-
trian in interaction with a vehicle and the estimated threat
of the situation. Moreover, IaP (t) represents the tendency of
humans to maintain their personal zone clear of interference
[6] using the concept of the deformable virtual zone (DVZ)
[12]. In the same time, IaP (t) is a representation of the other
parameters proposed in [16].

The model parameters: Φ = [A,B] are found by using
a number of simulations including interactions between a
group of pedestrians and a vehicle. A manual annotation
is performed where a mean cooperation value is assigned
to each agent in each simulation depending on the agent’s
behavior. First, knowing each agent’s goal destination in the
simulation, the agent’s trajectory is observed and one of the
four descriptions is assigned to this agent:

• Uncooperative Agent (UC): The agent took the optimal
path to the goal point, without cooperating with the
vehicle.

• Somewhat Cooperative Agent (SC): The agent modified
the optimal path, assuming some cooperation on the
vehicle’s side.

• Highly Cooperative Agent (HC): The agent modified
the optimal path, taking most of the burden in the
pedestrian-vehicle cooperation task.

• Unidentified: cannot assign a clear cooperation descrip-
tion for the specific interaction case.

Afterwards, a mean cooperation value (MCF ) over the
simulation time (T ) is assigned to each agent after discarding
the unidentified cases:

MCF (a) =
1

T

∫ t0+T

t=t0

CFa(t) =


0.2 if agent a is UC
0.5 if agent a is SC
0.8 if agent a is HC

(7)
Fig. 3 shows an example of the cooperative behavior anno-
tation. In Fig. 3.a the agent is uncooperative: the agent plans
a straight path assuming the vehicle will move out of the
way. Whereas, in Fig. 3.b the agent is somewhat cooperative:
the planned path assumes some cooperation on the vehicle’s
side. Finally, in Fig. 3.c the agent is highly cooperative:
the planned path does not assume any cooperation on the
vehicle’s side.

The optimization problem is clearly under-constrained
as a time-varying profile of the cooperation is extracted
using a single value (the mean value of the function). The

Fig. 3. Example of the cooperative behavior annotation.

problem is further constrained by exploiting the fact that
in each scenario the agents exhibiting similar cooperative
behaviors are assigned similar nominal values. Meaning that
the optimal CF model should result in highly correlated
profiles for agents with similar mean cooperation values in
one simulation, and similarly, highly uncorrelated profiles
for agents with contradicting cooperation behaviors (HC and
UC).

Finally, the pedestrian-vehicle cooperation model is ob-
tained by finding the optimal value for the model parameters
Φ = [A,B] such that:

Φ = arg min
Φ
J1(Φ) + J2(Φ) (8)

where:

J1(Φ) =

M∑
s=1

A(s)∑
a=1

[
MCF (a)− 1

T

∫ t0+T

t=t0

fc(P
a
cf (t),Φ)

]
(9)

M is the total number of simulations and A(s) is the total
number of agents in a simulation s, and J2 is the term that
maximizes the cross-correlation (CC) between the identically
annotated profiles and minimizes it between the contradicting
annotations in one simulation:

J2(Φ) =

M∑
s=1

A(s)∑
k=1

A(s)∑
l=1

RCC [CFk, CFl]λ(k, l) (10)

where RCC [CFk, CFl] is the cross-correlation factor be-
tween the cooperation factor profiles of agents (l, k):

RCC [CFk, CFl] =

∫ t0+T

t=t0
CFk(t) ∗ CFl(t)√∫ t0+T

t=t0
CFk(t)

2 ∗
∫ t0+T

t=t0
CFl(t)

2

(11)
and:

λ(k, l) =


0 if k = l

−1 if k 6= l and MCF (k) = MCF (l)

1 if k 6= l and MCF (k) = 1−MCF (l)
(12)

The output of the cooperation model is used next to predict
the behavior of the agent in a particular situation.

IV. COOPERATION-BASED PEDESTRIANS TRAJECTORY
PLANNING MODEL

The main idea behind the model is that the trajectory of an
agent can be predicted knowing two things: a- The state of
the surrounding space which will impose some restrictions
over the movement, and b- How cooperative this particular
agent is.

The trajectory planning model is of the form:

~V a(t+ 1) = fT (~V a(t), Pm(t)) (13)

where ~V a(t + 1) and ~V a(t) ∈ R2 are the predicted and
current velocity of agent a respectively, and fT is a C1

smooth function:

fT : RN → [0, VPmax]× [0, 2π]
Pm 7→ fT (Pm)

(14)



and the model motion parameters: (N = 7)

Pm(t) =



CFa(t).IV (t)
CFa(t).ΘV (t)

[1− CFa(t)] .Θa
goal(t)

[1− CFa(t)] .Da
goal(t)

˙CFa(t)
IaP (t)
Θa
P (t)


(15)

where: Θa
goal(t), D

a
goal(t) are the orientation and the distance

of the agent’s goal point at time t respectively.
Multiplying the parameters resulting from the vehicle’s

influence (IV , ΘV ) by the cooperation factor in the first two
terms refers to the fact that the more cooperative the agents
are, the more their trajectories are influenced by the vehicle.
Similarly, the less cooperative the agents are, the more their
trajectories are influenced by the goal destination. Hence, the
destination parameters (Θa

goal, D
a
goal) are weighted by the

inverse of the cooperation factor in the third and fourth terms.
The remaining terms include the effect of the surrounding
pedestrians and the change in the agent’s cooperation.

