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Abstract—CoMapping is a framework to efficient manage,
share, and merge 3D map data between mobile robots. The
main objective of this framework is to implement a Collaborative
Mapping for outdoor environments. The framework structure is
based on two stages. During the first one, the Pre-Local Mapping
stage, each robot constructs a real time pre-local map of its
environment using Laser Rangefinder data and low cost GPS
information only in certain situations. Afterwards, the second
one is the Local Mapping stage where the robots share their
pre-local maps and merge them in a decentralized way in order
to improve their new maps, renamed now as local maps. An
experimental study for the case of decentralized cooperative 3D
mapping is presented, where tests were conducted using three
intelligent cars equipped with LiDAR and GPS receiver devices
in urban outdoor scenarios. We also discuss the performance of
the cooperative system in terms of map alignments.

I. INTRODUCTION

Mapping the environment can be complex since in certain
situations, e.g. in large regions, it may require a group of
robots that build the maps in a reasonable amount of time with
regards to the expected accuracy [1]. A set of robots extends
the capability of a single robot by merging measurements
from group members, providing each robot with information
beyond their individual sensors range. This leads to a better
usage of resources and execution of tasks which are not
feasible by a single robot. Multi-robot mapping is considered
as a centralized approach when it requires all the data to be
analysed and merged at a single computation unit. Otherwise,
in a decentralized approach, each robot builds their local
maps independent of one another and merge their maps upon
rendezvous.
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Fig. 1. Scheme of our CoMapping System considering a decentralized case

Figure 1 depicts the scheme of work proposed in this article
for a group of robots where it was assumed that ZOE robot
have direct exchange of data (as pose, size and limits of maps)
with FLUENCE and GOLFCAR. And by contrast, FLUENCE
and GOLFCAR are in a scenario of non-direct communication,

with limited access conditions to a same environment, and
without any meeting point for map sharing between these
mobile units.

Following this scenario, this paper presents the development
and validation of a new Cooperative Mapping framework
(CoMapping) where:
• In the first stage named “Pre-Local Mapping”, each

individual robot builds its map by processing range
measurements from a 3D LiDAR moving in six de-
grees of freedom (6-DOF) and using low cost GPS data
(GPS/GGA).

• For the second stage named “Local Mapping”, the robots
send a certain part of their pre-local maps to the other
robots based on our proposed Sharing algorithm. The
registration process includes an intersecting technique of
maps to accelerate processing.

This work is addressed to outdoor environments applications
denied of a continuous GPS service by using a decentralized
approach. Our proposal has been tested and validated in an
outdoor environment, with data acquired on the surroundings
of the ECN (École Centrale Nantes) campus.

II. RELATED WORKS

In a scenario of cooperative mapping, robots first operate
independently to generate individual maps. Here the regis-
tration method plays a fundamental role. Many registration
applications use LiDAR as a Rangefinder sensor for map
building [2]. However, a high Lidar scan rate can be harmful
for this task, since it may create distortion in the map con-
struction. For those cases, ICP approaches [3] can be applied
to match different scans. Implementations, for 2 or 3-axis and
geometric structures matches of a generated local point set,
were presented in [4] [5]. Those methods use batch processing
to build maps offline. In the first stage of our implementation
we reconstruct maps as 3D point clouds in real-time using 3-
axis LiDAR by extraction and matching of geometric features
in Cartesian space based in [6]. Then our system uses GPS
position data to coarsely re-localize that cloud in a global
frame.

Once all the maps have been projected on a global frame,
they have to be merged together to form a global map.
In this context, [7] proposed a method for 3D merging of
occupancy grid maps based on octrees [8] for multi-robots.



The method was validated in a simulation environment. For
the merging step, an accurate transformation between maps
was assumed as known, nevertheless in real applications, that
information is not accurate, since it is obtained by means of
uncertain sensor observations. In our case, real experiments
were performed for a multi-robot application without perfect
knowledge of the transformations between the maps. In [9] a
pre-merging technique is proposed, which consists in selecting
the subset of points included in the common region between
maps bounding. Then, a centralized merging process refines
the transformation estimate between maps by ICP registration
[3]. We use a variation of [9] but previously we include an
efficient technique to exchange maps between robots in order
to optimize bandwidth.

