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Abstract— RPN (Robotic Programming Network) is an ini-
tiative to bring existing remote robot laboratories to a new
dimension, by adding the flexibility and power of writing ROS
code in an Internet browser and running it in the remote robot
with a single click. The code is executed in the robot server
at full speed, i.e. without any communication delay, and the
output of the process is returned back. Built upon Robot Web
Tools, RPN works out-of-the-box in any ROS-based robot or
simulator. This paper presents the core functionality of RPN
in the context of a web-enabled ROS system, its possibilities
for remote education and training, and some experimentation
with simulators and real robots in which we have integrated
the tool in a Moodle environment, creating some programming
courses and make it open to researchers and students (http:
//robotprogramming.uji.es).

I. INTRODUCTION

Online robots and remote laboratories have been around
for nearly two decades, with considerable success [1]. With
cross-platform middleware [2] apparition and the adoption of
new powerful World Wide Web standards [3], we may well
be approaching a new golden era for web robots.

The availability of such platforms will surely increase the
productivity of the robotics research community, yet they
will also become invaluable as educational resources, for
teachers, students and interested public. Sophisticated robot
platforms could be made accessible worldwide, being the
only cost for the user the price of an Internet connection.

Nowadays, there already exists a myriad of web-enabled
robots, in theory ready to be remotely controlled, their
sensors and outputs visualized. An awesome example of
such a system is the PR2 Remote Lab [4], which enables
a large community of researchers to use a state-of-the-art
yet expensive platform.

However, to our knowledge, most existing systems lack the
fundamental capacity of allowing remote users to easily write
and execute a program as if it were running on the real robot.
Usually, the interface only makes it possible to control the
elements of the robot. In some cases, scripting capabilities
for executing a limited set of commands are provided [5].

*This paper describes research done at the Robotic Intelligence Labo-
ratory, with support in part by Ministerio de Economa y Competitividad
(DPI2011-27846), by Generalitat Valenciana (PROMETEOII/2014/028), by
Universitat Jaume I (P1-1B2014-52), and by IEEE RAS under a CEMRA
grant (Creation of Educational Materials for Robotics and Automation).

1Enric Cervera, Gustavo A. Casañ and Jaime Alemany are with
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In this paper, we present a system that allows users to
remotely program a ROS-enabled robot or simulator and ex-
plain how we are testing it through a Learning Management
System, a Moodle system1 in which we have created several
courses and one challenge. ROS is a flexible framework for
writing robot software. It collects tools, libraries, and con-
ventions to simplify the task of creating complex and robust
robot behavior across a wide variety of robotic platforms.
With the advent of cheap robotic kits, teaching with robots
has become popular, specially to ease the learning process of
introductory programming courses [6], [7], [8], [9]. Robots
provide entry level programming students with a physical
model to visually demostrate concepts and ideas.

The programs consist of fully-functional ROS scripts2,
which are executed as ROS nodes in the server. As such,
they can access all ROS topics and services, without remote
communication overhead during execution. The output of the
process is returned back to the user’s browser, and a bag of
recorded topics is readily available to download for further
analysis. The server connects to a Moodle External Tool,
which allows the user to interact with IMS LTI-compliant
learning resources and activities [10].

The rest of this paper is organized as follows: Section II
describes some related work on web-based robot laboratories.
An overview of the RPN tools is presented in Section III.
Thorough experimental work with simulators and robots
is described in Section IV. Finally, conclusions and future
works are outlined in Section V.

II. RELATED WORK
Practically from its conception between the late 1980s and

early 1990s, the Internet was realized to allow remote users
to interact with and monitor robots [1].

After being online for over ten years, the Telerobot of
the University of Western Australia has become one of the
most popular remote laboratories, and similar systems have
proliferated since then [5], [11], [12], [13], [14], [15], [16].

The PR2 Remote Lab [4], [13] represents a milestone in
online robot systems. Previous attempts focused on simple
experiments and online learning, and did not build upon
shared robot middleware frameworks. This laboratory uses
Robot Web Tools [17], a collection of open-source modules
and tools for building web-based robot apps, allowing web
applications to interface with robots running ROS.

Another milestone is the RoboEarth project [18]. A more
ambitious system, it consists of a network and database

1http://www.moodle.org
2http://www.ros.org/wiki/rospy
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repository where robots can share information and learn from
each other about their behavior and their environment.

