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Abstract— This paper addresses the perpendicular and par-
allel parking problems of car-like vehicles for both forward
and reverse maneuvers in one trial by improving the work
presented in [1] using a multi sensor based controller with a
weighted control scheme. The perception problem is discussed
briefly considering a Velodyne VLP-16 and a SICK LMS151 as
the sensors providing the required exteroceptive information.
The results obtained from simulations and real experimentation
for different parking scenarios show the validity and potential
of the proposed approach.

I. INTRODUCTION

Even for experienced drivers, parking can be a difficult
task, especially in big cities were the parking spots are often
very narrow. The search for an increase in comfort and safety
when parking has lead to a quite extensive literature [2],
having explored many different approaches to automate this
bothersome task.

Despite the fact that the automobile industry has already
started to roll out some commercial implementations of
active parking assistants capable of actively controlling ac-
celeration, breaking and steering [3], the research interest in
the topic remains strong.

Path planning approaches have been heavily investigated
in recent years. Among the different planning techniques
it is possible to distinguish between geometric approaches,
with either constant turning radius [4], [5] using saturated
feedback controllers, or continuous-curvature planning using
clothoids [6]; heuristic approaches [7] and machine learning
techniques [8]. It is worth to note that parking maneuvers
with forward motions are seldom considered, with [9] for
the parallel parking case and [10] for the perpendicular case
being some of the few works on this regard.

A well known drawback of path planning and tracking is
its dependence on the localization performance. An interest-
ing alternative that does not rely on the localization is the
use of a sensor based control approach. It has been proven
to be valid for navigation [11], dynamic obstacles avoidance
[12], and for parking applications [1].
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Numérique de Nantes, École Centrale de Nantes, 1 rue de la Noë, 44321
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The contribution of this paper is an improvement on the
approach described in [1], this time considering multiple
sensors, a better suited sensor feature set that allows to park
in one maneuver not only in perpendicular spots but also in
parallel ones with either reverse or forward motions with only
some minor changes, and improved constraints for collision
avoidance.

In the next section the models considered as well as the
notation used are presented. In Section III the perception
problem is briefly addressed showing how the sensor data
is processed in order to extract the empty parking spot to
latter in Section IV describe the interaction model and how
to extract the required sensor features from the computed
empty parking spot. Afterwards, the controller is presented in
Section V and the obtained results from simulation and real
experimentation for different parking scenarios are shown
in Section VI. Finally, some conclusions are given in Sec-
tion VII.

II. MODELING AND NOTATION

Given that parking maneuvers are low speed motions, a
kinematic model can be considered as accurate enough.

A. Car-like robot model and notation

The kinematic model considered is the one used to repre-
sent a car with rear-wheel driving:

ẋ
ẏ

θ̇

φ̇

 =


cos θ
sin θ

tanφ/lwb
0

 v +


0
0
0
1

 φ̇, (1)

where v and φ̇ are the longitudinal and steering velocities.
Table I presents the different parameters used in the paper.

TABLE I: Parameters definition

Parameteres Notation Value
Wheelbase: Distance between the
front and rear wheel axles

lwb 2.588 m

Rear overhang: Distance between the
rear wheel axle and the rear bumper

lro 0.657 m

Maximum steering angle φmax 30◦

Total length of the vehicle lve 4.084 m
Total width of the vehicle wve 1.945 m
Maximum (desired) longitudinal ve-
locity

|vmax| 2 km/h

Maximum acceleration increment ∆acc sign(v) 0.2 Ts
Maximum deceleration increment ∆dec sign(v) 2.5 Ts
Maximum φ increment ∆φ 2◦ Ts

The point M is located at the mid-distance between the
passive fixed wheels (rear) axle and the distance between the
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rear and the front axle is described by lwb. The generalized
coordinates are q = [x, y, θ, φ]T where x and y are the
Cartesian coordinates of the point M, θ is the orientation
of the platform with respect to the x0 axis and the steering
angle of the steerable wheel(s) is described by φ (Fig. 1a).

From the kinematic model it is possible to extract the
following relation between φ and θ̇:

φ = atan(
θ̇ lwb
v

) (2)

The vehicle used for experimentation and simulation is
a Renault ZOE (Fig. 1b). It is represented by its bounding
rectangle.
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(a) Kinematic model diagram (b) Robotized Renault ZOE

Fig. 1: Kinematic model diagram for a car-like rear-wheel
driving robot and vehicle used for simulation and real
experimentation

B. Multi-sensor modeling

Following our previous work [1], where a novel sensor
based control technique based on the framework described in
[13] was proposed, in this paper we explore a different sensor
features set to park in one maneuver into perpendicular and
parallel spots considering multiple sources for the sensor
signals.