Other solutions may be used in order to merge maps for
a group of robots with a centralized approach [10], [9],
[11], which are generally found in the literature. However
this kind of solutions can compromise the team performance
because merging and map construction depend exclusively
on a processing unit. Another approach less explored and
analysed is the decentralized one [12], [1], [13]. The advantage
in this case lies in the independence and robustness of the
system because map construction is not affected even if one
of the robots has failures in communication or processing,
since map merging can be executed in different units after
traversing the environment. This kind of approach can consider
a meeting point for the vehicles in order to exchange their
maps and other data. This approach is also investigated in our
final experiments.

III. METHODOLOGY

A. Pre-Local Mapping Stage

Each mobile robot executes a Pre-Local Mapping system
using data provided by a LidarSLAM process. We just use
coarse GPS position to project the generated map on a global
frame. In order to reduce implementation costs, a beneficial
cheap GPS service was used, specifically GPS/GGA (Global
Positioning System Fix Data) at an accuracy of about 2 to 7
meters. Another advantage of our Pre-Local Mapping Stage
is its versatile configuration, since it does not depend on a
specific LidarSLAM method.

A modified version of the LOAM technique1 [6] was thus
chosen as the LidarSLAM method for this work.
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Fig. 2. Architecture of Pre-Local Mapping Stage

Figure 2 illustrates the block diagram of this stage, where
P̂ is the raw point cloud data generated by a laser scanner in
the beginning. The accumulated point cloud up to sweep k

1LOAM: https://github.com/laboshinl/loam velodyne

is denoted Pk and processed by a Lidar Odometry algorithm,
which runs at a frequency around 10Hz and computes the lidar
motion (transform Tk) between two consecutive sweeps. The
distortion in Pk is corrected using the estimated lidar motion.
The resulting undistorted Pk is processed at a frequency of
1Hz by an algorithm knows as Lidar Mapping, which performs
the matching and registration of the undistorted cloud onto
a map. Using the GPS information of the vehicle pose, it
is possible to coarsely project the map of each robot into
common coordinate frame for all the robots. This projected
cloud is denoted as the Pre-Local Map.

1) Lidar Odometry step: The step begins with feature
points extraction from the cloud Pk. The feature points are
selected from sharp edges and planar surface patches. Let us
define S as the set of consecutive points i returned by the
laser scanner in the same scan, where i ∈ Pk. An indicator
proposed in [6] evaluates the smoothness of the local surface
as following:

c =
1

| S | . ‖ XL
(k,i) ‖

‖
∑

j∈S,j 6=i

(XL
(k,i) −X

L
(k,j)) ‖, (1)

where XL
(k,i) and XL

(k,j) are the coordinate of two points
from the set S.

Moreover, a scan is split into four subregions to uniformly
distribute the selected feature points within the environment.
In each subregion is determined maximally two edge points
and four planar points. The criteria to select the feature points
as edge points is related to maximum c values, and by contrast
the planar points selection to minimum c values. When a point
is selected, it is thus mandatory that none of its surrounding
points are already selected. Besides, selected points on a
surface patch cannot be approximately parallel to the laser
beam, or on boundary of an occluded region.

When the correspondences of the feature points are found,
then the distances from a feature point to its correspondence
are calculated. Those distances are named as dE and dH for
edge points and planar points respectively. The minimization
of the overall distances of the feature points leads to the Lidar
odometry. That motion estimation is modeled with constant
angular and linear velocities during a sweep.

Let us define Ek+1 and Hk+1 as the sets of edge points and
planar points extracted from Pk+1, for a sweep k+1. The lidar
motion relies on establishing a geometric relationship between
an edge point in Ek+1 and the corresponding edge line:

fE(X
L
(k+1,i), T

L
k+1) = dE , i ∈ Ek+1, (2)

where TL
k+1 is the lidar pose transform between the starting

time of sweep k + 1 and the current time ti. Analogously,
the relationship between a planar point in Hk+1 and the
corresponding planar patch is:

fH(XL
(k+1,i), T

L
k+1) = dH , i ∈ Hk+1, (3)

https://github.com/laboshinl/loam_velodyne


Equations (2) and (3) can be reduced to a general case for
each feature point in Ek+1 and Hk+1, leading to a nonlinear
function:

f(TL
k+1) = d, (4)

in which each row of f is related to a feature point, and d
possesses the corresponding distances. Levenberg-Marquardt
method [14] is used to solve the Equation (4). Jacobian
matrix (J) of f with respect to TL

k+1 is computed. Then, the
minimization of d through nonlinear iterations allows solving
the sensor motion estimation:

