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Abstract— Many ideas have been proposed to reduce traffic
congestion. Driving a platoon of vehicles with constant spacing
seems to be a promising idea as it increases traffic density. But
keeping constant inter-vehicle spacing requires very reliable
communication. Another control policy is to drive the platoon
with a time headway between vehicles. It is a robust and well
known policy but large inter-vehicle distances in addition to
weak stability (unity error gain) near low frequencies make it
less practical. We have proposed in [1], [2] a modification of
the Constant Time Headway policy (CTH). This modification
largely reduces the inter-vehicle distances using only one
information shared between all vehicles.

In this work, we propose an additional modification of our
control law. This modification makes our control law similar,
in form, to the classical constant spacing policy, but it requires
to share only one information between the vehicles. This mod-
ification improves the stability of the platoon and removes the
weak stability of the CTH near low frequencies. We prove the
robustness of the control law in the presence of actuating lags,
sensing and communication delays. This proof can also be used
to prove the stability of the classical constant spacing policy in
the presence of all previous delays, which makes our result more
general than those established in the literature. Safety is also
discussed and the maximum acceptable communication delay
without losing safety is determined. Simulations have been done
in many critical scenarios.

I. INTRODUCTION

Many ideas have been proposed to solve traffic congestion.
Platooning using automated cars seems to be a promising
idea. It increases traffic density and safety, while simultane-
ously decreasing fuel consumption and driver tiredness.

Constant spacing and variable spacing policies are the
main control policies used to control the spacing between
vehicles [7], [13]. Variable spacing usually doesn’t require
a lot of data from other vehicles. In addition, it can ensure
string stability using on-board information only [5], but inter-
vehicle distances vary with speed and can be very large
[14], hence traffic density is low. The most common variable
spacing policy is the CTH [14]. The weak stability near low
frequencies in addition to the large spacing when using CTH
make it less practical. It was concluded that for high capacity
traffic, the constant spacing policy is necessary, at the price
of inter-vehicle communication [15].

Using communication may cause instability due to trans-
mission delays or data drops. In [4] the effect of communi-
cation delays on string stability has been studied. It has been
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proved that the platoon becomes unstable for any propaga-
tion delays in the communicated leader informations, but the
maneuvers that cause the string to be unstable are not given.
This result was concluded by calculating the gain of the com-
munication error transfer function near low frequencies and
getting infinite gain. Practically, this proof represents an over-
constrained condition because the only scenario which causes
this instability is when we apply continuous acceleration. An
attempt to remove this unsuitability was proposed in [16]
by synchronizing all the vehicles to update their controllers
at the same time and using the same leader information.
But the effects of clock jitter, which can be seen as non-
negligible delay and hence may cause instability according
to the results in [4], was briefly mentioned. [8] proved string
stability for the leader-predecessor and predecessor-successor
framework, neglecting information delays between vehicles.
The effect of losing communication is presented in [15]. It
has been proved that string stability can be retained, with
limited spacing error, by estimating the state of the leading
vehicle during losses.

Other delays and lags may be introduced in the physical
systems by actuators and sensors. These delays may also
have significant effects on stability if they are not taken
into account. Stability conditions for many control laws, in
the presence of lags and delays, can be found in [8], [9],
[11], [14], [17]. A detailed study of the effect of delays
and lags when using the classical time headway policy for
homogeneous and heterogeneous platoons is found in [7].
The results show that the time headway policy is more
immune to sensing and communication delays and actuating
lags, than the constant spacing policy. But the large spacings
between vehicles make it less important.

In [1], [2] we have proposed a modification of the CTH
policy, which largely reduces inter-vehicle distances, to be-
come nearly equal to the desired distance. These works
were applied to urban platoons in [3]. In lateral control, we
used sliding mode control to ensure stability and robustness.
Safety of the platoon when using the modified control law
was briefly studied in [1].

In this paper, we continue our previous work. We concen-
trate on controlling identical cars on nearly flat highways.
The objectives of this paper are to remove the weak stability
of the CTH near low frequencies and to prove the robustness
of the platoon in presence of actuating lags, sensing and even
communication delays. These objectives are achieved by
proposing an additional modification to our control law and
then by finding the conditions of the stability and safety. This
can be done by finding an upper limit to the propagated error.
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Fig. 1. A platoon

The stability of the platoon when using constant spacing
policy is consequently obtained.