1) Kinematic model: Let us consider a robotic system
equipped with k sensors (Fig. 2) that provide data about the
robot pose in its environment. Each sensor Si gives a signal
(sensor feature) si of dimension di with

∑k
i=1 di = d.
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Fig. 2: Multi-sensor model

In a static environment, the sensor feature derivative can
be expressed as follows:

ṡi = Livi = Li
iWmvm (3)

where Li is the interaction matrix of si and iWm is the screw
transformation matrix that allows to express the sensor twist
vi with respect to the robot twist vm.

Assuming that the vehicle to which the sensors are rigidly
attached to evolves in a plane and that the sensors and vehicle
have vertical parallel z axes, Li is of dimension di × 3 and
the screw transformation matrix takes the following form:

iWm =

 c (mθi) s (mθi) tix s (mθi)− tiy c (mθi)

−s (mθi) c (mθi) tix c (mθi) + tiy s (mθi)

0 0 1


(4)

where mti = [tix , tiy ]T and mθi are, respectively, the
position and orientation of Si with respect to Fm expressed
in Fm, with c (mθi) = cos (mθi) and s (mθi) = sin (mθi).

Denoting s = (s1, . . . , sk) the d-dimensional signal of the
multi-sensor system, the signal variation over time can be
linked to the moving vehicle twist:

ṡ = Lsvm (5)

with:

Ls = LWm =

 L1 . . . 0
...

. . .
...

0 . . . Lk




1Wm

...
kWm

 (6)

Nevertheless, since in our application the control frame
Fm is attached to the vehicle’s rear axis with origin at the
M point (Fig. 1a), it is not possible to generate a velocity
along ym on the vehicle’s frame due to the nonholonomic
constraint of the kinematic model (1). Assuming that there
is no slipping nor skidding (i.e. vym = 0), the robot twist
vm = [vxm , vym , θ̇]

T can be reduced to:

vm = [vxm
, θ̇]T (7)

where vxm
= v and considering as well the consequent

reduction of Ls, being now of dimension d× 2.
2) Weighted error: We consider the weighted multi-sensor

error signal, as described in [13], which is defined as:

eH = He (8)

where e = s − s∗ is the difference between the current
sensor signal s and its desired value s∗ and H is a diagonal
positive semi-definite weighting matrix that depends on s
with its associated interaction matrix being LH = HLs.
Making a distinction between task and constraints features,
H = diag(Ht,Hc) and s = [st, sc]

T . Each component hi
of H may or may not vary in order to optimize the system
behavior, ensure specific constraints, manage priorities or add
or remove a sensor or a feature from the control law.

Task features st, as their name suggest, are used to perform
the task by driving et to 0. On the other hand, since
the constraints features sc are used only to ensure certain
constraints, we don’t care about ec as the desired value s∗c
is meaningless.
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III. PERCEPTION

We focus the perception on the detection of parked cars.
They can be approximated by boxes considering that, when
viewed from the top, have a rectangular-like shape.

The vehicle used (Fig. 1b) has been equipped with many
sensors (Velodyne VLP-16, SICK LMS151, GPS, cameras
in the front, etc.) to observe its environment, a computer
to process the data and actuators that can be computer
controlled. Since our application requires exteroceptive in-
formation from all around the vehicle at, potentially close
distances, the VLP-16 and SICK LMS151 were the sensors
chosen to work with.

Because both sensors provide information of a very similar
nature, the data can be fused by simply converting the
LaserScan data provided by the LMS151 to PointCloud2 and
then transforming the point cloud from LMS151’s frame to
the VLP-16’s frame so it can be added to the point cloud
provided by the latter sensor. For this, it is assumed that the
time difference between the data provided by each sensor is
reasonably small, i.e. the data is sufficiently synchronized.

The complete point cloud obtained from the two sensors
is first filtered with a couple of crop boxes. The first crop
box is keeps only the data that is close enough to the
car to be relevant in a parking application and that does
not represent the floor and afterwards and the second one
is used to filter out the points that belong to the car’s
body (self-collision sensor readings). Then, an Euclidean
Cluster Extraction algorithm is used to have each obstacle
represented as a cluster. The orientation of each cluster is
extracted by fitting a line model to the points belonging
to the contour of the cluster using a RANSAC algorithm.
The orientation of the bounding box will be equal to the
orientation of the fitted line. After, we proceed by finding
the rotated bounding box of the cluster using the previously
found orientation.

