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An Enhanced Unified Camera Model
Bogdan Khomutenko, Gaëtan Garcia, and Philippe Martinet

Abstract—This paper describes a novel projection model based
on the so-called unified projection model. The new model applies
to catadioptric systems and wide-angle fish-eye cameras, it does
not require additional mapping to model distortions, and it takes
just two projection parameters more than a simple pinhole model
to represent radial distortion (one parameter more than the uni-
fied model). Here, we provide a study of different mathematical
aspects of the model, its application limits, and explicit closed-form
inversion. The latter allows to apply all the notions of epipolar
geometry with no difficulties. Also, we introduce a concept of pro-
jection surface, which is a useful notion to study and compare
different projection models with radial distortion. Using devel-
oped software, several different lenses were calibrated using the
proposed model, and in all cases, subpixel precision was achieved.

Index Terms—Calibration and Identification, Omnidirectional
Vision, Computer Vision for Transportation, Computer Vision for
Other Robotic Applications.

I. INTRODUCTION

M OST computer vision problems in robotic applications
involve camera modeling and calibration. Also fisheye

cameras are of great interest in the field because they allow to
equip the robot with 360◦ stereo vision using few cameras.

But wide-angle cameras do not obey a simple pinhole pro-
jection model. Multiple models have been proposed to approx-
imate the projection process in such cameras. The authors of
[1] propose to compute the distance from the projection center
to the projected point using a polynomial function of the angle
between the optical axis and the ray direction (so-called capture
ray-based model). The so-called unified model is of particular
interest to us because our own model is based on it. [2] intro-
duces the unified model and shows that it describes all central
catadioptric systems. In [3] the model was augmented with an
additional distortion mapping and a calibration technique was
proposed. Equivalence between the unified model and the cap-
tured ray-based model as well as the pinhole model was shown
in [4]. The model was successfully applied to model fisheye
cameras as well.

In [5] the projection is modeled using an intermediate sur-
face. The surface is defined using a polynomial function of
image points. The notion is somewhat similar to one that we
propose in this paper, but it is the other way around: the
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projection surface is defined using an equation in 3D space and
allows to compute projections of spatial points.

Important properties of a distortion model are simplicity and
flexibility. That is, the model should have few parameters but
still allow us to model different types of cameras. Also it is
important for a model to have a simple mathematical form,
which allows to study analytically the properties of the model.

Tangential distortion is not considered in this work. Though
it can easily be added, we argue that without it the model is
precise enough and a closed-form inversion of the projection
function can be calculated.

In section II, we describe the unified model, from which the
proposed one is derived. In section III, the proposed model is
presented and its properties are studied by means of projection
surfaces; also the inverse of the model in closed form is calcu-
lated. In section IV, the calibration results are presented and the
efficiency of the model in case of different cameras is shown.

II. RELATED WORK

The simplest camera model is represented by this projection
relation:

p =
1

z
KX (1)

Here p = (u v)T is an image point, X = (x y z)T is a spatial
point to be projected. K is a projection matrix:

K =

(
fu 0 u0

0 fv v0

)
(2)

The distortion model is usually added in the following manner.
First we project all the points onto the projection plane:

Xn = (xn yn 1)T =
X

z
(3)

Then we apply radial distortions:

Xd = D(Xn) =

⎛
⎜⎝
D(r)xn

D(r)yn

1

⎞
⎟⎠ (4)

Here r =
√
x2
n + y2n; D : P2 → P

2 is a radial distortion map-
ping (Pn is a n-dimensional projective space on R). It is defined
by D : R+0 → R+, that represents the deflection of a ray from
its pinhole trajectory; D(0) = 1. The last thing is to apply the
projection matrix K.

Theoretically we can model any projection mapping for X
with z > 0 using these relations. But there are two problems.
The first is how to choose the distortion function D. In the
OpenCV the following form is used:
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D(r) =
1 + k1r

2 + k2r
4 + k3r

6

1 + k4r2 + k5r4 + k6r6
(5)

Obviously these models approximate the distortions just in a
limited range of r.

