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Chapter 2
Cognitive Modeling for Automating Learning
in Visually-Guided Manipulative Tasks

Hendry Ferreira Chame and Philippe Martinet

Abstract Robot manipulators, as general-purpose machines, can be used to perform1

various tasks. Though, adaptations to specific scenarios require of some technical2

efforts. In particular, the descriptions of the task result in a robot program which3

must be modified whenever changes are introduced. Another source of variations are4

undesired changes due to the entropic properties of systems; in effect, robots must be5

re-calibrated with certain frequency to produce the desired results. To ensure adapt-6

ability, cognitive robotists aim to design systems capable of learning and decision7

making. Moreover, control techniques such as visual-servoing allow robust control8

under inaccuracies in the estimates of the system’s parameters. This paper reports the9

design of a platform called CRR, which combines the computational cognition par-10

adigm for decision making and learning, with the visual-servoing control technique11

for the automation of manipulative tasks.12

Keywords Cognitive robotics · Computational cognition · Artificial intelligence ·13

Visual servoing.14

2.1 Introduction15

In the last decades, with the venue of fields of study such as cybernetics, artificial16

intelligence, neuroscience and psychology; remarkable progresses have been made17

in the understanding of what is required to create artificial life evolving in real-world18

environments [1]. Still, one of the remaining challenges is to create new cognitive19

models that would replicate high-level capabilities; such as, perception and informa-20

tion processing, reasoning, planning, learning, and adaptation to new situations.21 AQ1
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2 H.F. Chame and P. Martinet

The study of knowledge representation and thinking has led to the proposal of22

the concept of Cognitive Architecture (CA). A CA can be conceived as a broadly-23

scoped, domain-generic computational cognitive model, which captures essential24

structures and processes of the mind, to be used for a broad, multiple-level, multiple-25

domain analysis of cognition and behavior [2]. For cognitive science (i.e., in relation26

to understanding the human mind) it provides a concrete mechaniscist framework27

for more detailed modeling of cognitive phenomena; through specifying essential28

structures, divisions of modules, relations between modules, and so on [3].29

A robot that employs a CA to select its next action, is derived from integrated30

models of the cognition of humans or animals. Its control system is designed using the31

architecture and is structurally coupled to its underlying mechanisms [4]. However,32

there are challenges associated with using these architectures in real environments;33

notably, for performing efficient low-level processing [5]. It can be hard, thus, to gen-34

erate meaningful and trustful symbols from potentially noisy sensor measurements,35

or to exert control over actuators using the representation of knowledge employed36

by the CA.37

In practice, implementations of cognitive models usually require wide expertise in38

many other fields (i.e., probabilistic navigation, planning, speech recognition; among39

others). Moreover, cognitive models are derived from a large spectrum of compu-40

tational paradigms that are not necessarily compatible when considering software41

architecture requirements. Scientists in cognition research, and actually higher-level42

robotic applications, develop their programs, models and experiments in a language43

grounded in an ontology based on general principles [6]. Hence, they expect reason-44

able and scalable performance for general domains and problem spaces.45

On the side of cognitive roboticists, it would not be reasonable to replace already46

existing robust mechanisms ensuring sensory-motor control by less efficient ones.47

Such is the case of the servo-vision control technique (or visual servoing) which uses48

computer vision data to control the motion of the robot’s effector [7]. This approach49

has the advantage of allowing the control of the robot from the error directly measured50

on the effector’s interaction with the environment; making it robust to inaccuracies51

in estimates of the system parameters [8].52

This research seeks to contribute to the debate standing from the point of view53

of cognitive roboticists. It can be conceived as an effort to assess to what extent it is54

feasible to build cognitive systems making use of the benefits of a psychologically-55

oriented CA; without leaving behind efficient control strategies such as visual servo-56

ing. The aim is to verify the potential benefits of creating an interactive platform under57

these technologies; and to analyze the resulting flexibility in automating manipula-58

tive tasks.59

2.2 Cognitive Architectures60

According to [9], two key design properties that underlie the development of any61