The empty parking place (green rectangle in Fig. 3) is
extracted using the approach described in [1]. The sensor
features required for the controller are extracted from this
computed parking place.

IV. INTERACTION MODEL

For the interaction model, we rely on the perception of
several lines Lj and points from several sensors. Since the
sensor data is expressed in the Cartesian space, it can be
easily transformed from one frame to another, thus allowing
us to use virtual sensors placed at will.

The sensor’s placement can be seen in Fig. 3. S1 corre-
sponds to the VLP-16 while S2 to the LMS151. S3 to S5 are
virtual sensors placed on the corners of the car’s bounding
rectangle. All the frames of the virtual sensors have the same
orientation as the control frame.

To illustrate the feature extraction approach, the case of
a reverse perpendicular maneuver is now detailed. As it can
be seen in Fig. 3, points p1 to p4 correspond to the corners
of the parking spot while p5 and p6 are, respectively, the
midpoints between (p1, p4) and (p2, p3). L1 is a line that
passes through p5 and p6, i.e. it passes through the center

of the parking spot. L2 is a line that passes through p1 and
p4 thus corresponding to the depth limit of the parking spot.
L3 is a line that passes through p3 and p4. All the lines are
parametrized using normalized Plücker coordinates.

Fig. 3: Sensors’ configuration and sensor features

The exact definition of the sensor features varies depend-
ing on the parking scenario although in any case, L∗1 should
be collinear with xm and L∗2 should be parallel to ym and be
behind the car for reverse maneuvers and in front for forward
ones. In this paper we only detail the actual features used
for a specific case, but deducing the features that should be
used for other cases isn’t complicated.

Considering the previously mentioned assumption that the
vehicle to which the sensors are attached to evolves in a plane
(sensors and vehicle with parallel z axes), the sensor signal
siLj and interaction matrix LiLj for the line Lj observed by
Si are defined respectively by (9) and (10)

siLj =
[
iuj(1), iuj(2), ihj(3)

]T
(9)

LiLj =

 0 0 iuj(2)
0 0 −iuj(1)

−iuj(2) iuj(1) 0

 (10)

where iuj = iuj/||iuj || with iuj 6= 0 denoting the
orientation of Lj and ihj = iwj/||iuj || with iwj containing
the coefficients of the interpretation plane equation [14]. In
the 2D configuration considered, the components of iuj and
ihj that don’t appear in (9) are equal to 0 thus ihj(3) can
be interpreted as the distance to the line.

It should be noted that the weighting and constraints
required to park safely change depending on the type of
parking spot (parallel, perpendicular or diagonal) and on
which side the parking spot is placed with respect to the
car at the beginning of the maneuver.

A. Task sensor features
The control features required to perform the parking task

are defined by (11), with t = 1 for forward maneuvers and
t = 2 for the reverse case.

st = [stL1 , stL2 ]T (11)

A 2nd order approximation of the form (12) is used for
the interaction matrix.

Lt =
LLj + L∗Lj

2
(12)
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The weighting matrix Ht is defined by (13). The variable
components hti are computed using a smooth weighting
function (Fig. 4) based on the one presented in [15].

Ht = diag(ht1, h
t
2, h

tconst
3 , ht4, h

t
5, h

tconst
6 ) (13)

s- ss- ss+ s+
hi-

hi+

Fig. 4: Weighting function hti

With this weighting function and considering the weight-
ing parameters (31), si ∀ i = {2, 4, 5} could be seen as
bounded constraints but in fact they are task features, given
that we do care about the value of their corresponding ei.
If only s3 and s6 were considered as task features, the
car may finish the maneuver with a bad orientation even
if e3 ≈ e6 ≈ 0 because just 2 features are not enough to
control the car’s DOFs.

Due to space constraints, only the case of a reverse
perpendicular parking maneuver with the spot placed on the
right will be considered for the rest of this section.

B. Constraints sensor features
The constraints are defined by (14).

sc = [s3, s4, s5]T (14)

For the constraints sensor features we are interested only
in the components of (9) related to the distance to the feature
itself, therefore:

s3 = 3h3(3) (15)

s4 = [4h2(3), 4h3(3)]T (16)

s5 = [5h2(3), 5dym ]T (17)

with 5dym being the difference dym = ρcorner − ρlat
measured with the sensor S5, expressed in the sensor frame
(Fig. 5) if φ < 0, defined as:

5dym =

√
(5x2 + t5x)

2
+
(
5y2 + t5y − ρm

)2
+ ρm − t5y

(18)
with ρm = lwb/tanφ and, when φ ≥ 0, being simply the
distance from S5 to p2 along ym measured with S5, it is
defined as:

5dym = 5y2 (19)

with 5p2 = (5x2,
5y2) being the point p2 measured with S5.