Robot benchmarking also benefits from the availability of
common online platforms for the development and testing
of algorithms [19]. To do so, easy means of executing robot
programs should be available. A REST-based architecture has
been proposed in [20] and demonstrated in [21] with remote
experiments on visual servoing.

While most existing remote laboratories have proven
highly successful and invaluable for spreading the use and
knowledge of online robots, RPN aims to fill a gap, by pro-
viding a simple, seamless way of executing a real program
for a remote user.

III. DESCRIPTION OF THE SYSTEM

RPN consists of a simple scripting interface, with a
text box and submit button built upon Robot Web Tools,
which can be accesed as a Moodle LTI resource. A similar
capability is available in the PR2 Remote Lab, yet they differ
in a crucial aspect: PR2 scripting is done in Javascript, and
it runs on the client side; RPN scripting is done in Python
(but it could be done in any other ROS-supported scripting
language), and it runs on the server side.

As a result, RPN has these fundamental differences:
1) The script is executed as a true ROS node on the server,

with access to any topic or service.
2) The remote communication delay is only present dur-

ing the transmission of the code, not during its execu-
tion.

3) The code is stored in the server, together with its
output and a bag of the topics, readily available for
downloading.

Flexibility comes at the expense of security, though. The
remote script is allowed to access the inner parts of the
system. To improve security we have taken the step of
creating a Virtual Machine (VM) for each student and thus
the code does not execute in the real machines, reducing
risks. Additional security policies have been enabled, as
provided by Robot Web Tools [3]: protected topics and
services are necessary when there are critical services that
the client should not interfere with; key authorization allows
the system to limit access to specific, trusted users.

Fig. 1 depicts a block diagram of the system. RPN server
side is built upon Robot Web Tools [3], [17] for commu-
nicating with the clients. In addition, it also communicates
directly with ROS for dynamically starting new processes,
i.e. executing the client programs. It is also responsible of
launching rosbag3 for data logging.

Communication is exclusively performed through ROS.
Consequently, RPN does not rely on any particular detail
of the underlying hardware or software, and it can cope with
any ROS-enabled system.

The client side of RPN consists of an HTML5, Javascript-
enabled web browser, which runs the Javascript widgets.

3http://www.ros.org/wiki/rosbag

Fig. 1. Overview of the system

The program source code is typed in a user-friendly, syntax-
highlighting, embedded editor4. Very little additional input
is required: a text field with the file name for archiving
purposes, and a selectable button which enables or disables
rosbag recording.

A single click on the run button is enough to launch the
processing of the code, and trigger the whole interaction
process between client and server. Fig. 2 depicts a more
detailed view of such interaction between the client and
server sides. Program code is written in the embedded
browser editor, on the client side. Upon pressing the run
button, a goal is generated by the RPN client. This goal
consists of an identifier for the program, the code itself as a
string, and an additional parameter which indicates whether
a bag of ROS topics should be recorded or not.

Fig. 2. Detailed interaction between client and server

This information is sent from the client to the server
through rosbridge5. Rosbridge provides a JSON API to ROS
functionality for non-ROS programs. Of the variety of front
ends that interface with rosbridge, we employ the Websocket
server [22] which allows web browsers to interact with ROS,
in the same way as used in the PR2 Remote Lab [4].

Communication between client and server is implemented
with the actionlib ROS package6. First, the RPN server
checks the goal: if a bag is required, a rosbag record process

4http://codemirror.net/
5http://www.ros.org/wiki/rosbridge_suite
6http://www.ros.org/wiki/actionlib
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is launched. Second, the string of code is saved to a local
file inside a sandbox ROS package, with the proper format,
extension, and permissions.

Next, the code is executed with the rosrun7 tool, with
its standard output redirected to the RPN server. Upon
finalization of the user process, the rosbag process is stopped;
the output of the process is both saved to a file, and returned
back to the client as result.

Upon reception of the result, the RPN client updates the
output and download widgets. The output of the process is
thus displayed in the browser window, and the resulting bag
file can be downloaded in a straightforward way. Both the
source code and the output are also stored in the server, and
can be downloaded for archiving purposes.