This fact is also related to the second problem, which arises
when z → 0. In this case the model is still defined but farther
we go from the center of projection, the less precise the result,
due to the distortion model limitations and numerical problems.

A. Unified Camera Model

This model aims to model correctly projection of points with
zero and even negative z. It is needed to model fisheye lenses
with more than 180◦ angle of view. This is done by changing
the normalization equation from (3) to the following [2]:

m =
(
xm ym 1

)T
=

(
x

z + ξρ

y

z + ξρ
1

)T

(6)

where ρ =
√
x2 + y2 + z2; ξ is a projection parameter. When

ξ = 0 we are back to the pinhole model. But the larger we take
ξ, the wider the allowed angle between the optical axis and the
point to be projected. So, for narrow-angle low-distortion cam-
eras we expect this parameter to be about 0, while for fisheye
cameras it should be large (in the order of 1). We shall notice
that (6) generally does not map straight lines to straight lines.
So, it introduces some distortion, which is in fact similar to that
of a real fisheye camera.

Unfortunately these distortions are not flexible enough to
model a real camera. That is why another mapping is introduced
in [3]:

Xd = D(m) + δ

D(r) = 1 + k1r
2 + k2r

4 + k3r
6

δ(m) =

⎛
⎜⎜⎝
2k4xmym + k5(r

2 + 2x2
m)

2k5xmym + k4(r
2 + 2y2m)

0

⎞
⎟⎟⎠ (7)

Where r =
√
x2
m + y2m; δ models tangential distortions due

to a misalignment of the retina normal and the lens optical
axis in the camera; D is defined as in (4), D represents radial
distortions.

Finally we apply the projection matrix K:

p = KXd (8)

Overall we have 10 projection parameters: ξ, k1..5, fu, fv ,
u0, v0.

B. Distortion Model Issues

Even though the model provides high precision, it has some
drawbacks. We can rewrite (6) as m = φ(r)Xn, where Xn =
X/z, and r =

√
x2
n + y2n. Here φ represents the nonlinear part

of the projection:

φ(r) =
1

1 + ξ
√
1 + r2

(9)

We see that the function φ(r) is even, so, its Taylor expansion
contains just even degrees of r. Hence:

φ(r) = φ(0) +
φ′′(0)
2

r2 + o(r2) (10)

So, the argument here is that in the neighborhood of the
projection center the distortion caused by the nonlinear projec-
tion model is well-approximated by a second order polynomial
with φ∗ = φ(0) + φ′′(0)

2 r2. If after we apply another distortion
model that contains a second-order term, we still get a distor-
tion that is well-approximated with a second-order polynomial.
Hence, the second order term in the distortion model (7) is
redundant and it does not improve the model precision.

III. PROPOSED MODEL

Here are the proposed projection relations:

m =

⎛
⎜⎜⎜⎜⎜⎜⎝

x

αρ+ (1− α)z

y

αρ+ (1− α)z

1

⎞
⎟⎟⎟⎟⎟⎟⎠

ρ =
√

β(x2 + y2) + z2

p = Km (11)

The two parameters are α ∈ [0, 1] and β > 0. They allow us
to better approximate the properties of lenses with strong dis-
tortion. This model assumes that the denominator αρ+ (1−
α)z > 0. K is the same matrix as in (2).

A. Projection Surfaces

To analyze the model, let us introduce the notion of projec-
tion surface. For the sake of simplicity let us consider only
projection relations with radial distortion. That is, every pro-
jected point can be written as m = (x/η(X) y/η(X) 1)T

where x and y are the components of the spatial point X , and
η : R3 → R+ is a function of X , moreover ∀X1,X2 ∈ R

3:{
x2
1 + y21 = x2

2 + y22
z1 = z2

=⇒ η(X1) = η(X2) (12)

This means that η can be represented by a function:

η̂ : R2 → R+ (13)

so that:

η(X) = η̂(
√

x2 + y2, z) = η̂(r, z) (14)

η̂(r, z) = η̂(−r, z), ∀r ∈ R (15)

(15) allows us to operate on R
2, rather than R+0 × R. In

this case y = 0 =⇒ η(X) = η̂(x, z), or η̂ represents η in xz
plane.