CA are memory and learning. Various types of memory serve as a repository for62

background knowledge about the world, the current episode, the activity, and oneself;63
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2 Cognitive Modeling for Automating Learning … 3

while learning is the main process that shapes this knowledge. Based on these two fea-64

tures, different approaches can be gathered in three groups: symbolic, non-symbolic,65

and hybrid models.66

A symbolic CA has the ability to input, output, store and alter symbolic entities;67

executing appropriate actions in order to reach goals [2]. The majority of these archi-68

tectures employ a centralized control over the information flow from sensory inputs,69

through memory; to motor outputs. This approach stresses the working memory exec-70

utive functions, with an access to semantic memory; where knowledge generally has71

a graph-based representation. Rule-based representations of perceptions/actions in72

the procedural memory, embody the logical reasoning of human experts.73

Inspired by connectionist ideas, a sub-symbolic CA is composed by a network of74

processing nodes [3]. These nodes interact with each other in specific ways chang-75

ing the internal state of the system. As a result, interesting emergent properties are76

revealed. There are two complementary approaches to memory organization, global-77

ist and localist. In these architectures, the generalization of learned responses to novel78

stimuli is usually good, but learning new items may lead to problematic interference79

with existent knowledge [10].80

A hybrid CA combines the relative strengths of the first two paradigms [9]. In this81

sense, symbolic systems are good approaches to process and executing high-level82

cognitive tasks; such as, planning and deliberative reasoning, resembling human83

expertise. But they are not the best approach to represent low-level information. Sub-84

symbolic systems are better suited for capturing the context-specificity and handling85

low-level information and uncertainties. Yet, their main shortcoming are difficulties86

for representing and handling higher-order cognitive tasks.87

2.3 Visual Servoing88

The task in visual servoing (VS) is to use visual features, extracted from an image,89

to control the pose of the robot’s end-effector in relation to a target. The camera90

may be carried by the end-effector (a configuration known by eye-in-hand) or fixed91

in (eye-to-hand) [7]. The aim of all vision-based control schemes is to minimize an92

error e(t), which is typically defined by93

e(t) = s(m(t), a) − s∗. (2.1)94

The vector m(t) is a set of image measurements used to compute a vector of95

k visual features s(m(t), a), based on a set of parameters a representing potential96

additional knowledge about the system (i.e., the camera intrinsic parameters, or a97

3-D model of the target). The vector s∗ contains the desired values of the features.98

Depending on the characteristics of the task, a fixed goal can be considered where99

changes in s depend only on the camera’s motion. A more general situation can also100

be modeled, where the target is moving and the resulting image depends both on the101

camera’s and the target’s motion. In any case, VS schemes mainly differ in the way102
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4 H.F. Chame and P. Martinet

s is designed. For image-based visual servo control (IBVS), s consists of a set of103

features that are immediately available in the image data. For position-based visual104

servo control (PBVS), s consists of a set of 3D parameters, which must be estimated105

from image measurements. Once s is selected, a velocity controller relating its time106

variation to the camera velocity is given by107

ṡ = LsVc. (2.2)108

The spatial velocity of the camera is denoted by Vc = (vc, ωc), with vc the instan-109

taneous linear velocity of the origin of the camera frame and ωc the instantaneous110

angular velocity of the camera frame. Ls ∈ R6×k is named the interaction matrix111

related to s. Using (2.1) and (2.2), the relation between the camera velocity and the112

time variation of e can be defined by113

ė = LeVc. (2.3)114

Considering Vc as the input to the controller, if an exponential decoupled decrease115

of e is desired, from (2.3) the velocity of the camera can be expressed by116

Vc = −λLe
+e, (2.4)117

where L+ ∈ R6×k is chosen as the Moore-Penrose pseudoinverse of Le, that is118

Le
+ = (Le

t Le)
−1Le

t when Le is of full rank 6. In case k = 6 and det(Le) �= 0, it119

is possible to invert Le giving the control Vc = −λLe
−1e.120

Following (2.4), the six components of Vc are given as input to the controller. The121

control scheme may be expressed in the joint space by122

q̇ = −λ(Je
+e + Pees) − Je

+ ∂e

∂t
, (2.5)123

where Je is the feature Jacobian matrix associated with the primary task e, Pe =124

(I6 − ̂Je
+

̂Je) is the gradient projection on the null space of the primary task to125

accomplish a secondary task es, and
̂∂e
∂t models the motion of the target. An example126

of VS is presented in Fig. 2.1.127

2.4 The CRR Proposal128

The Cognitive Reaching Robot (CRR) is a system designed to perform interac-129

tive manipulative tasks. When compared to non-cognitive approaches, CRR has the130

advantage of being adaptive to variations of the task; since the reinforcement learning131