V. SIMULATIONS AND RESULTS

Both the cooperation model and the cooperation-based
trajectory planning model are focused on scenarios involving
a group of pedestrians in interaction with a vehicle in a
shared space. Meaning that the space does not constrain the
movement of the pedestrians nor the vehicle, neither does it
prioritize any party. The considered scenarios can include
two types of interactions between a vehicle and a group
of pedestrians: lateral and frontal crossing (Fig. 4). These
two types present the most basic interactions that still occur
frequently in a shared space.

The two models are estimated and validated using the
VCI-CITR data-set [11]. The scenarios in the data-set include
frontal and lateral crossing interactions between a group of
pedestrians (7 to 10 in each simulation) and a vehicle. The
set of scenarios used in this work consists of 22 simulations
divided as follows:

• Frontal Crossing: 4 simulations.
• Lateral Crossing: 10 bidirectional, 4 unidirectional with

a yield driving mode and 4 unidirectional with a normal
driving mode.

Each one of the four previous types is divided into two
sets. An estimation set with 75% of the total number of
simulations in each type, and a validation set with the
remaining 25%.

Fig. 4. Illustration of the pedestrians-vehicle interaction scenarios

A. The pedestrian-vehicle cooperation model

1) Model parameters estimation:
Using all the pedestrians-vehicle interaction scenarios se-
lected from the data-set (both the estimation and validation
sets), a mean cooperation value is assigned to each agent in
each simulation depending on its behavior, as explained in
section III.

Afterwards, using only the data from the estimation set,
a first order linear regression is used to fit the model in (4)
to the annotated data. Meaning that the model parameters
Φ are found using only the first optimization criterion: J1

in (9). The result is then used as an initial condition for a
derivative-free optimization based on the second criterion:
adding J2 in (10) to further restrict the model.

2) Model evaluation:
To evaluate the accuracy of the cooperation model, a cross-
correlation test is implemented. Where for each pair of agents
in each simulation, the cross-correlation factor between their
cooperation profiles is computed.

First, the ground-truth values of the CC factors (RGT ) is
obtained using the earlier annotations as shown in Table I.

Cross-Correlation Factors Ground Truth
Agent Pair Annotation RGT

Similar behavior (SB): [UC, UC] or [HC, HC] or [SC, SC] 1
Inverse Behavior (IB): [HC, UC] or [UC, HC] 0

Unidentified Cases: [Nan, -] or [-, Nana] Nan

TABLE I
OBTAINING THE GROUND-TRUTH VALUES OF THE AGENTS CC FACTORS

After discarding the unidentified cases, the CC factors of
all the agent pairs (RCC) are computed using (11). These
continuous values are then discretized to be compared with
the ground truth values:

RdCC [CFk, CFl] =

{
1 if RCC [CFk, CFl] ≥ 0.5

0 otherwise
(16)

and the behavior of the agent pair is predicted to be similar
(SB) if RdCC = 1, and inverse (IB) if RdCC = 0.

Finally, the confusion matrix [17] is computed as illus-
trated in Table II.

Actual SB Actual IB
Predicted SB True Similar (ts) False Inverse (fi)
Predicted IB False Similar (fs) True Inverse (ti)

TABLE II
OBTAINING THE CONFUSION MATRIX OF THE PREDICTED CC FACTORS

The accuracy of the model is evaluated using:

Accuracy =
ts+ ti

ts+ fs+ ti+ fi
× 100% (17)

The result of evaluating the confusion matrices and the
accuracy of the model is shown in Table III for each type of
the interaction scenarios in the data-set.



Frontal Crossing Lateral Crossing All Scenarios

Confusion
Matrix

44 0
4 5

224 4
60 50

268 4
64 55

Accuracy 92% 81% 83%

TABLE III
THE COOPERATION MODEL ACCURACY BASED ON THE CC TEST

The cooperation model is able to predict the similarities
in agents’ behaviors with a good accuracy in both lateral and
frontal crossing scenarios. Noting that the available scenarios
in the data-set provided a small sample of agent pairs with
inverse behaviors in the frontal crossing simulations, which
leads to an unreliable evaluation of the accuracy for the
frontal crossing cases.

Fig. 5 shows an example of the cooperation factor profiles
for a group of agents in a lateral crossing scenario. It can
be observed in the figure that agents 1, 6, 7, 8 show high
cooperation factor values towards the end of the simulation
(CF > 0.75) as these agents did not pass in front of the
vehicle, but waited for it to pass instead. Agents 3, 5 show
low CF values (CF < 0.3) when passing in front of the
vehicle while it is approaching. On the other hand, agent 2
shows higher CF values than agents 3, 5 as it passed in front
of the vehicle earlier in the simulation when it was further
away. Finally, agent 4 would be expected to have a CF profile
more similar to agent 6, but its somewhat stable cooperation
may be attributed to the fact that it experienced less overall

Fig. 5. The cooperation factor profiles of the agents in a lateral crossing
scenario

acceleration and was further away from the vehicle than
agent 6.