Also we require:

∀λ ∈ R+ η(λX) = λη(X) (16)
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Fig 1. Illustration of the projection surface notion. z is the optical axis; O is
the center of projection; Xp is obtained by projecting X to P along OX ray.
Then this point is transformed into m by projecting it orthogonally onto an
intermediate projection plane M which is defined as z = 1

that is, η is a homogeneous function of degree 1. The same
holds for η̂ as long as both r and z are homogeneous functions
of X of degree 1.

Let us define the projection surface P by the following
equation:

η(X) = 1 (17)

Projection surface is a surface of revolution. It is generated
by rotating the curve η̂(x, z) = 1 about z-axis. Let us call this
curve a projection curve. The geometric meaning of (17) is that
all the points of the projection surface are projected orthogo-
nally to the image plane. So, we can think of the projection
process as scaling the point X by η(X) and then projecting it
orthogonally into m ∈ M — the normal plane (see Fig. 1):

Xp =
X

η(X)

m = (xp yp 1) (18)

Using (16) we can deduce:

η(Xp) = η

(
X

η(X)

)
=

η(X)

η(X)
= 1 (19)

Hence, all the points Xp belong to the projection surface. In
fact Xp is the intersection between the projection surface P
and the OX ray (Fig. 1).

One convenience of the notion is that it is relatively easy to
see for which spatial points the projection is defined. For exam-
ple, (3) corresponds to η(X) = z. So, the projection surface in
this case is defined by z = 1. It is a plane. And all the points
with z ≤ 0 do not define rays that intersect the surface.

Let us apply the notion to the proposed model. In this case:

η(X) = α
√

β(x2 + y2) + z2 + (1− α)z (20)

So, η(X) = 1 leads to:

α
√

β(x2 + y2) + z2 + (1− α)z = 1 (21)

Let us replace 1− α by γ and x2 + y2 by r2:

α
√
βr2 + z2 = 1− γz (22)

Fig 2. Projection curve is a parabola when α = 0 : 5. We can see differ-
ent parabolas for β = 0 : 5 (blue), 1 (green), and 1.5 (red) (wider parabola
corresponds to smaller β).

By squaring both sides we get:

α2βr2 + α2z2 = 1− 2γz + γ2z2 (23)

We should remember that as we have squared both sides, we
may get some solutions that do not satisfy (22). We may notice
that γ2 − α2 = γ − α, hence:

α2βr2 = 1− 2γz + (γ − α)z2 (24)

α2βr2 + (α− γ)z2 + 2γz = 1 (25)

This equation defines a second-order projection curve. α = 0.5
leads to α = γ and

z = 1− 0.25βr2 (26)

That is, the projection curve is a parabola. If α < 0.5, (25)
defines a hyperbola and if α > 0.5, it is an ellipse (because the
coefficient in front of z2 is negative and positive respectively).
We can see that r = 0, z = 1 always satisfies (22). So, the pro-
jection surface is a surface of revolution, which is defined by a
conic projection curve that passes through (0 0 1)T .

That is the difference between the proposed model and (6).
The latter allows to get just one parabola as a projection curve
when ξ = 1, while the former allows to scale this parabola
along the x-axis (Fig. 2). In the case, when ξ �= 1 the same
is true, but it is just less obvious. β allows us to adjust the
projection surface, while α defines its shape.

B. Completeness of the Model

In fact we can show that (25) describes all the possible conics
that pass through (0 1)T and are symmetric with respect to z-
axis (here we consider rz coordinate plane). To make a sketch
of a proof let us consider a general conic equation:

Ar2 +Brz + Cz2 +Dr + Ez = 1 (27)

To make it symmetric with respect to z-axis we have to have
B = 0 and D = 0. Then, by substituting z = 1, r = 0 we get:

C + E = 1 (28)
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Fig 3. Using projection curve Q, point X is projected to m, which z-
coordinate is a. If a = 1 and f = c then the final projection is pc = fm.
But if a < 1, let us say that b = 1, then pb = m

a
and the final projection

pc = fpb = f
a
m = f ′m. So, we see that the projection defined by Q and

f ′ is equivalent to one defined by f and Q scaled such that it pass through 1.
The same argument is true when a > 1.

