
Efficient Decentralized Collaborative Mapping for
Outdoor Environments

Luis Contreras
Laboratoire des Sciences du

Numérique de Nantes (LS2N)

École Centrale de Nantes (ECN)

44300 Nantes, France

Email: Luis.Contreras@ls2n.fr

Olivier Kermorgant
Laboratoire des Sciences du

Numérique de Nantes (LS2N)

École Centrale de Nantes (ECN)

44300 Nantes, France

Email: Olivier.Kermorgant@ls2n.fr

Philippe Martinet
INRIA Sophia Antipolis

06902 Sophia Antipolis, France

Laboratoire des Sciences du

Numérique de Nantes (LS2N)

École Centrale de Nantes (ECN)

44300 Nantes, France

Email: Philippe.Martinet@inria.fr

Abstract—An efficient mapping in mobile robotics may involve
the participation of several agents. In this context, this article
presents a framework for collaborative mapping applied to
outdoor environments considering a decentralized approach. The
mapping approach uses range measurements from a 3D lidar
moving in six degrees of freedom. For that case, each robot
performs a local SLAM. The maps are then merged when
communication is available between the mobile units. This allows
building a global map and to improve the state estimation of each
agent. Experimental results are presented, where partial maps of
the same environment are aligned and merged coherently in spite
of the noise from the lidar measurement.

I. INTRODUCTION

In the area of mobile robots, many tasks are related with

exploration and re-construction of the environments. These

tasks involve problems as Simultaneous Localization and

Mapping (SLAM), in which the mobile robot is placed in

an unknown environment and must estimate the map of its

surroundings as well as its pose (position and orientation)

relative to the map. This is a complex task since determining

the robot’s localization typically requires prior knowledge of

its surroundings, and on the other hand, map building of its

surroundings requires knowledge of the robot’s localization.

In order to build a map, the robot has to traverse the unknown

environment and incrementally collect measurements of its

surroundings and new pose. Furthermore, the presence of

uncertainty and noise in the measurements from the sensors,

produces accumulate errors over time that consequently distort

the robots estimate of its position and map.

The mapping of a large area may require the use of a group

of robots that build the maps in a reasonable amount of time

considering accuracy in the map construction [1]. So, a set

of robots extends the capability of a single robot by merging

measurements from group members, providing each robot with

information beyond their individual sensors range. This allows

a better usage of resources and executes tasks which are not

feasible by a single robot. Multi-robot mapping is considered

as a centralized approach when it requires all the data to be

analysed and merged at a single computation unit.

Otherwise, in a decentralized, each robot builds their local

maps independent of one another and merge their maps upon

rendezvous.

�������	
�	�������	
�		
��	���
�	
�
���	
�����	�������

���	�
�
�

����������	�����
 ��	�	
�
 ��	!������

"��	�
�
�

����������	�����
 ��	�	
�
 ��	!������

#��	�
�
�

����������	�����
 ��	�	
�
 ��	!������

$��	�
�
�

����������	�����
 ��	�	
�
 ��	!������

Fig. 1. Scheme our Collaborative Decentralized Mapping System.

Figure 1 shows the scheme of work proposed in this article

for a group of robots where most of them have a direct

exchange of data (as pose, size and limits of maps, and other

kind of information); and by contrast another cluster of them

(2nd and 3rd robot) can be present in a scenario of indirect

communication due for instance to access conditions to a

same environment that avoid defining a meeting point between

these mobile units. For that case, we propose a collaborative

decentralized mapping framework for efficient merging of 3D

maps where:

• In the first stage named “Pre-Local Mapping”, each indi-

vidual robot builds its map and sends a certain part of it to

the other robots based on our proposed Sharing algorithm.

Low-cost GPS data is used for the first alignment between

maps represented in a global frame.

56

2018 Second IEEE International Conference on Robotic Computing

0-7695-6370-8/18/31.00 ©2018 IEEE
DOI 10.1109/IRC.2018.00017

• For the second stage named “Local Mapping”, the reg-

istration process considers the first alignment previously

mentioned and includes an intersecting technique of maps

to reduce runtime.