(RL) mechanism reduces the need for explicitly reprogramming the behavior of the132

robot. Furthermore, CRR is robust to changes in the robotic system due to wear. It is133
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2 Cognitive Modeling for Automating Learning … 5

B
&

W
IN

PR
IN

T

Fig. 2.1 Comparison between three IBVS (Image-base visual servoing) control schemes [8].
a Initial and final position of the target on the camera image, and the trajectory followed by each
point and the center of the virtual polygon. b Evolution of Vc. From left to right the plots corre-
spond to different calculations of the interaction matrix: Le

+ (at each iteration), Le
+ = Le∗ + (at

equilibrium), and Le
+ = (Le

+ + Le∗ +)/2.

Cognitive
Module

Auditory
Module

Visuomotor
Module

SoarVoce Library ViSP / OpenCV

AUS VIC/PRC

VIS/PRSAUC

Fig. 2.2 The CRR architecture. The boxes represent modules and the ovals indicate the libraries
wrapped inside the modules. The links between modules indicate topics. AUS Auditory sensory,
PRS proprioceptive sensory, VIS visual sensory, AUC auditory command, VIC visual command,
PRC proprioceptive command

tolerant to calibration errors by employing visual servoing; where modeling errors134

are compensated in the control loop (the camera directly measures the task errors).135

The platform presents a modular organization (as shown in Fig. 2.2) and is com-136

posed by three modules. The cognitive module is responsible for symbolic decision137

making and learning. The auditory module processes speech recognition. The visuo-138

motor module is in charge of applying the VS control. To enable inter-modular139

communication, six topics were defined. Topics are named buses over which mod-140

ules exchange messages. According to the sensory modalities that compose CRR,141

auditory, proprioceptive and visual topics were defined. The aim of these topics is142

sending sensory information to the cognitive module. Similarly, the cognitive module143

sends commands to the auditory, visual and proprioceptive modules.144
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6 H.F. Chame and P. Martinet

Hardware Components. The design of CRR aimed to praise the reusability145

of equipments, so its hardware components were chosen according to a criteria of146

accessibility in the robotic lab. The project considered a Stäubli TX-40 serial robot147

manipulator, an AVT MARLIN F-131C camera, and a DELL Vostro 1,500 laptop148

(Intel Core 2 Duo 1.8 GHz, 800 MHz front-side bus, 4.0 GB DDR2 667 MHz RAM149

memory, 256 MB NVIDIA GeForce 8,600 M GT graphic card).150

Software Components. Three criteria grounded the choice for software technolo-151

gies: source availability, efficiency and continuity of the development community.152

The sole exception was the use of SYMORO+ [11], a proprietary automatic sym-153

bolic modeling tool for robots. CRR was developed under Ubuntu Oneiric Ocelot154

and relied on Voce Library V0.9.1, ViSP V2.6.2, the symbolic CA Soar V9.3.2, and155

ROS Electric. Eclipse Juno V4.2 was used for cording and testing the algorithms.156

2.5 Case Study157

The experimental situation designed, consisted in a reaching, grasping, and releasing158

task, involving reinforcement learning. From the inputs received, and based on the159

rewards or punishments obtained, the robot must learn the optimal sequence policy160

π : S → A to execute the task, and thus, to maximize the reward obtained.161

2.5.1 Task Definition162

The experimenter is positioned in front of the robot for every trial and presents it163

an object accompanied by a verbal auditory cue (“wait” or “go”). The robot has to164

choose between sleeping or reaching the object. If the object is reached after a “wait”165

or the robot goes sleeping after a “go”, the experimenter sends an auditory verbal cue166

representing punishment (“stop”) and the trial ends. On the contrary, if the robot goes167

sleeping after getting a “wait” or follows the object after a “go”, it receives an auditory168

verbal cue representing reward (“great”). After being rewarded for following the169

object, the experiment enters the releasing phase. If the robot alternated the location170

for dropping the object it is rewarded, otherwise it is punished. Figure 2.3 presents171

the reinforcement algorithm.172

The robot has two main goals in the experiment. It is required to learn when173

reaching or sleeping in the presence of the object; and if the object is grasped,174

to learn to drop it alternatively in one of two containers. Summarizing, the robot175

is required of perceptive abilities (recognizing the object and speech), visuomotor176

coordination, and decision making (while remembering events).177
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2 Cognitive Modeling for Automating Learning … 7

