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Abstract— This paper presents a framework for collabora-
tive visual SLAM using monocular cameras for a team of
mobile robots. The robots perform SLAM individually using
their on-board processors thereby estimating the seven degrees
of freedom (including scale) for the motion of the camera
and creating a map of the environment as a pose-graph of
keyframes. Each robot communicates to a central server by
sending local keyframe information. The central server merges
them when a visual overlap is detected in the scene and creates
a global map. In the background, the global map is continuously
optimized using bundle adjustment techniques and the updated
pose information is communicated back as feedback to the
individual robots. We present some preliminary experimental
results towards testing the framework with two mobile robots
in an indoor environment.

I. INTRODUCTION

Autonomous robots are increasingly being used for more
and more complex problems each day such as exploration
of large unstructured environments etc. In order to deal with
these complex scenarios, a multi-robot system consisting of
a team of robots (such as mobile robots, aerial vehicles etc)
which are equipped with perception sensors is necessary. A
multi-robot system extends the capability of a single robot
by merging measurements from several team members and
providing each robot with information beyond the range of
their individual sensors. This facilitates more efficient usage
of resources and achieves tasks which are not feasible for a
single robot system.

Moreover the use of a multi-robot system allows parallel
execution of tasks and also some degree of redundancy
increasing both the efficiency and the robustness of the
system. Consider a scenario of employing a multi-robot team
for the purpose of mapping of a large unknown environment.
The task can be divided among all the team members which
can collaboratively build a global map reducing the overall
execution time. This collective information including the
relative positions of the robots can be used for making
exploration strategies, path-planning and other higher level
decision. However, in general the advantages of a collabora-
tive system come at the cost of increased computations and
communication load among robots.

In this work, we deal with a team of mobile robots each
equipped with a monocular camera to perform SLAM. Using
a monocular camera gives the advantage for the system
to be used both for indoor/outdoor applications and also
for scenes with large variations in depth. Typically these
conditions impose severe restrictions on other vision sensors
such as RGB-D cameras and stereo pairs. However, this
makes running the visual SLAM process more challenging as
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the scale needs to be continuously estimated since no depth
information is directly available.

Fig. 1. System Architecture: Collaborative Visual SLAM

In this paper, we propose a framework for collaborative
visual SLAM (as shown in Fig. 1) where:

• Each individual robot performs monocular visual
SLAM and sends local keyframe information to a
central server.

• The central server merges this information to create a
global map and performs a pose correction using bundle
adjustment.

• The updated pose is communicated back to individual
robots as feedback thereby improving the local map and
the localization estimate of the individual robots.

The organization of the paper is as following. The next
section presents the related works. Then a general overview
on our system is given in section III where every function
is shortly described. Section IV presents the methodology
where we detail each function. Finally experimental results
are presented and analyzed in the section V.

II. RELATED WORK

Traditionally, SLAM has been performed using range
sensors like laser scanners, sonars or using stereo vision [1].
More recently, monocular cameras (bearing only sensors)
are also being used as the primary vision sensor like in
[2],[3],[4]. In the multi-robot context, this problem has been
studied under the banner of multi-camera structure from
motion (SfM) [5] or multi-camera SLAM [6].

In [7], the authors analyse the improvement in localization
quality of cooperative multi-robot localization over single
robot localization. [8] demonstrates that by incorporating
relative bearing information of the cameras, the overall
accuracy of the localization is strongly improved. In this
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approach, an Extended Kalman Filter (EKF) is adopted to
maintain the state containing configurations of all robots.
In [9], the authors propose an interesting idea where two
UAVs with monocular cameras act as a flexible stereo rig.
With additional input from IMUs the relative poses are
recoverd with absolute scale starting from an unknown initial
configuration.

[10] deals with large-scale collaborative SLAM in an
outdoor environment involving heterogeneous robots such
as UAVs and ground mobile robots equipped with stereo
cameras. It employs a global graph which maintains the
relative relationships between a series of submaps built by
each robot. The links between each submaps are created
by events like robot rendezvous, scene feature matches or
absolute localization information provided by GPS etc. These
constraints allow the correction of the position estimates
of submaps with respect to each other. [11] uses a multi-
camera system to estimate the trajectory of moving objects
in the scene along with building a 3D map of static objects.
However, the system requires the image streams from all the
cameras to be synchronized making it impractical to be used
for real-time applications.