This paper is organized as follows: in section II we present
a model for the vehicle, with and without taking the lags and
delays into account, and a model for the platoon. The control
law is developed in section III. String stability is proved in
section IV. Safety is discussed in V. Then in section VI,
we show simulation results. Discussions are done at VII.
Conclusions and perspectives are done in the final section.

II. MODELING

A. Longitudinal Model of the Vehicle

Using Newton’s law and taking into account the model of
the engine, Then by applying the exact linearization we get
a linear system [2], [7]:

ai(t) = ẍi(t) = v̇i(t) = Wi(t) (1)

where xi, vi, ai are the position, speed and acceleration of
the vehicle and Wi is the control input.

B. Vehicle model taking into account time delays and lags

In reality, the ideal model given by (1) is not sufficient.
Using it may lead to unstable control due to the presence of
delays and lags in the real system.

Lags and time delays make the net engine torque not
immediately equal to the desired torque calculated by the
controller.

Another source of instability is the delay in the commu-
nicated data. This delay is due to transmission time, heavy
communications or even data drops.

A vehicle model taking into account actuating lags and
sensing delays is given in [7]. We extend this model to take
into account communication delay so we get:

τi v̈i(t) + v̇i(t) = Wi(t−∆i, τci) (2)

where τi is the combination of all the lags taken as a lumped
lag, ∆i is the combination of the all the time delays taken
as a lumped delay, τci is the communication delay.

We also define ∆ci = τci−1
−τci as the propagation delay

between vehicle i and vehicle i− 1.

C. Platoon Model

The platoon is a set of vehicles moving together at the
same speed and keeping a desired distance L between
consecutive vehicles.

The spacing error of the i-th vehicle, assuming a point
mass model for all vehicles, is defined as follows:

ei = ∆Xi − L i = 1...N (3)

Where L is the desired inter-vehicle distance, ∆Xi =
xi−1 − xi the spacing between vehicles i and (i − 1),
ėi = vi−1 − vi the kinematic evolution of the spacing error
and N the total number of vehicles in the platoon.

The longitudinal model of the platoon, shown in fig. 2, is
called flatbed tow track model [1]. It is a set of vehicles vir-
tually connected by one-directional spring-damper systems,
placed on a virtual truck which is set to drive at a speed V ,
the value of V being known to all vehicles of the platoon. In
this paper, we propose to add new virtual springs between
each vehicle and the virtual truck. This enhances stability and
makes our control law similar to the constant spacing policy.
The main difference is that, in our case, the vehicles only
receive the speed of the virtual truck V and they calculate its
position XV by integrating V , thus minimizing the amount
of communicated data.
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Fig. 2. Enhanced flatbed tow truck model

III. CONTROL LAW AND SPACING ERROR
DYNAMICS

A. Longitudinal Control

Introducing the virtual truck in the new longitudinal model
enables us to deal with relative speed instead of absolute
speed, which enhances the performance of the longitudinal
control by reducing the distance required to ensure string
stability [1], [2]. This model is a modification of the classical
time headway policy by subtracting a new term V from all
speeds. So the spacing error becomes [2]:

δi(t) = ei(t)− h (vi(t)− V (t)) i = 1...N (4)

where h is the time headway, V is a common speed value
shared by all vehicles of the platoon, V must be the same
value for all the vehicles at any sampling time [1], [2]. This
value can be used to control the flow of the platoons.

We propose a modification to the control law we presented
in [2] by adding a new term. The new term eVi is proportional
to the distance between the i-th vehicle and the virtual truck:

Wi(t) =
ėi(t) + λ δi(t) + λ1 eVi(t)

h
, i = 1...N (5)

where λ, λ1 are positive coefficients, eVi = XVi−xi−i L,
and XVi is the position of the virtual truck, which can be
calculated by integrating V .

B. Longitudinal Control With Delays and Lags:

When taking the delays and lags into account, the control
law becomes the following:

Wi =
ėi(t−∆i) + λ δi(t,∆i, τci) + λ1eVi(t,∆i, τci)

h
(6)
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Fig. 3. Spacing error model taking into account delays and lags

where:

δi(t,∆i, τci) = ei(t−∆i)−h [vi(t−∆i)−V (t−(∆i+τci))]
(7)

eVi(t,∆i, τci) = XV (t− (∆i+τci))−xi(t−∆i)− i L (8)

With no loss of generality, we assume that vi(0) = 0,
ai(0) = 0, ei(0) = 0 for 0 ≤ i ≤ N at the initial conditions.