Initial
Object

location

Speech
recognition

Go to sleep

Reward Punishment
Object

grasping

Reach
the object

Punishment

Where
to

release?
Reward Punishment

wait

go go

wait

alternates
location

repeats
location

Fig. 2.3 Task reinforcement algorithm

2.5.2 Perception178

Object Recognition. The recognition of the object was accomplished using the179

OpenCV library. The partition of the image into meaningful regions was achievement180

in two steps. The classification steps includes a decision process applied to each pixel181

assigning it to one of C ∈ {0 . . . C − 1} classes. For CRR a particular case using182

C = 2 known as binarization [12] was used. Formally, it is conceived as a monadic183

operation taking an image of size I W×H as input, and producing an image OW×H
184

as output; such as185

O[u, v] = f (I [u, v]), ∀(u, v) ∈ I. (2.6)186

The color image I is processed in HSV color space, and the f function used was187

f (I [u, v]) =
{

1 if εi < I [u, v] < εf
0 otherwise

. (2.7)188

The choice of f was based on simplicity and ease of implementation; however,189

it assumes constant illumination conditions throughout the experiment (which is the190

case since the environment is illuminated artificially). The thresholds ε were set to191

recognize red objects.192

In the description phase the represented sets S are characterized in terms of scalar193

or vector-valued features such as size, location and shape. A particularly useful class194

of image features are moments [7], which are easy to compute and can be used to195

find the location of an object (centroid). For a binary image B[x, y] the (p + q)th196

order moment is defined by197
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8 H.F. Chame and P. Martinet

m pq =
ymax
∑

y=0

xmax
∑

x=0

x p yq B(x, y). (2.8)198

Moments can be given a physical interpretation by regarding the image function199

as a mass distribution. Thus m00 is the total mass of the region, and the centroid of200

the region is given by201

xc = m10

m00
, yc = m01

m00
. (2.9)202

After the centroid is obtained, the last step consisted in proportionally defining203

two points beside it, forming an imaginary line of −45◦ slope. These two points are204

the output of the object recognition algorithm, later entered to ViSP to define 2D205

features and performing the VS control.206

Speech Recognition. CRR used the Voce Library to process speech. It required207

no additional efforts than changing the grammar configuration file to include the208

vocabulary to be recognized.209

2.5.3 Visuomotor Control210

In order to perform visuomotor coordination to reach the object, an IBVS strategy was211

chosen given its robustness to modeling uncertainties [8]. The camera was located in212

the effector of the robot (eye-in-hand), thus the Je component of (2.5) is defined by213

Je = Le
cVn

n J (q). (2.10)214

Two visuomotor subtasks were defined: reaching the object and avoiding joint limits.215

Primary task. The subtask e consisted in positioning the end-effector in front216

of the object for grasping it. The final orientation of the effector was not important217

(assuming a spherical object), therefore, only 3 DOF were required to perform the218

task. Two 2D point features were used given its simplicity, each of them allowing to219

control 2 DOF. The resulting interaction matrix Lei was defined by220

Lei =
[−1/Zei 0 xei /Zei xei yei −(1 + x2

ei
) yei

0 −1/Zei yei /Zei (1 + y2
ei
) −xei yei −xei

]

. (2.11)221

The error vector for the primary task can be expressed by222

ei = [

(xsi − xsi
∗) (ysi − ysi

∗)
] t. (2.12)223

Since two points are tracked, the resulting components dimension were L4×6
e and224

e4×1.225
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2 Cognitive Modeling for Automating Learning … 9