Additional feedback can be provided thanks to the tight
integration of RPN with Robot Web Tools: existing widgets
allow a 2D map, a 3D robot model, or a MJPEG stream
coming from a remote camera to be visualized [17].

RPN can also be integrated with RMS (Robot Manage-
ment System)8, a remote lab management tool designed to
control ROS enabled robots from the web.

Fig. 3. Remote programming with TurleSim: a challenge in the course
(back window) and the correcponding programming window (front window)
with the 2D world with the Turtle, buttons and the code window.

IV. EXPERIMENTAL SETUP

RPN has been tested on different ROS setups, consisting
of both simulators and real robots, and some of them have
been used to create open robotic courses (http://www.
robotprogramming.uji.es).

A. Programming Simulators

Two simulators have been used to organize the correspond-
ing programming courses: Turtlesim provides a simulated 2D
turtle (in Fig. 3) which is controlled by a ROS topic con-
taining its linear and angular velocity. Simple introductory
programs (in Python) can be used for producing different

7http://www.ros.org/wiki/rosbash#rosrun
8http://www.ros.org/wiki/rms/

Fig. 4. Remote programming with MobileSim: the code written in the right
window has been sent to the server and is being executed by MobileSim
(left window). The output is returned back and displayed in the top left
window in the browser.

figures. Mobilesim is similar to the Turtle simulator, with
the main difference that this mobile robot has sensors which
provide information about the distance between the robot
and the nearest obstacle (wall). This allow the development
of more complex tasks, like exploring a house or a labyrinth.

The code is directly executable as a ROS script. In RPN,
the code is typed in the text editor, and it can be readily
executed remotely on the ROS system. Fig. 4 depicts a
snapshot of such execution: the window belongs to the client
machine that runs the RPN client-side in a Chrome browser.

The resulting trajectory can be seen in the MobileSim
window of the server, as images of the simulation are
sent to the client browser by an mjpeg server9 ROS node.
The images are captured from the simulator window by
gstreamer10, and made available as a ROS topic by gscam11

and them shown as part of Moodle.
The output of the console, consisting of ROS log mes-

sages, is presented in the browser too, in the right botton
window.

If an error occurs during execution, the abnormal condition
is detected and the standard error output of the process is also
returned back to the browser, and displayed in the output
window. Such feedback includes, as usual, the line number
and the characteristics of the error. The debugging process
is thus as simple as if the code were running locally.

Should the script hang, the user can abort its execution
with the stop button. A timeout have also be set in the server
to prevent lengthy executions (such as an accidental infinite
loop).

This setup is easily transportable to any other ROS-
based simulator (e.g. Stage or Gazebo). The server runs all

9http://www.ros.org/wiki/mjpeg_server
10http://gstreamer.freedesktop.org/
11http://www.ros.org/wiki/gscam
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the simulator processes, and the client script controls the
robot, and comunicates with Moodle to display the feedback.
The simulator window is shown in the client browser, and
cameras view can also be added to the user interface in other
windows.

B. Programming a Humanoid Robot

In the third experiment, a robotics challenge, RPN is
used for remotely programming a NAO humanoid [23].
Communication with the robot is possible because the ROS
NAO driver12 connects to a custom module running the
robot middleware (NAOqi), which has been developed for
USARSim [24].

To demonstrate RPN, we have created an artificial envi-
ronment, a kitchen (as can be seen in Fig. 6), as part of the
HUMABOT Challenge 201413. The system user interface (in
Fig. 5) is similar to the previous simulators, but we create a
window in which we can see the NAO’s camera view, and
all NAO’s sensors are available through programming. We
have also added several cameras, which allow to have a 360
degrees view of the robot. Once finished the challenge, we
plan to open the environtment like a programming course.

Fig. 6. Kitchen environment for the HUMABOT Challenge.

C. Opportunities for Education and Training

RPN is useful in any programming course that uses ROS-
enabled robots or simulators. It allows students to work out
of the laboratory, anywhere with a laptop and an Internet
connection. In the Moodle environment we have created the
students only have to sign up in any of the courses we have
open to the public and begin to learn. The general system
security is improved by the use of Moodle system and its
own security. As we must be careful when working with
real robots, the EJApp booking system14 is being adapted to
control robot access to one student/researcher at a time.