TL
k+1 ←− TL

k+1 − (JT J + λdiag(JT J))−1JT d, (5)

where λ is the Levenberg-Marquardt gain.
Finally, the Lidar Odometry algorithm produces a pose

transform TL
k+1 that contains the lidar tracking during the

sweep between [tk+1 , tk+2] and simultaneously an undis-
torted point cloud P̄k+1. Both outputs will be used by the
Lidar Mapping step, detailed in the next section.

2) Lidar Mapping step: This algorithm is used only once
per sweep and runs at a lower frequency (1 Hz) than the Lidar
Odometry step (10 Hz). The technique matches, registers and
projects the cloud P̄k+1 provided by the Lidar Odometry as a
map into the coordinate system of a vehicle, noted as {V }. To
understand the technique behaviour, let us defined Qk as the
point cloud accumulated until sweep k, and TV

k as the sensor
pose on the map at the end of sweep k, tk+1. The algorithm
extends TV

k for one sweep from tk+1 to tk+2, to get TV
k+1,

and projects P̄k+1 on the robot coordinate system, denoted as
Q̄k+1. Then, by optimizing the lidar pose TV

k+1, the matching
of Q̄k+1 with Qk is obtained.

In this step the feature points extraction and their correspon-
dences are calculated in the same way as in Lidar Odometry,
the difference just lies in that all points in Q̄k+1 share the time
stamp, tk+2.

In that context, nonlinear optimization is solved also by the
Levenberg-Marquardt method [14], registering Q̄k+1 on a new
accumulated cloud map. To get a uniform points distribution,
down-sampling is performed to the cloud using a voxel grid
filter [15] with a voxel size of 5 cm cubes.

Finally, since we have to work with multiple robots, we use
a common coordinate system for their maps, {W}, coming
from rough GPS position estimation of the 1st accumulated
cloud frame Qk.

B. Local Mapping Stage

In this section the Local Mapping is detailed, considering
that the process is executed on the robot “i” with a shared map
by robot “n” (see Figure 3).

1) Map Sharing Step: When the generation of Pre-Local
Maps is done, the robots would have to exchange their maps
to start the map alignment process. In several cases the
sharing and processing of large maps can affect negatively
the performance of the system with respect to runtime and
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Fig. 3. Architecture of Local Mapping Stage for one robot “i”, receiving
map data from another robot “n”.
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memory usage. A sharing technique is presented in order to
overcome this problem, in which each vehicle only sends a
certain subset of points of its map to the other robots. When
the maps are ready for transferring, they are compressed in
octree format using OctoMap library [8] in order to optimize
the robot-communication.

The proposed sharing technique is based on the method
developed in [16]. Figure 4 depicts the behaviour, wherein
point clouds A and B represent the Pre-Local Maps from two
robots “i” and “n” respectively. In each robot the algorithm
first receives only information about the 3D limits of the
maps (i.e. bounding cubic lattice of the point clouds) and then



decides what part of its map will be shared to the other robot.
These limits were determined previously using the function
GetBounds() that returns two vectors: in the first one, Amin,
their components represent the lowest displacement from the
origin along each axis in the point cloud; and the other vector,
Amax, is related to the point of the highest displacement.

Algorithm 1: Selection of Point Cloud to share with another
robot.