Secondary Task. The remaining 3 DOF were used to perform the secondary task226

of avoiding joint limits. The strategy adopted was activation thresholds [13]. The227

secondary task is required only if one (or several) joint is in the vicinity of a joint228

limit. Thus, thresholds can be defined by229

q̃imin = qimin + ρ(qimax − qimin), (2.13)230

and231

q̃imax = qimax − ρ(qimax − qimin), (2.14)232

with 0 < ρ < 1/2.233

The vector es had 6 components, each defined by234

esi =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

β(qi −q̃imax )

qimax −qimin
if qi > q̃imax

β(qi −q̃imin )

qimax −qimin
if qi < q̃imin

0 otherwise

, (2.15)235

with the scalar constant β regulating the amplitude of the control law due to the236

secondary task.237

2.5.4 Decision Making238

Markov Decision Process (MDP) provided the mathematical framework for model-239

ing decision making. The task space was represented by a set of S = {S0, . . . , S10}240

states, A = {a0, . . . , a8} actions and Pa(s, s′) = {α0, . . . , α14} action-transition241

probabilities. The simplified MDP representation of the agent is given in Fig. 2.4.242

Procedural Knowledge Modeling. Cognitive models in Soar 9.3.2 are stored in243

long-term production memory as productions. A production has a set of conditions244

and actions. If the conditions match the current state of working memory (WM), the245

production fires and the actions are performed. Some attributes of the state are defined246

by Soar (i.e., io, input-link and name) ensuring the operation of the architecture. The247

modeler has the choice to define custom attributes, which derives in a great control248

over the state.249

The procedural knowledge implementation in Soar can be conceived as a mapping250

between an input to an output semantic structure. To develop the case study, it was251

necessary to define three types of productions: maintenance, MDP and RL rules. The252

first category includes rules that process inputs and outputs to maintain a consistent253

state in the WM; a typical task is clearing or putting data into the slots in order to254

access the modules functionalities. The second category includes rules related to the255

agent’s task, such as, managing the MDP state transitions. The last group involves256

rules that guarantee the correct functioning of RL; it includes tasks like maintaining257
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10 H.F. Chame and P. Martinet

S0

init
S1

locate
S2

reach
S3

sleep
S4

restart
grasp

S5

rLoc1

think

rLoc2

S8

rLoc1

rLoc2

S9

restart

S10

restart

S7

restart

S6

restart

∗ ∗ ∗

∗∗

∗

∗

∗

∗∗
∗

∗

∗
∗

∗

Fig. 2.4 The MDP task model. ∗ = (α, ρ), where α is the transition probability from s to s′ when
taking the action, and ρ is the reward associated with the state. From all actions there is a link to
S0 (omitted for clarity) modeling errors on the process with probability 1 − α. The states are: S0
Started, S1 initialized, S2 object located, S3 object reached, S4 sleeping, S5 object grasped, S6 object
released in location 1, S7 object released in location 2, S8 thinking, S9 object released in location 1
after thinking, S10 object released in location 2 after thinking. The action a0 initializes the system,
a1 signals the localization of the object, a2 signals the robot to reach the object, a3 puts the robot
in sleeping mode, a4 signals the robot to close the gripper, a5 explores past events, a6 and a7 signal
the robot to release the object at location 1 or 2 respectively, and a8 restarts the system. If a state
receives a negative feedback from the user ρi = −4 (punishment). In case of positive feedback,
ρi = 2 (reward)

Procedural
memory

RL rulesM rules MDP rules

Fig. 2.5 Procedural memory. M maintenance, RL reinforcement learning, MDP mark of
decision process

the operators’ Q-values, or registering rewards and punishments. Figure 2.5 presents258

a qualitative view of the contents of the procedural memory. For modeling the case259

study, a total of 57 productions were defined.260

Remembrance of Events. Functionalities in Soar are accessed through testing261

the current semantic structure of the WM. The same principle applies for querying262

data in the long term memory. In order to access the episodic or semantic mem-263

ory, the programmer must define rules placing the query attributes and values on264

the attribute epmem (for episodic retrieval) or smem (for semantic retrieval). After265

each decision cycle, Soar checks the epmem.command node to match conditions for266
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2 Cognitive Modeling for Automating Learning … 11

stimulus

modality name valence

A V P - 0 +

Fig. 2.6 Stimulus semantic knowledge. A auditory, V visual, P proprioceptive

Start Input Analysis

How
does it

feel
like?