The corresponding interaction matrices are:

L3 =
[
−3u3(2) 3u3(1) 0

]
(20)

L4 =

[
−4u2(2) 4u2(1) 0
−4u3(2) 4u3(1) 0

]
(21)

L5 =

[
−5u2(2) 5u2(1) 0

0 −1 −5x2

]
(22)

Since the constraints are used for collision avoidance, only
one side of the interval [s−c , s

+
c ] (25) has to be defined for

each feature.

Fig. 5: Lateral constraint d

V. CONTROL

When considering the constraints presented in Sec. IV-
B (particularly (18)), a chattering problem appears if the
controller presented in [1] is used, even with very small
weights. For this reason, that controller had to be adapted to
the quadratic programming form [16] with only inequality
constraints (23):

vm = argmin||LHt
.vm + λ.et||2

s.t. Avm ≤ b
(23)

with:
A = [LHc

,−LHc
]T (24)

b = [α(s+c − sc),−α(s−c − sc)]
T (25)

where α is a gain constant, λ is the control gain, Hc is an
identity matrix (i.e. there is no weighting on the constraints)
and [s−c , s

+
c ] is the interval in which we want to keep sc.

To limit the speed of the vehicle as it approaches to the
parking spot, a deceleration profile, based on the velocity
profile shown in [5], is used. It is defined by (26)

if e(6) < e(6)th

vmax = (|vmax| − v0max)(e(6)/e(6)th) + v0max
(26)

with v0max being the maximum desired velocity when the
sixth component of the error vector e(6) tends to zero and
e(6)th is a threshold value for e(6). Since the low level
velocity controller is not capable of reaching very small
values, v0max = 0.2 km/h.

The control signals v and φ are bounded by their respective
maximum desired values as shown below:

|v| < |vmax| (27)

|φ| < φmax (28)

To avoid large changes in the control signals at time k that
may cause uncomfortable sensations for the passengers or
surrounding witnesses, they are bounded by some increments
(29) (30) with respect to the control signal at k − 1.

(vk−1 −∆dec) ≥ vk ≤ (vk−1 + ∆acc) (29)

(φk−1 −∆φ) ≥ φk ≤ (φk−1 + ∆φ) (30)
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To solve (23), a generic solver is used. To improve the
stability and computation time, the optimization variables
are [v, φ] and not vm, although inside the objective function
θ̇ is computed from φ so (23) can be solved. When using
φ instead of θ̇ one can easily impose the bounds (28) at
the solving step instead of solving (23) directly with vm as
optimization variables and hope for the value of φ computed
from θ̇ to fall inside the bounds (28).

VI. RESULTS

To show the potential of our approach, several parking
scenarios are presented below, all of them using the final
form of the controller (23). The unconstrained cases were
computed in MATLAB, using fmincon as solver. For the
constrained cases, NLopt with the SLSQP algorithm was
used.

A. Unconstrained cases - MATLAB

To evaluate the performance of the proposed approach, it
was first tested in unconstrained cases with a sampling time
Ts = 0.1. As it can be seen in Figs. 6-10, the presented
technique allows to perform parking maneuvers for many
different scenarios (perpendicular and parallel with either
reverse or forward motions) just by adjusting the weighting
parameters and the specific definition of the sensor features.
The final errors for all of these cases are in the order of
×10−3 or smaller.

As an example of the weighting approach, for the case of
a reverse perpendicular parking maneuver with the parking
spot placed on the right, h+i = 5, h−i = 0, htconst

3 = 1,
htconst
6 = 0.75 and:

ss
+

1 = s+1 =∞
ss
−

1 = 0.001 + s∗1

s−1 = −0.001 + s∗1

ss
−

i = s−i = −∞ ∀ i = {2, 4, 5}
ss

+

i = −0.001 + s∗i ∀ i = {2, 4, 5}
s+i = 0.001 + s∗i ∀ i = {2, 4, 5}

(31)

These weighting parameters allow to prioritize the error
in position over the orientation for the most part of the
maneuver and, when iu

∗
j (a) is almost reached, smoothly

increase the corresponding weights so we can gradually
switch the priority from positioning the vehicle to orientate
it to avoid finishing the maneuver with a bad orientation.

It can be seen how, for all shown cases, the weights (Figs.
6d-10d) push φ towards 0 (Figs. 6b-10b) once iu

∗
j (a) is

almost reached when close to the completion of the maneuver
to keep the orientation close to the desired value.