This article is organized as follows: Section II presents

the current works developed in this field. We then detail our

approach in Section III. Finally, experimental results are

presented and analysed in Section IV, from data acquired on

the campus of École Centrale de Nantes.

II. RELATED WORKS

One of the topic to consider in mapping is the type of

sensor used in the robot navigation. In this context, lidar

has become a useful range sensor for these applications [2]

[3]. Nonetheless, when the lidar scan rate is higher than its

tracking, distortion may occur in the map building. In this

case, standard registration methods as ICP [4] can be applied

to match laser returns for different scans.

Bosse and Zlot [5] [6] [7] use a 2-axis lidar and matches

geometric structures of a set local point generated by the

lidar in order to build a point cloud [7]. The mapping system

includes an IMU and uses loop closure to reconstruct large

maps. This approach is based on batch processing to build

maps with accuracy and hence is not applicable to real-time

mapping.

In the proposed approach, we consider a Pre-Local Mapping

stage, which extracts and matches geometric features in Carte-

sian space based on [8]. Our system uses these pre-local clouds

inside a more global (at least 2 maps) registration process,

ensuring both computation speed and accuracy.

The map representation is crucial when merging and com-

munication are considered. Occupancy grids and feature maps

are popular approaches in this domain [9]. In this context,

in [10], the authors presented method for 3D merging of

occupancy grid maps based on octrees [11], [12], [13], [14],

[15], [16]. The corresponding experiments consisted in using

two simulated robots that traverse an simulated environment

and take sensor observations about the scenario for the maps

construction. These maps are stored in files and finally merged

offline. Furthermore, an accurate transformation between maps

was supposed being known, however in real applications, the

transform matrix between two robots map is usually only

coarsely estimation from sensor observations. This work was

extended in [17], where the subset of points included in the

common region is extracted prior to the merge. Then, the

merging process refines the transformation estimate between

maps by ICP registration [4]

In this paper, we assume provisionally an environment

representation of 3D point clouds format during the process

in order to validate the initial proposed framework.

We also consider a technique to exchange maps between

robots while optimizing the registration step. The overall

method is part of the decentralized paradigm (used for instance

in [18]), where map merging is executed in different units

while traversing the environment. In order to ensure commu-

nication range, we consider a rendezvous point for the vehicles

for exchanging their maps and other data.

We now present an overview of our contribution.

III. METHODOLOGY

In this section the general overview of the approach is first

described. We then focus on each of the stages leading to

merged maps for each vehicles according to their communi-

cation capabilities.

A. Overview

�������

��������	
��
�
���	���

��������
�����	
�

 ��
Pre-Local Map

(Point cloud)

�

Local Map

(Point cloud)

����
�����	
�

 ��

�

 ��

�

 ��

�

Lidar GPS data

�������

��������	
��
�
���	���

��������
�����	
�

 ��
Pre-Local Map

(Point cloud)

�

Local Map

(Point cloud)

����
�����	
�

Map

 Limits

Maps

 ��

�

 ��

�

 ��

�

Lidar GPS data

������	

��������	
��
�
���	���

��������
�����	
�

 ��
Pre-Local Map

(Point cloud)

�

Local Map

(Point cloud)

����
�����	
�

 ��

�

 ��

�

 ��

�

Lidar GPS data

������

��������	
��
�
���	���

��������
�����	
�

 �� ��
Pre-Local Map

(Point cloud)

�

Local Map

(Point cloud)

����
�����	
�

Map

 Limits

Maps

 �� ��

�

 ��

�

 ��

�

Lidar GPS data

Fig. 2. Final structure for a team of robots.

Figure 2 depicts the final idea of our collaborative mapping

system applied on a group of robots. Each mobile robot

executes the mapping task using its on-board lidar sensor

and computer. In the beginning, each vehicle independently

estimates the 3D-map of the environment using a variant of

LOAM (Lidar Odometry And Mapping) technique [8], [19].