Output

Reflection

End

+/-

0

Fig. 2.7 Stimulus processing and reinforcement

episodic retrieval. A copy of the most recent match (if found) will be available on267

the epmem.result for the next decision cycle.268

Remembrance of Facts. Facts about the world can be modeled through semantic269

structures. For the case study, the agent must know what are the stimuli received, or270

at least, how it feels like in relation to them. Thus, semantic information concerning271

stimuli was added to the system. The resulting graph was equivalent to a tree of272

height two (Fig. 2.6). A stimulus has a name, a sensory modality (visual, auditory or273

proprioceptive) and a valence (positive, negative or neutral).274

Reinforcement Learning. The learning by reinforcement can be considered as275

equivalent to mapping situations to actions, so as to maximize a numerical reward276

signal [14]. The learner is not told which actions to take, but instead it must discover277

which actions yield the most reward by trying them. The RL module of Soar is based278

on the Q-learning algorithm [14]. In the case study a reward is applied whenever279

the state is not neutral. Figure 2.7 illustrates the processing of the stimuli. When an280

input arrives, procedural rules query the semantic memory to determine the valence281

associated with the stimulus. Following an analogy with respect to humans, the agent282

continues to work if it doesn’t feel happy or sad about what it has done; if so, it stops283

to think about it.284
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Fig. 2.8 Visuomotor module computing time

2.6 Results285

The implementation of the functionalities of CRR took place incrementally. Given the286

independence between the different modules, each component could be developed287

and tested individually. The modules were connected to the platform through ROS288

Etectric; a comprehensive simulation was done, and the results obtained are presented289

below.290

2.6.1 System Performance291

The performance of the visuomotor module is quite acceptable for real-time control292

applications. The module was designed to operate in four different modalities. In the293

VS mode, only visual servoing is available. In the VSI mode, it is possible to have a294

real-time view of the camera. In the VSL mode, the system generates log files for joint295

positions and velocities, feature errors, and camera velocities. Finally, a combination296

of the last three is allowed in the VSIL mode. As it can be seen in Fig. 2.8, a Freq.297

near to 66 Hz (approx. 15 ms per iteration) can be reached. If the camera view is298

displayed (which can be useful for debugging but has no importance for execution)299

the Freq. drops to 20 Hz.300
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2 Cognitive Modeling for Automating Learning … 13

Fig. 2.9 Robot configuration for testing joint limits avoidance. a Joint positions in deg: q1 = 0,
q2 = 90, q3 = −90, q4 = 0, q5 = 0, q6 = 0. b Simulated view, dots are the current feature
locations and crosses are the desired locations

2.6.2 Joint Limit Avoidance301

In order to test the joint limit avoidance property of the system, a simple simulation302

was designed. The robot was positioned in the configuration displayed in Fig. 2.9a.303

An object is assumed to be presented to the robot, rotated −10◦ in the z-axis of the304

camera frame. The simulated camera view is shown in Fig. 2.9b.305

The primary task (moving the robot to the desired view of the features) can be306

solved in infinite ways given the current singularity between joint frames 4 and 6. For307

testing the limit avoidance control law, limits of q6min = −5◦ and q6max = 5◦ were308

set to joint 6. As it is shown in Fig. 2.10, if just the primary task is performed, the309

control law generated will mostly operate q6 and the task will fall in local minima,310

since q6min will be reached. On the contrary, as shown in Fig. 2.11, setting a threshold311

ρ = 0.5 (which means it will be active when q6 < −2.5◦ or q6 > 2.5◦) solves the312

problem and the joint limit is avoided.313

2.6.3 Learning Task314

The task designed to run over CRR had two learning phases. In order to assess the315

correctness of the cognitive model and the learning algorithm; two experimental sets316

were defined. In the experimental set one (ES1), the objective was to teach the robot317

to identify when reaching the target. The ES1 evaluation consisted of five test cases318

varying the order of presentation of the clues “wait” and “go”. In all conditions the319

robot started without prior knowledge (the RL module was reset). The comparison320
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Fig. 2.11 Simulation of VS avoiding joint limits

between a RL and a random police is given in Table 2.1; as it can be seen, the321

robot was able to learn the task. The experimental set two (ES2) assumes ES1 was322

accomplished, so the agent properly grasped the object and must now learn where323

to drop it. The ES2 evaluation showed the agent was able to quickly learn the task324

using RL, and the resulting Q-values are presented in Table 2.2. For each test case325

of both ES1 and ES2, the first 20 responses of the robot were registered.326
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Table 2.1 ES1 evaluation results