If we check (25), we see that all these conditions are satisfied.
Indeed:

B = 0

D = 0

C + E = α− γ + 2γ = α+ γ = 1 (29)

But what if there is a projection curve which does not pass
through (0 1)T ? Actually we can scale it so that it does (using
parameters fu and fv — see Fig. 3). So, we can say that the
proposed model is complete in the sense that it can fit any
projection whose projection curve is a conic section.

C. Inverse Model

Let us denote by f : R3\0 → R
2 the mapping defined in

(11). Here by inverse we mean an injective mapping g : R2 →
R

3 such that:

f(g(m)) = m (30)

or, in other words, f ◦ g = I . We know that the points of the
projection surface are projected orthogonally. So, g may be
defined as:

g :

(
x
y

)

→
⎛
⎝ x

y
z(x, y)

⎞
⎠ (31)

Where z(x, y) is an explicit solution of (22) with r =√
x2 + y2. To do that we can solve (25) and then choose the

proper solution. It is a quadratic equation:

Az2 +Bz + C = 0

A = α− γ

B = 2γ

C = α2βr2 − 1 (32)

This is solved as follows:

D = B2 − 4AC =

= 4
(
γ2 − (α− γ)(α2βr2 − 1)

)
z =

−B ±√
D

2A

=
−γ ±√D/4

α− γ
(33)

We can choose the solution by using the fact that z(0, 0) = 1.
Notice that r = 0 =⇒ D/4 = α2. Hence, the solution must
be defined by:

z =

√
γ2 − (α− γ)(α2βr2 − 1)− γ

α− γ
(34)

We see that (34) is not defined when α = 0.5. It is so because
(25) is no longer a quadratic equation.

We can avoid the singularity by multiplying both numerator
and denominator of (34) by

√
γ2 − (α− γ)(α2βr2 − 1) + γ:

z =
γ2 − (α− γ)(α2βr2 − 1)− γ2

(α− γ)
(√

γ2 − (α− γ)(α2βr2 − 1) + γ
)

=
1− α2βr2√

γ2 − (α− γ)(α2βr2 − 1) + γ
(35)

Also let us consider the expression under the square root in the
denominator:

γ2 − (α− γ)(α2βr2 − 1)

= (α− 1)2 + 2α− 1− (α− γ)α2βr2

= α2 − 2α+ 1 + 2α− 1− (α− γ)α2βr2

= α2(1− (α− γ)βr2) (36)

hence, we can rewrite the solution as:

z =
1− α2βr2

α
√

1− (α− γ)βr2 + γ
(37)

Due to the square root, z is defined as a real value when:

1− (α− γ)βr2 ≥ 0 (38)

If α ≤ 0.5 then α− γ ≤ 0 and (38) is always true. On the other
hand if α ≥ 0.5 then z is defined for:

r2 ≤ 1

(α− γ)β
(39)

It is so because the projection curve for α > 0.5 is an ellipse,
so the projection relation is not surjective (Fig. 4).

D. Homography Matrix

In [6] it was shown that the unified model allows us to use
homography matrix to perform 3D reconstruction. The pro-
posed model also alows us to do it. Suppose that we have set of
points X1..N belonging to a plane and we observe it with two
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Fig 4. In case of an ellipse as a projection curve all the spatial points are
projected in between A and B, hence, the inverse is not defined beyond
[A, B].

calibrated cameras a and b (with projection functions defined by
ηa and ηb respectively). Let us define the plane by the following
equation:

na ·Xa = da (40)

Here superscript a stands for the first camera’s frame; we
suppose da �= 0. Then we can apply the projection model:

Xa
p =

Xa

ηa(Xa)
(41)