This method constructs an environment map represented in the

respective local coordinate systems of each vehicle using range

measurements from a 3D lidar moving in 6-DOF. Then all the

robots use a common reference frame for their maps, where the

absolute pose information for each robot is provided by GPS

prior to the map construction. All this first stage is denoted as

Pre-Local Mapping and those initial maps generated in point

cloud format are indicated as Pre-Local maps.

Afterwards all the vehicles send information about their Pre-

Local maps (as bounding cubic lattice of the point cloud) to a

Sharing Algorithm, which processes that data for then deciding

what part of the Pre-Local map is sent to another robot.

For the next stage, indicated as the Local Mapping, it is

necessary for robots to merge the resultant Pre-Local maps

into one large and new Local map. During this registration

process, a Map Intersecting Algorithm is executed to extract

the intersecting volumes from each map. Finally, a refinement

for maps alignment is performed by an Iterative Closest Point

(ICP) algorithm, which leads to a consistent local map.

We now detail each mentioned stages.

B. Pre-Local Mapping Stage

As previously mentioned, each mobile robot executes a Pre-

Local Mapping system based on the LOAM method [8] using

as devices: a computer, a lidar sensor and a GPS receiver

(specifically GGA type: Global Positioning System Fix Data).

57

����������	��
�����
���
���

�����
�
�����
��

����
�����	�
	���

�������	�
��
�
����������

����� ������
����
���

������
�������

��������

����
�
��������
���
��	��	�

Fig. 3. Architecture of Pre-Local Mapping Stage based on [8].

Figure 3 illustrates the block diagram of this stage, where P̂
is the generated point cloud. For each sweep, P̂ is registered

in the lidar coordinates {L}. The combined point cloud

during each sweep k generates Pk. This Pk is processed

by an algorithm named Lidar Odometry, which runs at a

frequency around 10 Hz and receives this point cloud and

computes the lidar motion (pose transform Tk) between two

consecutive sweeps.The distortion in Pk is corrected using

the estimated lidar motion. The resultant undistorted Pk is

processed at a frequency of 1 Hz by performing the matching

and registration of the undistorted cloud onto a map. Finally,

using the GPS information of the vehicle pose during, it is

possible to coarsely project the map of each robot into a

common coordinate frame for all the robots. This projected

cloud is denoted as the Pre-Local Map.

We now detail the lidar odometry and mapping scheme that

is used to build the Pre-Local map of each robot.

1) Lidar Odometry: Lidar odometry is based on feature

points extraction from the point cloud. The feature points are

selected for sharp edges and planar surface patches. For that,

we consider that S is the set of consecutive points i returned by

the laser scanner in the same scan, where i ∈ Pk. An indicator

to evaluate the smoothness of the local surface is defined as:

c =
1

| S | . ‖ XL
(k,i) ‖

‖
∑

j∈S,j �=i

(XL
(k,i) −XL

(k,j)) ‖, (1)

where XL
(k,i) and XL

(k,j) are the coordinates of two points from

the set S.

Moreover, a scan is split into four subregions to uniformly

distribute the selected feature points within the environment.

The criteria to select the feature points as edge points is

related to maximum c values, and by contrast the planar points

selection to minimum c values. When a point is selected, it is

thus mandatory that none of its surrounding point are already

selected, the other conditions being that selected points on a

surface patch can not be approximately parallel to the laser

beam, or on boundary of an occluded region.

When the correspondences of the feature points are found

based on the method proposed in [8], then the distances from

a feature point to its correspondence are computed. The min-

imization of the overall distances of the feature points allows

to obtain the so-called lidar odometry. That motion estimation

is modelled with constant angular and linear velocities during

a sweep.

Let us define Ek+1 and Hk+1 as the sets of edge points

and planar points extracted from Pk+1, for a sweep k+1. The

lidar odometry relies on establishing a geometric relationship

between an edge point in Ek+1 and the corresponding edge

line:

fE(X
L
(k+1,i), T

L
k+1) = dE , i ∈ Ek+1, (2)

where TL
k+1 is the lidar pose transform between the starting

time of sweep k + 1 and the current time ti. T
L
k+1 contains

information about the sensor rigid motion in 6-DOF, TL
k+1 =

[tx, ty, tz, θx, θy, θz]
T , in which tx, ty , and tz are translations

along the axes x, y, and z from {L}, respectively, and θx, θy ,

and θz are rotation angles, following the right-hand rule.