Test RL-S RL-C R-S R-C

C1 17 0.85 8 0.40

C2 18 0.90 11 0.55

C3 17 0.85 12 0.60

C4 18 0.90 9 0.45

C5 18 0.90 10 0.50

RL-S Number of successes applying a RL policy, RL-C RL-S/attempts, R-S number of successes
applying a random policy, R-C R-S/attempts

Table 2.2 ES2 evaluation results

Action Frequency Reward

think-Remember 15 4.9302

think-release-loc-2-A 1 −2.2800

think-release-loc-2-B 7 6.9741

think-release-loc-1-A 7 6.9741

think-release-loc-1-B 0 0.0000

release-loc-2 2 0.6840

release-loc-1 3 0.4332

The robot attempted to release the object without remembering 5 times (taking the release-loc-1 and
release-loc-2 actions). However, it learned to maximize the reward by tacking the think-Remember
action, which was selected 15 times. Finally, after recalling the last location, the agent learned to
alternate between the think-release-loc-2-B and think-release-loc-1-A actions

2.7 Discussion327

Starting from the definition of a platform for executing visually guided tasks, a328

case study based on reinforcement learning was designed and required of perceptive329

abilities (such as, recognizing the object and speech), visuomotor coordination, and330

decision making (while remembering events). Different sections of the paper were331

devoted to detail the design criteria and the development of these components in the332

CRR platform.333

In the contemplated scenario, the recognition of stimuli was accomplished with334

relative ease. For the case of visual recognition, the OpenCV library proved to be335

a useful tool by offering a comprehensive set of procedures, thus facilitating the336

attainment of complex tasks with a reduced number of function calls. For speech337

recognition, no further effort was required than specifying the vocabulary to be338

recognized.339

In order to ensure visuomotor coordination, the technique of IBVS was chosen340

with the configuration eye-in-hand to avoid occlusions in the scene. Three DOF of the341

robot where assigned to the tracking task, while the remaining were assigned to the342

secondary task of joint limits avoidance. It was observed that both tasks efficiently343

fulfilled their role in the system. The ViSP library showed to be a valuable tool for344
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implementing real-time visual servoing control laws. The encapsulation of tracking345

algorithms abstracts the designer from the robust handling of image processing,346

which led to shorter development times.347

The development of cognitive models in Soar presented a slow learning curve.348

However, the available documentation and resources included in the distribution349

(specially the Soar Debugger) are sufficient and allowed to identify the errors; and350

gradually, to understand the concepts behind the architecture.351

The MDP framework showed to be a valuable tool for treating RL-based exper-352

iments. The integration of the MDP formalism to Soar was a relatively simple task353

to do, given that the architecture implements the Q-learning algorithm. This algo-354

rithm requires of the definition of rules that generate Q-values for each state-action355

pairs. Soar provides mechanisms for generating these rules, even for problems whose356

dimensions are not known ahead of time.357

The Soar syntax to encode production rules is simple. However, the procedural358

memory contains more than translations from English of the productions relative359

to the task (also modeled using the MDP formalism). That is, the cognitive model360

requires of the procedural knowledge extracted through the methodology of knowl-361

edge engineering. But it also requires of rules whose purpose is to manage the WM362

contents, thus, ensuring coherence during the execution of the agent while accessing363

the architecture’s functionalities (i.e., events and facts remembrance, or RL).364

In favor of alleviating the implementation efforts for the MDP representation in365

the case of similar task spaces; the proposed approach could be extended with the366

benefits of an ontology-based methodology. Thus, the system could be enhanced367

with a new component in charge of translating (or mapping) the content represented368

by the ontology, to the set of production rules that will be executed on the CRR369

platform.370

2.8 Conclusions371

This work started from the interest in developing cognitive robotic systems for execut-372

ing manipulative tasks. To this purpose, an approach emphasizing multidisciplinary373

theoretical and technical formulations was adopted. A methodological proposal for374

integrating a psychologically-oriented cognitive architecture to the visual servoing375

control technique has been presented; and resulted in the development of a modular376

system capable of auditory and visual perception, decision making, learning and377

visuomotor coordination. The evaluation of the case study, showed that CRR is a378

system whose operation is adequate for real-time interactive manipulative applica-379

tions.380
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