Several decentralized solutions have been proposed where
data fusion is performed using only robots which are in
direct communication range of each other. [12] proposes
a method to efficiently distribute map information across a
team of robots which is robust to node failures and changes
in network topology. The proposed scheme consists of a local
optimization module which executes single robot SLAM, a
communication module which propagates the local graphs to
other robots and a neighbourhood graph optimization module
which combines all the local graphs into maps describing the
neighbourhood of a robot. On the other hand, recently many
centralized cloud based architectures for collaborative SLAM
have been designed where the data intensive tasks can be
mitigated to a powerful back-end cluster system [13], [14],
[15]. This allows the use of small and energy efficient on-
board processor to be placed on the robots while offloading
major computations to the cloud.

In [16], the authors propose a centralized framework for
a group of MAVs equipped with monocular cameras. Each
MAV performs visual odometry on its on-board processor
and sends keyframe information to a ground server where
it is merged to realize a global map. In this paper, we
present a similar framework however each robot is capable
of performing complete SLAM individually using full image
information instead of using only features. In addition, a
feedback mechanism is put in place which corrects the local
estimates continuously. Also the framework allows the robots
to join asynchronously and no prior relative information is
required.

III. SYSTEM OVERVIEW

Figure 2 illustrates the overall scheme of our collabo-
rative SLAM system. Each mobile robot equipped with a
monocular camera performs visual SLAM using its on-board
computer. This provides each robot with an estimate of its
pose and a 3D map of the environment in their respective co-
ordinate frames. In our approach, we use a monocular SLAM
algorithm based on direct image alignment which is able to
estimate the seven DoF’s including the scale of the scene.

Fig. 2. Overall scheme of our collaborative SLAM system

The map of the environment is stored as a pose-graph of
keyframes each consisting of a semi-dense depth map of the
corresponding view. This function is based on LSD SLAM
[3].

Each robot sends its keyframe information including its
pose in the local co-ordinate frame to the central server.
Here the place recognizer function constantly monitors all
the keyframes to detect overlapping scenes from different
robots. The overlap detection is performed in the appearance
space by extracting visual features from each keyframe and
comparing them in a fast manner using Bag of Words (BoW)
technique [17].

Once an overlap is detected between two cameras, the map
merging sequence is initiated. It involves computing an initial
transformation estimate between the matched keyframes by
using a RANSAC version of the traditional Horn’s algorithm
[18]. This estimate is used as a starting point to run an
optimization algorithm which estimates the similarity trans-
formation between the two matched keyframes. Finally, this
estimate is refined by performing an iterative closest point
algorithm as described in [19].

After computation of this transformation, the two corre-
sponding maps are merged into a global map and a new
constraint is added between the two matched keyframes.In
parallel, a bundle adjustment procedure is run over the global
graph and the updated poses of the keyframe graph are
communicated back to the individual robots as feedback.
This information is in turn used by each robot to improve
its localization estimate and the local map.

IV. METHODOLOGY

In this section we detail each individual function in Fig. 2.

A. Visual SLAM
Each mobile robot performs an on-board monocular

SLAM process which is able in real time to estimate its
pose and create the map of the environment as a pose-
graph of keyframes . The problem of scale drift is addressed
by implicitly including it as a parameter in the overall
optimization procedure. This function is based on LSD-
SLAM [3]. The overall method consists of the following
main components:
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1) Tracking: The camera pose ξ ∈ se(3) is estimated with
respect to the current keyframe Ki which consists of the
image (Ii), the depth map (Di) and the depth map variance
Vi. For each new image Ij , the relative pose ξji ∈ se(3) is
computed by minimizing the photometric error:

ξji = argmin
ξ

∑
p

∥∥r2p(p, ξji)∥ (1)

where the photometric residual rp(p, ξji) = Ii(p) −
Ij(ω(p,Di(p), ξji)) and ω is a warping function which
computes the location of a pixel from the first image in the
second image given the relative transformation ξji. Note that
in the actual implementation, a variance normalized residual
is minimized thereby implicitly including depth accuracy in
the computation of ξji. The optimization problem can be
posed as a weighted least squares problem [20] which can be
solved using the Gauss-Newton minimization method [21].

2) Depth Map Estimation: A semi-dense inverse depth
map is continuously estimated for each new frame. The depth
map is computed by making several stereo comparisons of
varying baseline over consecutive frames of the input video.
The variable base line allows for accurate estimation of both
near and far regions of the image. The method maintains a
probabilistic depth hypothesis for each pixel modelled by a
gaussian distribution which is continuously refined using an
filtering approach described in [22]. Finally when the camera
moves far from the current keyframe, a new keyframe is
created and its depth map is initialized by projecting points
from the previous keyframe on it.

3) Map Management and Optimization: The frame to
frame alignment method previously introduced in IV-A.1
inherently accumulates drift over time due to small errors
in each estimate arising from sensor noise and other model
inaccuracies.