Similarly, the relationship between an planar point in Hk+1

and the corresponding planar patch is:

fH(XL
(k+1,i), T

L
k+1) = dH , i ∈ Hk+1, (3)

Equations (2) and (3) can be reduced to a general case for

each feature point in Ek+1 and Hk+1, obtaining a nonlinear

function, as:

f(TL
k+1) = d, (4)

in which each row of f is related to a feature point, and

d possesses the corresponding distances. The Levenberg-

Marquardt method [20] is used to solve Equation (4). For

that case, the Jacobian matrix (J) of f with respect to TL
k+1

is computed. Then, the minimization of d through nonlinear

iterations allows to solve the sensor motion estimation,

TL
k+1 ←− TL

k+1 − (JT J + λdiag(JT J))−1JT d, (5)

where λ is the Levenberg-Marquardt gain.

Finally, the Lidar Odometry algorithm produces a pose

transform TL
k+1 that contains the lidar tracking during the

sweep between [tk+1 , tk+2] and simultaneously an undis-

torted point cloud P̄k+1. Both outputs will be used by the

Lidar Mapping algorithm, detailed in the next section.

2) Lidar Mapping: This algorithm is used only once per

sweep and runs at a lower frequency (1 Hz) than the Lidar
Odometry algorithm (10 Hz). The technique matches, registers

and projects P̄k+1 (provided by the Lidar Odometry algorithm)

as a map into the own coordinates system of a vehicle, defined

as {V }. To understand the technique behaviour, let us define

Qk as the point cloud accumulated until sweep k, and TV
k as

the sensor pose on the map at the end of sweep k, tk+1. The

algorithm extends TV
k for one sweep from tk+1 to tk+2, to

get TV
k+1, and projects P̄k+1 on the robot coordinates system

{V }, denoted as Q̄k+1. Then, by optimizing the lidar pose

TV
k+1, the matching of Q̄k+1 with Qk can be obtained.

In this step the feature points extraction and the finding

feature points correspondences are computed in the same way

as in previous step (Lidar odometry), the difference just lies

in that all points in Q̄k+1 share the time stamp, tk+2.

In that case, the nonlinear optimization is solved also by

the Levenberg-Marquardt method, registering Q̄k+1 on the a

new accumulated map. To get a points uniform distribution,

58

down-sampling process is performed to the map cloud using a

voxel grid filter [21] with a voxel size of 5cm cubes. Finally,

since we have to work with multiple robots, we use a common

coordinates system for their maps, {W}, coming from rough

GPS position estimation.

We now present the map sharing step, happening when two

robots are in communication range.

C. Map Sharing

�������	
��	
�
��������������	�

�����
������

�������	
��	
�
��������������	�

�����
������

�������	
��	
�
��������������	�

�����
������

�������	
��	
�
��������������	�

�����
������

���������������
���������
������������

���������������
���������
������������

����������

��	����	������������ ��	����	������

������

��

��

�� ��

����������

Fig. 4. Graphical representation of the Map Sharing technique (Top view
of plane XY). Aminx, Amaxx, Bminx and Bmaxx represent the point
cloud limits along the x-axis.

After the generation of Pre-Local Maps, the robots would

have to exchange their maps to start the maps alignment

process. In several cases the sharing and processing of maps of

large dimensions can limit negatively the performance of the

system with respect to runtime and memory usage. A sharing

technique is presented in order to overcome this problem, in

which each vehicle builds only sends a certain part of its map

to the other robots.

Figure 4 depicts the behaviour of the proposed method, in

which point clouds A and B represent the Pre-Local Maps

from two different robots “i” and “n” respectively. In each

robot the algorithm first receives only information about the

3D limits of the maps (i.e. bounding cubic lattice of the point

clouds) and then decides what part of its map will be shared to

the other robot. These limits were determined previously using

the function GetBounds() that returns two vectors: in the first

one, their components represent the lowest displacement from

the origin along each axis in the point cloud; and the other

vector is related to the point of the highest displacement.