On the other hand we can reconstruct Xp from a point m =
(xm ym 1)T from the normalized pale M (see Fig. 1) using
(37):

Xp =

⎛
⎝ xm

ym
z(xm, ym)

⎞
⎠ (42)

By computing the scalar product with na for both sides of (41)
and applying (40) we get:

1

ηa(Xa)
=

na ·Xa
p

da
(43)

The transformation between frames a and b is defined as:

Xb = Rb
aX

a + tba (44)

By replacing X by Xp and using (43) we obtain:

ηb(X
b)

ηa(Xa)
Xb

p = Rb
aX

a
p+

na ·Xa
p

da
tba =

(
Rb

a+
tba(n

a)T

da

)
Xa

p

(45)
We can rewrite the last equation as:

Xb
p ∝ Hb

aX
a
p (46)

where Hb
a = Rb

a +
tba(n

a)T

da
is a 3× 3 homography matrix.

Reconstructing Xp1..N for both cameras a and b we can get
the following system of equations:⎧⎪⎨

⎪⎩
λ1X

b
p1 = Hb

aX
a
p1

...
λNXb

pN = Hb
aX

a
pN

(47)

Here λ1..N are some unknown scale factors. As matrix Hb
a

defined up to a scale factor, we have 8 +N unknowns and 3N
equations. So, we can estimate Hb

a using just 4 points.

E. Jacobian Matrix

Our projection relation is:

m =

(
x

η

y

η

)T

η = γz + αρ

ρ =
√

β(x2 + y2) + z2 (48)

First let us compute the partial derivatives of ρ:

∂ρ

∂x
=

βx

ρ

∂ρ

∂y
=

βy

ρ

∂ρ

∂z
=

z

ρ
(49)

Then by applying the chain rule and noticing that
∂η

∂ρ
= α and

∂η

∂z
= γ we can compute the Jacobian matrix:

∂m

∂X
=

⎛
⎜⎜⎜⎜⎝

1

η
− αβx2

η2ρ
−αβxy

η2ρ
− x

η2

(
γ +

αz

ρ

)

−αβxy

η2ρ

1

η
− αβy2

η2ρ
− y

η2

(
γ +

αz

ρ

)
⎞
⎟⎟⎟⎟⎠

∂p

∂X
=

(
fu 0
0 fv

)
∂m

∂X

(50)

This Jacobian matrix allows us to speedup a bundle adjustment
process in a SLAM system because it is more efficient than
numeric or automatic differentiation.

IV. CALIBRATION USING THE MODEL

This section aims to show that the model can adequately
approximate the projection relations of a wide range of different
lenses. We don’t try to show that the model performs better than
the existing ones. Moreover, The unified model is supposed
to fit the data better because it has more complex projection
relation.

To test the model, a calibration of several different lenses
was performed. In all cases sub-pixel precision was achieved.
All the example images here are taken with a Fujinon
FE185C057HA-1 lens (in Table I it goes second). Below we
describe the calibration methodology.

The calibration was done using a check-board calibration
pattern. In order to perform the calibration a software was
developed . It was written in C++ in a manner such that it is
easy to reuse it to perform calibration of a different model. To
extract the image coordinates of the pattern a standard function
of the OpenCV library was used.

Actually it is a practical way to extract the pattern, alterna-
tive to the manual corner selection. But it has its drawbacks,
first of all poor precision. Relatively high reprojection errors for
some corners are explained by this fact. But the overall quality
of extraction together with a large dataset (about 100 images)
allow us to obtain a precise parameter estimation.



142 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 1, NO. 1, JANUARY 2016

TABLE I
CALIBRATION RESULTS. SECOND AND THIRD LINES REPRESENT

DIFFERENT LENSES OF THE SAME MODEL. THE NUMBER OF IMAGES IS

CONDITIONED BY THE FACT THAT THE OpenCV EXTRACTOR FAILS TO

EXTRACT THE GRID FROM SOME IMAGES AND THEY HAVE TO BE

DISCARDED. THE RESOLUTION IN ALL CASES IS 1296× 966. σx AND σy

REPRESENT THE REPROJECTION ERROR DISTRIBUTION AFTER THE

CALIBRATION

Fig. 5. Initial approximation of the transformation between the board and the
camera — the reprojected grid is represented by gray circles.