To deal with this problem, the SLAM system maintains the
map as a graph where each vertex is the pose of the keyframe
and each edge represents the relative transformation between
the corresponding keyframes. Each time a new keyframe
is added to the map, new edges are created and finally
when previously visited regions of the scene are encountered,
additional edges (loop closures) are added which help in
reducing the accumulated drift.

However in the case of monocular SLAM, the scale of
the scene cannot be observed directly which over a long
trajectory leads to a drift causing major errors in tracking.
To take care of the scale parameter, the overall pose graph is
constructed in a manner such that the mean inverse of each
keyframe is one and instead the edges are represented as
transformation ξji ∈ sim(3). This allows the integration of
the scale parameter directly in the optimization problem. So,
the scaled transformation between the keyframes is estimated
by minimizing the error function:

E(ξji) =
∑
p

∥∥r2p(p, ξji) + r2d(p, ξji)
∥

(2)

where the depth residual is rd(p, ξji) = [p′]3 −Dj([p
′](1,2))

and p′ = ω(p,Di(p), ξji)
Finally, the overall map consisting of keyframe poses as

vertices and sim(3) constraints as edges, is continuously
optimized in parallel using a general graph optimization

framework like g2o [21]. This optimization over the graph
reduces the drift both in scale and pose estimates.

B. Place Recognizer
This module runs continuously on the central server and

is responsible to find scene overlap between different robots.
Since the relative position of each robot is not known in
the global coordinate frame at the beginning, the overlap is
detected using the appearance space information only.

For every new keyframe image, visual features (e.g. SURF
[23]) are computed which are view-point invariant. These
features are then quantized with respect to a vocabulary and
the resulting visual words description is stored. This bag of
words (BoW) technique allows the scene to be represented
as a collection of words which facilitates fast comparisons
of feature descriptors.

We use the FAB-MAP method [24] to detect a scene
overlap. This algorithm takes as input the BoW description of
each image, compares it against all previously seen images. It
gives as output the probability with which the current image
matches any of the previously seen images. Moreover, it also
computes the probability of the current image being a new
one. These probabilities are calculated by solving a recursive
Bayes estimation problem:

p(Li|Zk) =
p(Zk|Li, Zk−1)p(Li|Zk−1)

p(Zk|Zk−1)
(3)

where Li is a scene (location) in the world, Zk is an obser-
vation (visual words) at time k. In equation (3), p(Li|Zk−1)
is the prior belief of our location, p(Zk|Li, Zk−1) is the
observation likelihood and p(Zk|Zk−1) is a normalizing
term. The exact evaluation of these terms can be found in
[24].

Traditionally, the FAB-MAP technique has been used to
find loop closures over long trajectories. Instead in our
application, we use it to find if a place has been visited by
other robots in the team and in-effect creating a virtual loop
closure. It is termed virtual since the loop closure is obtained
as a result of the same place being visited by two different
robots (as opposed to the same place being visited by the
same robot). Finally, in order to avoid spurious matches, we
only proceed for map merging if FAB-MAP reports a match
over three consecutive images.

C. Map Merge
When the place recognizer module detects a scene overlap

between robots and indicates a match point, the map merging
procedure is initiated. The transformation between matching
frames is done in three steps followed by an update to the
global map.

1) Initial Transformation Estimate Using Horn’s Method:
For each keyframe image arriving at the central server, SURF
features are computed and stored. Note that the same features
were also used to compute a BoW representation required as
an input to FAB-MAP.

The Horn’s method describes a closed form solution using
unit quaternions to compute the scaled transformation given
three 3D point correspondences between two point clouds
[18]. From the matching keyframe candidates proposed by
FAB-MAP, 2D feature correspondences are extracted. Later
the depth of each 2D feature is computed by taking an
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average over the keyframe depth weighted by their variances
in the descriptor neighbourhood. It should be noted that
descriptors often end up in regions of discontinuities (such
as corners or edges) and the averaging step may result in bad
depth estimates. Finally, in order to deal with bad matches
between features, we implement a robust RANSAC based
version of the Horn’s algorithm.

2) Refining Estimate Using Sim3 Tracker: As a second
step, we use the tracking method based on minimizing the
cost function as described in equation 2 to find an improved
estimate for the scaled transformation. The estimate provided
by Horn’s method is used as a starting point for the tracker.

3) Correction using ICP: A final correction is made
using the iterative closest point (ICP) algorithm, a technique
from point cloud registration literature, which tries to find a
transformation that minimizes the distance between a set of
corresponding points in two clouds. We use an augmented
version of ICP which also includes surface normal and
tangent information to improve the estimate as described in
[19]. Note that both the Sim3 tracker and the ICP procedure
use a gradient approach to find the solution. In theory both
these methods could be used in any order. However, the ICP
procedure was found to be most accurate starting from a
better estimation of the scale factor. Therefore, it was decided
to perform the ICP step after the tracking step.