Algorithm 1 presents the pseudo-code of the map sharing

step. Inside the code, the function GetV alues() sorts in

ascending order the array of components along each axis of

the vectors Amin, Amax, Bmin, Bmax and returns the

Data: Point Cloud A; Limits: Vectors Amin, Amax,

Bmin and Bmax; Parameters: Scalars Linit,

Lstep, Npmax

Result: Point Cloud Asel

begin
Asel ← ∅;
Cx = 0; Cy = 0; Cz = 0;

(V 2x, V 3x) =
GetV alues(Aminx, Amaxx, Bminx, Bmaxx);
(V 2y, V 3y) =
GetV alues(Aminy, Amaxy, Bminy, Bmaxy);
(V 2z, V 3z) =
GetV alues(Aminz, Amaxz, Bminz, Bmaxz);
Cx = (V 2x + V 3x)/2;

Cy = (V 2y + V 3y)/2;

Cz = (V 2z + V 3z)/2;

Np = PointSize(A);
for (L=Linit ; Np > Npmax ; L = L - Lstep) do

Sminx = Cx − L ; Smaxx = Cx + L;

Sminy = Cy − L ; Smaxy = Cy + L;

Sminz = Cz − L ; Smaxz = Cz + L;

foreach a ∈ A do ;

if Sminx < ax < Smaxx and Sminy < ay <
Smaxy and Sminz < az < Smaxz then

Asel = Asel + a;

end
Np = PointSize(Asel);

end
end

Algorithm 1: Selection of Point Cloud to share with another

robot.

2nd and 3rd values from this sorted array, denoted (V 2) and

(V 3) respectively. Next, for each axis, the average of the

two values obtained by the function GetV alues() is used in

order to determine the Cartesian coordinates (Cx,Cy ,Cz) of

the geometric center of the sharing region (S).

This map sharing region is a cube whose edge length 2L is

determined iteratively. Actually, the points from A contained

in this cube region are extracted to generate a new point

cloud Asel. In each iteration the cube region is reduced until

the number of points from Asel is smaller than the manual

parameter Npmax, which represents the number of points

maximum that the user wants to exchange between robots.

Once the loop ends, Asel is sent to the other robot. Similarly

on the other robotic platform “n”, the points from B included

in this region are also extracted to obtain and share Bsel with

the another robot “i”.

We now focus on the Local Mapping stage, that is the map

merging on a given mobile unit.

D. Local Mapping Stage

In this section the Local Mapping is detailed, considering

that the process is executed on the robot “i” with a shared map

coming from robot “n” (see Figure 5).

59

1) Preparation for Registration step: The computed inter-

secting volumes of the two maps Asel and Bsel are denoted

as Aint and Bint and can be obtained from the exchanged

map bounds [17] (see Algorithm 2). In order to improve the

computation speed, point clouds Aint to Bint first go through

a down-sampling process in order to reduce the number of

points to align of our clouds. The chosen voxel size is

3.5 m cubes in our experimentation. The next step is the

feature descriptors estimation, where are computed the surface

normals and curvature of the input clouds. This information

highly improves the feature points matching, which is the most

expensive stage of the ICP algorithm [22]. The normal-point

clouds generated after this step are denominated as AintN and

BintN . Those normal point clouds are then used and aligned

in the next step.

Data: Point Clouds Bsel and Asel

Result: Point Clouds Bint and Aint

begin
Aint ← ∅ ; Bint ← ∅;
(Amin,Amax) = GetBounds(Asel);
foreach b ∈ Bsel do ;

if Aminx < bx < Amaxx and Aminy < by <
Amaxy and Aminz < bz < Amaxz then

Bint = Bint + b;

end
(Bmin,Bmax) = GetBounds(Bsel);
foreach a ∈ Asel do ;

if Bminx < ax < Bmaxx and Bminy < ay <
Bmaxy and Bminz < az < Bmaxz then

Aint = Aint + a;

end
end

Algorithm 2: Map Intersecting Algorithm based on [17].