A. Nonlinear Optimization Problem

Given a reference model of the calibration board {Xi ∈ R
3}

and a set of projections of the model {pij ∈ R
2}, (where i

stands for the corner index in the board, j is the index of the
positions from which the image was taken), and a projection
model:

f : R3 × R
N → R

2 (51)

where N is the number of projection model parameters, find
a set of transformation {T c

j ∈ SE(3)} (superscript c stands for
“camera”) and a vector of numeric parameters α ∈ R

N such
that it minimizes the error function:

E =
∑
i

∑
j

‖pij − fk(T
c
j Xi,α)‖2 (52)

Here α is the vector of intrinsic parameters, and the transfor-
mations represent the extrinsic ones.

The ceres-solver library [7] was used to carry out the opti-
mization part. The library provides so-called automatic deriva-
tion which allows to compute the Jacobian matrix of the error
vector exactly with no explicit symbolic definition of it. (for
example, see [8]). This allows us to use the same calibration
software to calibrate another camera model by simply changing
the projection relations.

Fig 6. Projection curves for the calibrated lenses. Blue — first, green — second
and third, red — fourth, cyan — fifth.

B. Initial Approximation

To achieve better convergence the initial extrinsic parameters
of the calibration board were estimated using fixed projection
parameters (Fig. 5).

As long as initial projection parameter are arbitrary, the posi-
tion estimation is also poor and cannot be considered as a real
estimation. But it brings the initial parameter vector of the
global optimization problem to a “valley” from where it will
converge to the global optimum.

The extrinsic parameters can be estimated independently
for each image, hence, the time consumption of this part is
negligible in comparison to the global optimization.

C. Calibration Results

The overall optimization (that is, bundle adjustment) is done
in a fraction of a second, while corner extraction takes about
one minute in total. The standard deviations of the reprojec-
tion errors along x and y axes as well as the number of images
used in the calibration are given in Table I. The first three lenses
are fisheye, and have high α value. The second and the third
are of the same model and their projection parameters are quite
close. The last two lenses are low-distortion, narrow-angle, and
their α are significantly smaller than for fisheye. Fig. 6 shows
projection curves corresponding to the calibrated lenses.

Fig. 7 is the reprojection of the grid after the calibration.
Fig. 8–9 show the undistortion using the model. Fig. 9 shows
the undistortion of a region on the border of the image: lines
that are straight on the calibration board appear straight. To per-
form this undistortion we have to rotate the virtual camera with
respect to the real camera. Otherwise the region would not be
in the field of view of the virtual pinhole camera.

The comparison between the proposed model (11) and uni-
fied camera model (6) (with and without the distortion layer (7))
is given in Table II. The first thing that we see is that UCM-
D does not improve the error. The change in σx from EUCM
to UCM-D is negligible. On the other hand the computation
time increases by an order of magnitude. If we compare UCM
and EUCM, then we see that there is no significant change
in computation time. But there is a significant improvement
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Fig 7. Grid projection after calibration.

Fig 8. Undistortion using the calibrated model — all the straight lines after undistortion become straight. Here the board is in the middle of the image.

Fig 9. Undistortion using the calibrated model. Before reprojection the 3D points were rotated. The model works well even on the very border of projection.
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TABLE II
CALIBRATION RESULTS. HERE N IS THE NUMBER OF IMAGES IN A

DATASET; σx IS THE STANDARD DEVIATION OF THE FINAL ERROR; T IS

THE COMPUTATION TIME. THE MODELS ARE: UCM — UNIFIED CAMERA

MODEL (6), EUCM — ENHANCED UNIFIED CAMERA MODEL (11),
UCM-D — UNIFIED CAMERA MODEL WITH DISTORTIONS (7). THE

RESOLUTION IN ALL CASES IS 1296× 966

of precision for CF5M1414, while the performance of either
model is almost the same for FE185C057HA-1. It becomes
clear by looking at Table I where for FE185C057HA-1 β is
almost 1, while for CF5M1414 it is not. And β is the parame-
ter that makes the difference between two models. We can see a
significant improvement for DF6HA-1B (σx changes from 0.27
to 0.20).