Unlike our previous work [1], which required to perform
gain-tunning for different initial conditions, this newly pre-
sented approach allows to park successfully for different
(reasonable) initial positions and orientations of the same
parking case using the same weighting parameters, although
it should be mentioned that the stability, specially when
constraints are considered, is still under study.

In Fig. 10, it can be seen how even if the car is placed
considerably farther from the parking spot than in Fig. 6 and
not exactly perpendicular to the spot, the vehicle is able to
park correctly using the same weighting parameters, showing
the stability of the presented approach.
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Fig. 6: Unconstrained perpendicular reverse parking maneu-
ver
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Fig. 7: Unconstrained perpendicular forward parking maneu-
ver

B. Constrained cases
1) Fast prototyping environment: A homemade fast pro-

totyping environment using the same software architecture
as the one embedded inside the car is used for simulation
purposes. This homemade environment is interfaced with
Gazebo to simulate the exteroceptive sensors.

The case of a reverse perpendicular parking maneuver with
the spot placed on the right is shown below. The weighting
parameters remain the same as for the unconstrained case
while the constraints are defined with s+7 = −0.1, s−8 =
0.15, s+9 = −0.1, s−10 = 0.15, s+11 = −0.075 and Ts = 0.05.
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Fig. 8: Unconstrained parallel reverse parking maneuver
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Fig. 9: Unconstrained parallel forward parking maneuver
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Fig. 10: Unconstrained perpendicular reverse parking maneu-
ver from far

As it can be seen in Figs. 11-12, the car is able to
park successfully while respecting the constraints in spite of
the sensor noise and the less than perfect system response.
The evolution of the many different signals, especially
for the longitudinal velocity (Fig. 12a), is very similar
to the unconstrained case (Fig. 6b). The fast deceleration
at the end (Fig. 12a) is due to a stopping condition in
the implementation related to et. Regarding the evolution
of φ, it can be seen how, contrary to the unconstrained
case, it doesn’t saturate; this behavior is caused by the
constraints, particularly s11 (Fig. 12d). The final error is et =
[−0.0003,−0.0096, 0.0207,−0.0096, 0.0003, 0.0569]T .

Fig. 11: Constrained perpendicular reverse parking maneuver
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Fig. 12: Constrained perpendicular reverse parking maneuver
signals

2) Real experimentation: Real experimentation was con-
ducted for the same parking case (Fig. 13) as with the
fast prototyping environment shown above. The weighting
parameters and constraints definition remain the same.

Fig. 13: Experimental car parking in a perpendicular spot

It is obvious that the response of the system, particularly
for the linear velocity (Fig. 14a), is less than ideal, reaching
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Fig. 14: Constrained perpendicular reverse parking maneuver
signals

a speed more than twice as fast than what the controller
indicates. This behavior can be attributed to the low-level
velocity controller, which still requires some tunning to
improve the performance at low velocities, therefore it has
no relation to the presented technique.

Despite of the erratic response of the system in addition
to the noise coming from the sensors, the constraints were
respected during the whole maneuver (Fig. 14d), getting no
closer than 33.88cm (s9) to L3.

Furthermore, the evolution of et (Fig. 14b) is very
similar to the simulated case (Fig. 12b), although the
final error is not as good, being in this case et =
[0.0054, 0.0743,−0.1436, 0.0743,−0.0054,−0.0833]T .

The smallest ||et|| was achieved at T = 12.6399s, with
et = [0.0025, 0.0429,−0.0851, 0.0429,−0.0025, 0.0207]T

and [v, φ]T = [0, 0]T from the controller starting at T =
12.42s.

VII. CONCLUSIONS

Following our previous work [1], we showed how a better
choice of the sensor features allows to improve the perfor-
mance, stability and versatility of the presented sensor based
approach, this time not only being able to deal successfully
with perpendicular parking maneuvers but also with parallel
ones with both reverse and forward motions with just some
minor adjustments for each type of parking. The stability,
specially when constraints are considered, is still under study.

Preliminary results obtained from real experimentation
validate the robustness and effectiveness of the presented
approach, considering that, despite of the erratic response of
the system due to the low-level velocity controller, the car
parked successfully while respecting the constraints during
the whole maneuver.

It is important to mention that, due to visibility constraints
and in order to keep the results obtained with the fast

prototyping environment as close to the reality as possible,
only reverse parking maneuvers have been tested outside
MATLAB with the presented sensor feature set. Neverthe-
less, the multi-sensor framework gives a high expandability,
allowing for future upgrades to the perception capabilities of
the system.
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