2) Registration step with ICP: Environment data used

in this work are aligned with Iterative Closest Point (ICP)

algorithm [23]. The algorithm refines an initial alignment

between clouds, which basically consists in estimating the best

transformation to align a source cloud BintN to a target cloud

AintN by iterative minimization of an error metric function.

At each iteration, the algorithm determines the corresponding

pairs (b’, a’), which are the points from AintN and BintN

respectively, with the least Euclidean distance.

Then, least squares registration is computed and the mean

squared distance E is minimized with regards to estimated

translation t and rotation R:

E(R, t) =
1

Npb’

Npb’∑

i=1

‖ a’i − (R b’i + t) ‖2, (6)

where Npb′ is the number of points b’.
The resultant rotation matrix and translation vector can be

express in a homogeneous coordinates representation (4×4

transformation matrix Tj) and are applied to BintN . The

���������

����	
��
���
�����
�����

��
������	���
����
����

	�������
�����

����	
��
���
�����
�����

��
������	���
����
����

	�������
�����

�����	��������	�
������������� ��	

!�
�	%���
�����
�	���
����

&�'

(
��&����	�������
)
����� �

��������	
��
�
���	���

"�#������

��������	
��
�
���	���

 ��

�

����
�����	
�

Map limits APoint cloud A
(Pre-Local Map)

Point cloud Asel �

Point cloud A
Point cloud Bsel

(aligned)

�����	��������	��	���
����
��
�� ����

Point cloud AL

(Local Map)

'��*+��

�(
�����

(������

��������
�����	
� ��������
�����	
�

 ��
Map limits B

 ��
Point cloud B

(Pre-Local Map)

�
Point cloud Bsel �

Point cloud BL

(Local Map)

Point cloud Aint Point cloud Bint

Point cloud AintN

(Target)

Point cloud BintN

(Source)

�
�
�
�

�
�

�
�
�
	

�

Fig. 5. Architecture of Local Mapping Stage for one robot.

algorithm then re-computes matches between points from

AintN and BintN , until the variation of mean square error

between iterations is less than an defined threshold. The final

ICP refinement for n iterations can be obtained by multiplying

the individual transformations: TICP =
∏n

j=1 Tj . Finally the

transformation TICP is applied to the point cloud Bsel to

align and merge with the original point cloud A, generating

the Local Map AL then. Each robot thus performed its own

merging according to limited data shared from other agents

within communication range.

We now present the experimental results to illustrate the

proposed method.

IV. RESULTS

In this section we present results validating the presented

concepts and the functionality of our system. As we consider

ground vehicles, the ENU (East-North-Up) coordinate system

is used as external reference of the world frame {W}, where

60

Fig. 6. Vehicles used during the tests.

Fig. 7. Paths followed by 1st robot (green one) and 2nd robot (red one)
during the test. Image source: Google Earth.

y-axis corresponds to North and x-axis corresponds to East,

but coinciding its origin with the GPS coordinates [Longitude:

-1.547963; Latitude: 47.250229].

In this article, by the moment, our proposed framework was

validated considering initially two vehicles for experiments, a

Renault Fluence and a Renault Zoe (see Figure 6) customized

and equipped with a Velodyne VLP-16 3D lidar, with 360◦

horizontal field of view and a 30◦ vertical field of view. All

data come from the campus outdoor environment in an area

of approximately 290m x 170m. The vehicles traversed that

environment following different paths and collected sensor

observations about the world, running the real-time mapping

process on two laptops Core-i5 independently for each vehicle.

In this experiment the vehicles build clouds from different

paths (see Figure 7). The results of the Pre-Local Mapping

of this experiment are shown in Figure 8. The map of the

first robot is shown in green, and in red for the second robot.

Figure 8 also depicts the “sharing region” and the “intersecting

region” determined during the alignment process in each robot.

For that test, the number of points maximum to exchange

between robots, Npmax, was set to 156000 points.