For an homogeneous platoon, we have: ∆i = ∆, τi = τ ,
τci−1

− τci = ∆ci = ∆c for 1 ≤ i ≤ N . Hence, Gei = Ge,
GVi = GV for 1 ≤ i ≤ N .

Using (6), (7) and (2) and then calculating the Laplace
transform taking into account previous assumptions, we get:

Ei(s) = Ge(s)Ei−1(s) +GV (s)e−τcisV (s), i = 2...N
(9)

where Ei(s), V (s) are the Laplace transform of ei(t), V (t)
respectively, and

Ge =
(s+ λ) e−∆ s

hτs3 + h s2 + ((1 + hλ)s+ λ+ λ1)e−∆ s
(10)

GV =
(λ h s+ λ1) e−∆ s(e−∆c s − 1)

s(hτs3 + h s2 + ((1 + hλ)s+ λ+ λ1)e−∆s)
(11)

Equation (9) shows that the error of the i-th vehicle is
not just a function of ei−1, but also a function of the shared
speed V (s) as shown in fig. 3. This is due to the presence
of a communication delay.

It is very important to calculate the dynamics of e1,
because it has an important effect on the stability and the
safety of the platoon and it is different from the dynamics of
other vehicles. By using (6), (7) and (2) and by adding the
terms (τhv̈0 + hv̇0 + λhv0 + λ1x0) to the left and right side
of (6) we get the dynamics of e1 as a function of V and of
the speed of the leader v0:

τh
...
e 1(t) + hë1(t) + (1 + λh)ė1(t−∆) + λe1(t−∆) =

τhv̈0(t) + hv̇0(t) + λhv0(t−∆)− λhV (t− (∆ + τc1))

+λ1x0(t−∆)− λ1XV (t− (∆ + τc1))

(12)

We calculate the Laplace transform:

E1(s) = FeV0(s)− FV V (s) (13)

where V0(s) is the Laplace transform of v0(t), and

Fe =
τhs3 + h s2 + (λhs+ λ1)e−∆ s

s(τhs3 + h s2 + ((1 + λh)s+ λ+ λ1)e−∆ s)
(14)

FV =
(λhs+ λ1)e−(∆+∆c)s

s(τhs3 + h s2 + ((1 + λh)s+ λ+ λ1)e−∆ s)
(15)

IV. STABILITY

A. String Stability of Longitudinal Control

The general string stability definition in the time domain
is given in [12]. In essence, it means that all the spacing
errors are bounded if the initial states are bounded.

In [10] we find a sufficient condition for string stability:

‖ei‖∞ ≤ ‖ei−1‖∞ (16)

which means that the spacing error must not increase as
it propagates through the platoon. To verify this condition,
the spacing error propagation transfer function is calculated
Gi(s) = Ei(s)

Ei−1(s) .
A sufficient condition for string stability in the frequency

domain is derived:

‖Gi(s)‖∞ ≤ 1 and gi(t) > 0 i = 1, 2..N (17)

where gi(t) is the error propagation impulse response of
the i-th vehicle.

In the following, we prove the stability of the platoon
in two steps: first by finding stability conditions taking
into account sensing time delays and lags, then adding a
communication delay and checking stability.

B. System Stability With Time Delay and Lags:

In this first step, we neglect communication delays
(GV (s) = 0) and we get stability conditions. All the
equations and the conditions established here will also be
used when taking into account the communication delay. So
we get:

Ei(s) = Ge(s)Ei−1(s) (18)

In this case we can use (17) to check the stability, so we
have to verify ‖Ge(ω)‖∞ < 1.

We have:

||Ge(ω)|| =
√

µ0

µ0 + µ+ λ2
1 + 2λλ1

(19)

Where µ = τ2h2ω6 + [h2 − 2hτ(1 + λh) cos(∆ω)]ω4 −
2h sin(∆ω)(1 +λ(h− τ)−λ1τ)ω3 + [2λh(1− cos(∆ω)) +
λ2h2 − 2λ1h cos(∆ω)]ω2, µ0 = ω2 + λ2.