B. The cooperation-based trajectory planning model

1) Model parameters estimation:
Using the estimation set data, a linear regression is used
to find the model parameters in (13) by minimizing the
error between the model output and the trajectories in the
estimation set.

The resulting model is of the form:

fT : R7 → [0, VPmax]× [0, 2π]
Pm 7→CPm + E

(18)

where: C ∈ R2×7, E ∈ R2×1

2) Model evaluation:
To evaluate the model, the Mean Square Error (MSE%)
between the trajectories predicted by the model and the real
trajectories in the validation set is computed. Table IV shows
the MSE% in the linear velocity and the orientation for each
type of interaction scenarios computed using:

MSE% = 1
M

M∑
s=1

1
A(s)

A(s)∑
a=1

1
T (s)

T (s)+t0∑
tk=t0

Xa,s
real(tk)−Xa,s

model(tk)

Xa,s
real(tk)

× 100%

(19)
where M is the total number of simulations, A(s) is the total
number of agents in a simulation s and T (s) is the period of
the simulation which serve as the prediction horizon. Xa,s

real,
Xa,s
model are the real and the model output values respectively

for agent a in simulation s, which is replaced by either the
linear velocity or the orientation.

Frontal Crossing Lateral Crossing All Scenarios
Linear

Velocity
18.42% 22.61% 21.91%

Orientation 2.66% 1.5% 1.69%

TABLE IV
MSE% BETWEEN THE MODEL OUTPUT AND THE REAL TRAJECTORIES

IN THE VALIDATION SET

The model predicts the agents trajectories with a good
accuracy for both the linear velocity and the orientation.
A higher orientation MSE value is observed is the frontal
crossing scenarios. Whereas, a higher linear velocity MSE is
observed for the lateral crossing. This is caused by the agents
experiencing more frequent orientation variations in a frontal
crossing interaction, and more linear velocity variations in a
lateral crossing interaction.

Fig. 6 shows an example of the trajectories resulting from
the model compared to the real trajectories in a frontal
crossing scenario. Despite having a low MSE in the orien-
tation, the effect of the orientation estimation error is still
quite noticeable on the resulting trajectories in the figure,
as it is accumulative. This can be reduced by having a
feedback on the estimation of the real orientation in a real-
time simulation.



Fig. 6. Real and predicted trajectories in a frontal crossing scenario. Black
contour: real, no contour: model output. X: starting point.

C. Effect of changing the cooperation factor

To visualize the effect of changing the cooperation factor
of a group of agents in an interaction scenario, a reference
frontal interaction simulation is generated using the coop-
eration model in (4). Afterwards, two other simulations are
generated using two modified versions of the cooperation
model: one with a 50% increment, and the other with a
50% decrements of the cooperation factor. Fig. 7 shows the
three resulting simulations, where it can be observed that the
simulation with an increased cooperation factor resulted in a
more cooperative behavior on the agents side, moving out of
the vehicle’s way. Fig. 8 also shows the cooperation factors
of the agents corresponding to the three simulations. Note
that even-though an increment/decrement on the cooperation
model is applied, the cooperation factor is still computed
based on the evolution of the simulation.

Fig. 7. Trajectories in the XY plane of the two simulations generated
with increased/decreased cooperation factor values vs. the original reference
simulation

VI. CONCLUSION

In this work, we present a pedestrian-vehicle interaction
model based on the concept of cooperative navigation, which
can be exploited in autonomous navigation systems to ensure
safe and socially-accepted behavior of the vehicle.

The cooperation estimation part of the model performs
well in scenarios including a small group of pedestrians in
interaction with a vehicle, and its output describes the change
in the pedestrian’s behavior using a time-varying cooperation
factor ranging between zero (highly uncooperative) to one
(highly cooperative). In future works, the ability of the
cooperation model to identify groups of agents in dense
spaces can be tested. The main limitation of this model
is not considering other personal factors which cannot be
measured directly from the state of the space, but can
affect an individual’s cooperation in real scenarios. For this
reason, a variable parameter expressing the inner cooperation
of a pedestrian can be added to the cooperation model
in future works. This inner cooperation parameter can be
estimated in real-time and its addition can help the model
generalize to different types of interaction scenarios and real-
life situations.

Furthermore, using the cooperation-based trajectory plan-
ning model, scenarios of lateral and frontal crossing of
pedestrian-vehicle interaction can be simulated. The model is
tested and verified using a set of real-life recorded scenarios.
To our knowledge, this is the first attempt to validate a
pedestrian-vehicle behavioral model on real scenarios, thanks
to the release of the VCI-CITR data-set. Our future work will
seek to generalize the presented method to more complex
interactions that can occur in a shared space.

Fig. 8. The cooperation factors of the agents corresponding to the three
simulations in Fig. 7. Red: reference simulation, blue: simulation generated
with a 50% increment on CF, green: simulation generated with a 50%
decrement on CF.
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