Once the Sharing step ends, the systems of each robot

performs the intersecting algorithm and then an ICP refinement

Fig. 8. Top view of Pre-Local Maps for 1st robot (green one) and 2nd robot
(red one) projected in common coordinates system prior to ICP refinement.
(a) Sharing and alignment region for the 1st robot; (b) for the second one.

to obtain an improved transform between each map. Figures

9 and 10 depict the intersection of the point clouds during the

alignment process in each robot. Once the refined transforma-

tion is obtained, it is then applied to the shared map.

Quantitative alignment results of the ICP are shown in Table

I. On the 1st robot the algorithm converged to the value of

displacement of 0.693 m and 1.572 m along the x-axis and

y-axis respectively. On the other hand on the 2nd robot, the

algorithm converged to a value of displacement of -1.110 m

and -1.557 m along the x-axis and y-axis respectively. Those

results reconfirm the alignments on opposite directions for

both robots, since we must consider that each robot performs

a relative registration process considering its Pre-Local map

as target cloud for alignment reference.

61

(a) (b)

Fig. 9. Alignment of maps with ICP refinement in 1st robot (a) Green and
red maps represent the target and source clouds pre ICP, top view (b) Green
and blue maps represent the target and aligned source clouds post ICP, top
view.

(a) (b)

Fig. 10. Alignment of maps with ICP refinement in 2nd robot (a) Green and
red maps represent the target and source clouds pre ICP, top view (b) Green
and blue maps represent the target and aligned source clouds post ICP, top
view.

Figure 11 shows the results of the final merging in the

robots, in which the green cloud represents the target Pre-Local

map generated by each robot and the red cloud corresponds

the Pre-Local map shared by the other mobile unit but finally

aligned to the target cloud. The fusion of these maps generates

the Local Maps in both platforms.

The experiments showed also the importance of selection of

maps intersecting region for the alignment, avoiding the diver-

gence of the registration algorithm. In the same direction, our

TABLE I
REFINEMENT TRANSFORMATION MATRICES

proposed map sharing technique developed a transcendental

position in the performance of the entire mapping collaborative

system by reducing the map size to transmit. Finally, the

sharing algorithm remains a suitable candidate to exchange

efficiently maps between vehicles considering the use of maps

of the large dimensions.

V. CONCLUSION

We presented a framework for decentralized mapping sys-

tem for mobile robots. The work has demonstrated that maps

from different robots can be successfully merged, from a

coarse initial registration and a suitable exchange of data

volume. The system uses range measurements from a 3D lidar,

generating a local map for each robot. The complete system

solves the mapping problem in an efficient way that runs

individually online on computers dedicated to two vehicles

for preliminary experiments, leading to merged maps on each

vehicle.

Future works will consider heterogeneous vehicles, such as

a fleet of ground and aerial robots where the view points are

less similar and where both communication and computing

capabilities are a crucial aspect of the whole process.

ACKNOWLEDGMENT

This article is based upon work supported by the Erasmus

Mundus Action 2 programme through the Sustain-T Project,

as well as the institutions ECN (École Centrale de Nantes) and

LS2N (Laboratoire des Sciences du Numérique de Nantes).

REFERENCES

[1] P. Dinnissen, S. N. Givigi, and H. M. Schwartz, “Map merging of
multi-robot SLAM using reinforcement learning.” in SMC. IEEE,
2012. [Online]. Available: http://dblp.uni-trier.de/db/conf/smc/smc2012.
html#DinnissenGS12

[2] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6D SLAM
- 3d mapping outdoor environments: Research articles,” J. Field Robot.,
Aug. 2007. [Online]. Available: http://dx.doi.org/10.1002/rob.v24:8/9

[3] S. Kohlbrecher, O. V. Stryk, T. U. Darmstadt, J. Meyer, and U. Klingauf,
“A flexible and scalable SLAM system with full 3D motion estimation,”
in in International Symposium on Safety, Security, and Rescue Robotics.
IEEE, 2011.