V. CONCLUSIONS

The notion of projection curves and projection surfaces
seems to be useful in projection model analysis. The cali-
bration tests show us that the model has a wide application
field. It shows the same performance as the unified model with
distortions for all the lenses that were used for the experiments.
Still, the computation complexity remains at the level of pure
unified model.

A general calibration and visual geometry framework
(written in C++) has been developed and is available
on GitHub: https://github.com/BKhomutenko/visgeom. The
framework includes the camera model and general calibration
tools, so it may be useful in any project that involves camera
calibration (regardless of the model to be used).

The model is also successfully used in a stereo visual SLAM
project using fisheye cameras. Due to explicit inverse model it
allows to rapidly compute stereo reconstruction from a single
stereo image, while any model without inversion would require
to solve an optimization problem in order to do it. This model
projects straight lines into conics. So, it is possible to formulate
epipolar constraints as it is presented in [9]. It may allow us to
perform 3D reconstruction and execute RANSAC algorithms
efficiently without applying inverse projection mapping.

Also, studying straight line projections may lead us to some
visual servoing [10], [11] and pose estimation [12] applications
using the model. Finally we strongly believe that the model may
improve the modeling of catadioptric systems, and an extension
of this work in this way can be done.

REFERENCES

[1] J. Kannala and S. S. Brandt, “A generic camera model and calibration
method for conventional, wide-angle, and fish-eye lenses,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 28, no. 8, pp. 1335–1340, Aug. 2006.

[2] C. Geyer and K. Daniilidis, “A unifying theory for central panoramic
systems and practical applications,” in Proc. 6th Eur. Conf. Comput. Vis.
II (ECCV’00), Jul. 26, 2000, pp. 445–461.

[3] C. Mei and P. Rives, “Single view point omnidirectional camera calibra-
tion from planar grids,” in Proc. IEEE Int. Conf. Robot. Autom., Apr.
10–14, 2007, pp. 3945–3950.

[4] J. Courbon, Y. Mezouar, L. Eck, and P. Martinet, “A generic fisheye cam-
era model for robotic applications,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS’07), Oct. 29, 2007, pp. 1683–1688.

[5] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A toolbox for easily cal-
ibrating omnidirectional cameras,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Oct. 9–15, 2006, pp. 5695–5701.

[6] J. Courbon, Y. Mezouar, and P. Martinet, “Evaluation of the unified model
of the sphere for fisheye cameras in robotic applications,” Adv. Robot.,
vol. 26, nos. 8–9, pp. 947–967, 2012.

[7] S. Agarwal, K. Mierle. Ceres Solver [Online]. Available: http://ceres-
solver.org

[8] D. Piponi, “Automatic differentiation, C++ templates, and photogramme-
try,” J. Graph. Tools, vol. 9, no. 4, 2004.

[9] T. Svoboda and T. Pajdla, “Epipolar geometry for central catadioptric
cameras,” Int. J. Comput. Vis., vol. 49, no. 1, pp. 23–37, Aug. 2002.

[10] N. Andref, B. Espiau, and R. Horaud, “Visual servoing from lines,” Int.
J. Robot. Res., vol. 21, no. 8, p. 67900, Aug. 2002.

[11] H. Hadj-Abdelkader, Y. Mezouar, N. Andreff, and P. Martinet,
“Omnidirectional visual servoing from polar lines,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA’06), May 15–19, 2006, pp. 2385–2390.

[12] S. Christy and R. Horaud, “Iterative pose computation from line cor-
respondences,” J. Comput. Vis. Image Understanding, vol. 73, no. 1,
pp. 137–144, Jan. 1999.