Pseudo-code of the map sharing step is described in Al-
gorithm 1. Inside the code, the function GetV alues() sorts
in ascending order the array of components along each axis
of the vectors Amin, Amax, Bmin, Bmax and returns
the 2nd and 3rd values from this sorted array, denoted V 2
and V 3 respectively. Then for each axis, the average of the
two values obtained by the function GetV alues() is used
in order to determine the Cartesian coordinate (Cx,Cy ,Cz)
of the geometric center of the sharing region S. This map
sharing region is a cube whose edge length 2L is determined
iteratively. The Points from A contained in this cube region are
extracted to generate a new point cloud Asel. In each iteration
the cube region is reduced until the number of points from Asel

is smaller than the manual parameter Npmax, which represents
the number of points maximum that the user wants to exchange
between robots. Once the loop ends, Asel is sent to the other
robot. Analogously on the other mobile robot “n”, the points
from B included in this region are also extracted to obtain
and share Bsel with the another robot “i”. Finally, the clouds
Asel and Bsel are encoded and sent in octree format to reduce

the usage of bandwidth resources of the multi-robot network.
Then maps are decoded and reconverted in 3D point cloud
format to be used in the Registration step.

2) Registration Step: The intersecting volumes of the two
maps Asel and Bsel are computed and denoted as Aint and
Bint, obtained from the exchanged map bounds [9]. In order to
improve the computation speed, point clouds Aint to Bint first
go through a down-sampling process to reduce the number of
points in the cloud alignment. Feature descriptors as surface
normals and curvature are used to improve the matching,
which is the most expensive stage of the registration algorithm
[17]. These generated normal-point clouds AintN and BintN

are then used by Iterative Closest Point (ICP) algorithm [18].
This method refines an initial alignment between clouds, which
basically consists in estimating the best transformation to align
a source cloud BintN to a target cloud AintN by iterative
minimization of an error metric function. At each iteration, the
algorithm determines the corresponding pairs (b’, a’), which
are the points from AintN and BintN respectively, with the
least Euclidean distance.

Then, least squares registration is computed and the mean
squared distance E is minimized with regards to estimated
translation t and rotation R:

E(R, t) =
1

Npb’

Npb’∑
i=1

‖ a’i − (R b’i + t) ‖2, (6)

where Npb′ is the number of points b’.
The resulting rotation matrix and translation vector can

be express in a homogeneous coordinate representation (4×4
transformation matrix Tj) and are applied to BintN . The
algorithm then re-computes matches between points from
AintN and BintN , until the variation of mean square error
between iterations is less than a defined threshold. The final
ICP refinement for n iterations can be obtained by multiplying
the individual transformations: TICP =

∏n
j=1 Tj . Finally the

transformation TICP is applied to the point cloud Bsel to align
and merge with the original point cloud A, generating the Lo-
cal Map AL then. Each robot thus performed its own merging
according to data from other agents within communication
range. We now present the corresponding experimental results.

IV. RESULTS

Fig. 5. Vehicles used in the tests: ZOE, FLUENCE and GOLFCAR.

In this section we show results validating the presented
concepts and the functionality of our system. As we consider
ground vehicles, the ENU (East-North-Up) coordinate system
is used as external reference of the world frame {W}, where
y-axis corresponds to North and x-axis corresponds to East,



Fig. 6. Paths followed by ZOE (green one), FLUENCE (red one) and
GOLFCAR robot (blue one) during experiments. Image source: Google Earth.

but coinciding its origin with the GPS coordinate [Longitude:
-1.547963; Latitude: 47.250229].

The proposed framework is validated considering three
vehicles for experiments, a ZOE Renault, a FLUENCE Renault
and a GOLFCAR (see Figure 5) customized and equipped with
a Velodyne VLP-16 3D LiDAR, with 360◦ horizontal and a 30◦

vertical field of view. All data come from the campus outdoor
environment in an area of approximately 1000m x 700m. The
vehicles traversed that environment following different paths
and collected sensor observations about the world, running
pre-local mapping process in real-time.

For the validation, the vehicles build clouds from different
paths (see Figure 6). Results of the Pre-Local Mapping of this
experiment are shown in Figure 7.

Fig. 7. Top view of unaligned Pre-Local Maps generated by ZOE (green
one), FLUENCE (red one) and GOLFCAR robot (blue one) projected on
common coordinate system

Figure 7 also depicts the “sharing region” determined during
the map exchange process in each robot. It was assumed that
all the vehicles have the constraint of exchanging a maximum
number of points Npmax of 410000 to simulate restrictions in
resources of bandwidth network or memory usage in robots.
The tests were divided in two. In the first one, test A, ZOE and
FLUENCE car define a meeting point to transfer their maps.
Around this position, ZOE car exchanges and updates its local
map and then a new point of rendezvous for map sharing is
determined by ZOE and GOLFCAR in the following test B.