But the benefits far outweigh the problems: there is no
need for the local installation and setup of cumbersome

12http://www.ros.org/wiki/Robots/Nao
13http://www.irs.uji.es/humabot/
14https://moodle.org/plugins/view.php?plugin=mod_

ejsappbooking

simulators, since a simple browser is sufficient (an inher-
ently cross-platform solution), and accessing from different
systems is made easier. From a social point of view, users
in different countries can access robot equipments that oth-
erwise would not be available, and to facilitate the access
we have made versions of the courses in different languages
(English, Spanish, Catalonian and Arabic).

And we strongly share the belief [25] that robots can be
extremely useful in learning programming skills, and their
associated problem solving and reasoning counterparts. The
results in a preliminary study with 23 subjects, undergraduate
first-year students from engineering degrees with none or
little previous experience in programming, were encorauging.
They were presented a version of the Turtle Robot course on
the RPN platform, consisting of programming a simulated
turtle-like robot.

The students were asked to solve different tasks and submit
their code to the site. And after the end of the activity,
they were asked to fill a questionnaire (ease of use of the
system, overall satisfaction, ...) about their experience with
the course. Overall, the satisfaction degree was complete,
with 91% of the students answering positively (strongly
agree or agree), and a significant part which complain about
the minimalist interface. A complete analysis of the results
can be found in an accepted journal paper of Dr. Cervera
yet not published (”The Robot Programming Network”, in
Journal of Intelligent and Robotic Systems).

Access to robotic competitions [26], [27], [28], [29] would
also benefit from a framework where participants can in-
stantly check their code in their browsers, without the need
to replicate the environment locally. As we have previously
explained, right now our system is being employed (and
tested) as part of the HUMABOT Challenge 201415. Thus,
the participants can test remotely their programs on a kitchen
environment we have created previously to the competicion.
There has not been simultaneus access problems to the NAO
robot, maybe because there are less than ten teams enrolled
in the competition.

To remark that the system is not dependant on Moodle, and
it can be used with any LTI compliant education system. We
made a successful test with Eliademy16, creating a version
of the Turtle Robot course.

V. CONCLUSIONS AND FUTURE EXTENSIONS

We have presented a web-based extension for ROS-based
remote laboratories and online robots, which allows the
rapid, seamless execution of a real program in the system,
launched by a client user in a remote browser. Also, we
have presented the learning environment and programming
courses we have created using Moodle and this extension.

Development is in a preliminary stage, and it must yet
be tested for a large number of users, althought Moodle has
been used for millions of students without problems, which
gives garanties about that part of the learning system. Moodle

15http://www.irs.uji.es/humabot/
16https://eliademy.com/es
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Fig. 5. Remote programming with the NAO humanoid: we can see two browser windows, in the left one we can see the written code that has been sent
to the server and executed by NAO, and the real time view of the robot’s camera; in the right window we can see real time images of the robot actions
through two side cameras.

also controls users authentication and time-share facilities. A
thorough study of system vulnerabilities to malicious code
must also be carried out, but the system has proved to be
fairly robust.

Another extension is the addition of feedback messages
during the execution of the script, a possibility already
available in the actionlib ROS package. The client would
then periodically update the output in the browser window,
thus providing the user with a more interactive experience.

The system is restricted to scripting languages, i.e. lan-
guages which do not need compilation. The current imple-
mentation is limited to the Python language, but any scripting
language with ROS support could be used, e.g. Lisp or Lua17.
We have began to explore the possibility of using Blockly18,
a block programming language editor, which can generate
Python code and thus it can be easly integrated in the system.
The blocks programming paradigm is proving to be more
attractive to the younger students, increasing the potential
users of the system.

Special attention should be devoted to Matlab, a leading
programming language for science and engineering. Some
experimental work for interfacing ROS and Matlab is avail-
able19. A Matlab remote programming environment for ROS
might become a winner in robotics education.

For research purposes, a more ambitious approach may
also be implemented, as proposed in the PR2 Lab [4]: remote
users could provide a link to their code within an SVN
repository; the code would be automatically downloaded,
compiled and executed; users could interactively monitor the

17http://www.ros.org/wiki/Client%20Libraries
18https://developers.google.com/blockly/
19http://www.ros.org/wiki/groovy/Planning/Matlab

results of the code or algorithms remotely, debugging and
performing experiments.
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