4) Global Map Update: Once the transformation is com-
puted, new similarity constraints are added between the
matching keyframes. The corresponding local maps are trans-
formed into the global coordinate frame considering one of
the two as reference (if its the first map merge) or using the
existing reference otherwise. After the new constraints have
been added a bundle adjustment step is performed over the
merged graph.

D. Overall Feedback System
Each time different robots visit the same place in the

environment, new constraints are created in the global graph.
While the mobile robots move in the environment, they may
cross each others path multiple times resulting in virtual loop
closures. These loop closure constraints help in reducing the
overall drift.

Finally, the central server communicates the updated pose
graph to individual robots which can then use this informa-
tion to update their localization estimate and the local maps.

This overall feedback mechanism facilitates the extension
of sensing capability of an individual robot beyond the direct
reach of their respective on-board sensors. In a sense, each
robot in the team is able to “look” beyond what they can
directly see and thus taking advantage of the collaborative
system.

V. EXPERIMENTAL RESULTS

In this section we present preliminary results with the aim
of validating the concepts presented before. The experiments
presented are not intended to be particularly challenging
examples, they are simply used to take the reader through
the functionality of the system.

The experiments were performed using two Turtlebots,
each equipped with a uEye monocular camera attached with
a wide-angle lens (∼130°Field of View) and a Core 2 Duo
laptop. The images are captured at 30 Hz with a resolution
of 640 x 480 pixels. The experiments were conducted in

an industrial-like indoor environment approximately 20m x
20m. The two robots start exploring the environment asyn-
chronously. Moreover, their starting positions are not known
to the central server. The robots traverse through regions
with large variations in scene scales. The depth of theses
scenes range from 1m to 15m. Finally, the communication
between the robots and the central server is carried through
the standard Wi-Fi protocol.

Figures 3 and 4 shows results from the monocular SLAM
process running on the local computers of the two robots
R1 and R2 respectively. The three columns in these figures
show the images captured by the camera, the trajectory of
the robot and the corresponding map built at three different
instants (corresponding to the three rows). The trajectory of
the robot R1 is illustrated in red and that of robot R2 in blue.
Each pyramid in the map represents a keyframe location and
the lines joining these keyframes represent the constraints.
The green pyramid depicts the current keyframe for both the
cameras.

At instant 1, we see that robot R1 has completed a
small square loop. During this trajectory, it makes some
loop closures as well. Later robot R2 starts exploring some
other part of the environment. At instant 2, the robot R2
completes a loop closure. As a result, we see that the overall
trajectory of robot R2 has been optimized and the scale
factor is corrected as well. At instant 3, robot R1 enters a
region previously visited by robot R2. At this time, the visual
place recognition system triggers a merge between the two
maps. The relative transformation between these two views
is computed in three stages as described in section IV.

In this example, robot R1’s origin is considered as the
reference coordinate frame. All the keyframes of robot R2
are transformed with respect to this origin. The global
trajectory of the two robots and the joint map is shown in
figure 5 . Finally, after searching for additional constraints
and optimizing the global map using bundle adjustment, the
updated keyframe poses are sent back to the two robots. This
updated keyframe pose is then used by robots R1 and R2 to
correct the localization estimate and the local map.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a framework for collaborative
visual SLAM for a team of mobile robots using a centralized
approach. Each robot is able to individually perform monoc-
ular SLAM using its camera and on-board computer. The
central server continuously receives local keyframe infor-
mation from individual robots over Wi-Fi. Keyframes from
all the robots are merged at this server and an optimization
procedure is followed which minimizes the overall pose and
mapping error. The updated pose information is sent back to
the individual robots incorporating a feedback mechanism.
No prior information regarding the relative position of the
robots or the initial configuration is required. The system
allows the robots to join and leave the team asynchronously.

The framework can be extended to work with different
type of cameras by including the corresponding projection
functions. In addition to the centralized framework, it would
be interesting to add robot-to-robot communication. In this
case, the robots can also exchange pose and map information
with each other when they are in direct communication
range.

7th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, September 28th 2015 

62



Fig. 3. Monocular SLAM Process on robot R1 at three different instants. Left: Image captured by the camera. Middle:Trajectory built by the robot.
Right: Map built by the robot.
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Fig. 4. Monocular SLAM Process on robot R2 at three different instants. Left: Image captured by the camera. Middle:Trajectory built by the robot.
Right: Map built by the robot.

Fig. 5. Global map computed at the central server . Left: Trajectory of the two robots in the merged map. Right: Depth map associated with the keyframes
from both robots.
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