As we assume a decentralized scenario, each robot performs
a relative registration process considering its Pre-Local map
as target cloud for alignment reference. Each vehicle also
executes the intersecting algorithm and then an ICP refinement
to obtain an improved transform between each map. Figures
8 and 9 depict in yellow color the intersection between the
shared point clouds during the alignment process. Once the
refined transformation is obtained, it is then applied to the
shared map.

Fig. 8. Test A: Alignment of the intersecting regions with ICP refinement
performed in ZOE robot, when it received the FLUENCE map (a) Green and
red maps represent the target and source clouds pre ICP, top view (b) Green
and blue maps represent the target and aligned source clouds post ICP, top
view. Alignment can be better appreciated in yellow box

Fig. 9. Test B: Alignment of the intersecting regions with ICP refinement
performed in ZOE robot, when it received the GOLFCAR map (a) Green and
red maps represent the target and source clouds pre ICP, top view (b) Green
and blue maps represent the target and aligned source clouds post ICP, top
view. Alignment can be better appreciated in yellow box

Quantitative alignment results of the ICP transformation
relative to each robot are shown in Tables I and II. All
the ICP transformations are expressed in Euler representation
(x, y, z, roll, pitch, yaw) in meters and radians. The first row
of Table I corresponds to the merging process in ZOE, when
this robot received the map shared by FLUENCE and it
aligned that map to its own pre-local map. The decentralized
system demonstrated alignments in opposite directions for
both robots, since each robot performs the merging process
considering its Pre-Local map as target cloud for alignment
reference. Table II also reveals this symmetrical behavior,
where the algorithm on ZOE converged to the value of
displacement of -0.1782 m and -3.2605 m along the x-axis and
y-axis respectively. On the other hand on the GOLFCAR robot,
the algorithm converged to a value of displacement of 0.2213
m and 3.3857 m along the x-axis and y-axis respectively,
reconfirming relative alignments in opposite directions.

Figure 10 shows one of the merging results corresponding
to the ZOE robot, in which the cloud represents the final



TABLE I
TEST A: RELATIVE ICP TRANSFORMATIONS IN EULER FORMAT BETWEEN

ZOE AND FLUENCE ROBOT

Robot x y z roll pitch yaw
ZOE -1.6517 3.0966 -9.9729 0.0132 0.0730 0.0022
FLU. 4.5748 -4.4556 6.6061 -0.0054 -0.0624 -0.0084

TABLE II
TEST B: RELATIVE ICP TRANSFORMATIONS IN EULER FORMAT BETWEEN

ZOE AND GOLFCAR ROBOT

Robot x y z roll pitch yaw
ZOE -0.1782 -3.2605 1.7771 -0.0516 0.0115 0.0356
GOL. 0.2213 3.3857 -2.6070 0.0411 -0.0256 -0.0380

Fig. 10. Top view of final 3D Local Map of ZOE robot (color). Uniform
green point clouds come from the aligned maps of FLUENCE (left) and
GOLFCAR (right)

3D local map projected on a 2D map in order to make
qualitative comparisons. Experiments showed the impact of
working with intersecting regions, since it can accelerate
the alignment process by decreasing the number of points
to compute. In the same way, tests demonstrated that our
proposed map sharing technique developed a transcendental
position in the performance of the entire mapping collaborative
system by reducing the map size to transmit. Finally, the
sharing algorithm proves to be a suitable candidate to exchange
efficiently maps between robots considering the use of clouds
of large dimensions.

V. CONCLUSION AND FUTURE WORK

A framework was presented for decentralized 3D mapping
system for multiple robots. The work has showed that maps
from different robots can be successfully merged, from a
coarse initial registration and a suitable exchange of data
volume. The system uses initially range measurements from a
3D LiDAR, generating a pre-local maps for each robot. The
complete system solves the mapping problem in an efficient
and versatile way that can run in computers dedicated to three
vehicles for experiments, leading to merge maps independently
on each vehicle for partially GPS-denied environments. Future
work will focus on the analysis of the consistency of the final
maps estimated on each robots
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