[4] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing ICP
variants on real-world data sets - open-source library and experimental
protocol.” Auton. Robots, 2013. [Online]. Available: http://dblp.uni-trier.
de/db/journals/arobots/arobots34.html#PomerleauCSM13

[5] R. Zlot and M. Bosse, “Efficient Large-Scale 3D Mobile Mapping
and Surface Reconstruction of an Underground Mine.” in FSR, ser.
Springer Tracts in Advanced Robotics, K. Yoshida and S. Tadokoro,
Eds. Springer, 2012. [Online]. Available: http://dblp.uni-trier.de/db/
conf/fsr/fsr2012.html#ZlotB12

[6] M. Bosse, R. Zlot, and P. Flick, “Zebedee: Design of a Spring-
Mounted 3-D Range Sensor with Application to Mobile Mapping,” IEEE
Transactions on Robotics, Oct 2012.

[7] M. Bosse and R. Zlot, “Continuous 3D scan-matching with a spinning
2D laser,” in 2009 IEEE International Conference on Robotics and
Automation, May 2009.

[8] J. Zhang and S. Singh, “LOAM: Lidar odometry and mapping in real-
time,” in Robotics: Science and Systems, 2014.

[9] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges,” in In Proc. of the Int. Conf. on
Artificial Intelligence (IJCAI, 2003.

[10] J. Jessup, S. N. Givigi, and A. Beaulieu, “Merging of octree based 3D
occupancy grid maps,” in 2014 IEEE International Systems Conference
Proceedings, March 2014.

62

Fig. 11. Top view of 3D-Map merging result for (a) 1st robot and (b) 2nd robot. (c)(d) Different view of maps.

[11] P. Payeur, P. Hebert, D. Laurendeau, and C. M. Gosselin, “Probabilistic
octree modeling of a 3D dynamic environment,” in Proceedings of
International Conference on Robotics and Automation, Apr 1997.

[12] J. Fournier, B. Ricard, and D. Laurendeau, “Mapping and Exploration of
Complex Environments Using Persistent 3D Model,” Fourth Canadian
Conference on Computer and Robot Vision (CRV ’07), 2007.

[13] K. Pathak, A. Birk, S. Schwertfeger, and J. Poppinga, “3D Forward
Sensor Modeling and Application to Occupancy Grid Based Sensor
Fusion,” in International Conference on Intelligent Robots and Systems
(IROS), IEEE Press. IEEE Press, 2007.

[14] N. Fairfield, G. Kantor, and D. Wettergreen, “Real-time SLAM with
octree evidence grids for exploration in underwater tunnels,” J. Field
Robotics, 2007.

[15] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard, “OctoMap: An Efficient Probabilistic 3D Mapping
Framework Based on Octrees,” Auton. Robots, Apr. 2013. [Online].
Available: http://dx.doi.org/10.1007/s10514-012-9321-0

[16] A. Hornung, K. M. Wurm, and M. Bennewitz, “Humanoid robot
localization in complex indoor environments,” in 2010 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, Oct 2010.

[17] J. Jessup, S. N. Givigi, and A. Beaulieu, “Robust and Efficient Mul-

tirobot 3-D Mapping Merging With Octree-Based Occupancy Grids,”
IEEE Systems Journal, 2015.

[18] N. E. Özkucur and H. L. Akın, Cooperative Multi-robot Map
Merging Using Fast-SLAM. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 449–460. [Online]. Available: https://doi.org/10.
1007/978-3-642-11876-0 39

[19] J. Zhang and S. Singh, “Visual-lidar odometry and mapping: low-drift,
robust, and fast,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA), May 2015.

[20] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, ISBN: 0521540518, 2004.

[21] R. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, May 2011.

[22] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algorithm,”
in Third International Conference on 3D Digital Imaging and Modeling
(3DIM), Jun. 2001.

[23] P. J. Besl and N. D. McKay, “A Method for Registration of 3-D
Shapes,” IEEE Trans. Pattern Anal. Mach. Intell., Feb. 1992. [Online].
Available: http://dx.doi.org/10.1109/34.121791

63