To ensure stability, it is sufficient to satisfy:

µ+ λ2
1 + 2λλ1 ≥ 0 (20)

A sufficient condition to satisfy (20) is to make µ ≥ 0.
1 − cos(∆ω) ≥ 0 is always true. We take

1 + λ (h − τ) − λ1 τ ≥ 0 to make the coefficients
of sin(∆ω)ω3 always negative and we have sin(∆ω) ≤ ∆ω
for all ω > 0; this give us the following:

µ ≥ α1ω
6 + α2ω

4 + α3ω
2 (21)

Where α1 = h2 τ2, α3 = λ2h2− 2λ1h, α2 = β1 h
2 +β2 h,

β1 = (1− 2λτ − 2λ∆), β2 = 2((λ+ λ1)τ∆− (τ + ∆))
If the following condition

α1ω
6 + α2ω

4 + α3ω
2 ≥ 0 (22)

holds, then µ ≥ 0 is satisfied.
(22) is equivalent to the following inequality for all ω:
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α1ω
4 + α2ω

2 + α3 ≥ 0 (23)

A sufficient condition that makes the inequality hold is
that all the coefficients α1, α2, α3 be positive.

We get a group of conditions that satisfy the stability of
the platoon in the presence of lags and sensor delays:λ ≤ h−2(∆+τ)+2λ1τ∆

2(h(∆+τ)−∆τ) and λ1

λ < h
2 and

λ ≥ λ1τ−1
h−τ and h ≥ 2(∆ + τ) + 2λ1τ∆

 (24)

The last condition is to ensure that λ ≥ 0.

C. System Stability with Communication Delays:

Stability can be verified easily using condition (17) when
the error ei is a function of the previous error ei−1 only.
When the error becomes a function of additional variables
we have to check the maximum limits of the spacing error.
The system is stable if the spacing errors in the platoon are
always bounded [12].

In the following we study the limits of the spacing error
of the i-th vehicle when N −→∞.

Using (9), and omitting (s) in Ge(s), GV (s), E1(s) for
simplicity, we can get the relation between Ei(s) and E1(s)
for i = 3, ..., N :

Ei(s) = Gi−1
e E1 +GV e−i∆c s

i−2∑
j=0

Gje e
−j∆cs V (s) (25)

Ei(s) = Gi−1
e E1 +GV e−i∆c s

1− (Ge e
−∆cs)i−2

1−Ge e−∆cs
V (s)

(26)

For i = 2 the relation is given by :

E2(s) = Ge E1 +GV e−τc2s V (s) (27)

For any transfer function G(s), ||G(ω)||∞ = ||g(t)||1 if
its impulse function g(t) is positive [12].

From (26) and the previous note we get:

‖ei(t)‖∞ ≤ ξ1 + ξ2 (28)

Where ξ2 = ‖Gv(ω)‖∞
∥∥∥ 1−(Ge(ω) e−j∆cω)i−2

1−Ge(ω) e−j∆cω

∥∥∥
∞
‖V (t)‖∞ ,

ξ1 = ‖Ge(ω)‖i−1
∞ ‖e1(t)‖∞.

The first term ξ1 is bounded (for all ω and N −→ ∞)
if ||Ge(ω)||∞ ≤ 1 and ||e1(t)||∞ is bounded. For N −→
∞ these conditions make ||Ge(ω)||i−1

∞ ||e1(t)||∞ −→ 0 so
the effect of e1 disappears for the ”infinity” vehicle. The
conditions that keep ||Ge(ω)||∞ ≤ 1 are already given in
(24). From (13) we can prove that ||e1(t)||∞ is also bounded
because ||Fe(ω)|| and ||FV (ω)|| converge toward zero for
high frequencies. For low frequencies, e1 becomes equal
to λ h(V − vi) + λ1(XV − x0). This can be bounded
if we choose V correctly. For all other frequencies, the
denominator of ||Fe|| and ||FV || is always larger or equal to√
ω2(λ+ λ1)2 (we already proved that µ ≥ 0). This means

that the denominators are greater than zero for all non zero
ω; So ||Fe||∞ and ||FV ||∞ are bounded for all non zero ω,

respectively by α1, α2. Then the first term always converge
toward zero for all ω and when N goes to infinity.

Concerning the second term ξ2, from (41) we can prove
0 < ||1 − Ge e−∆cs|| ≤ 2, 0 < ||1 − (Ge e

−∆cs)i|| ≤ 2.
We have also proved in (47) that ||GV || is always limited
for all ω; so ξ2 is limited for all frequencies even when ω =
0, hence the platoon is stable for bounded communications
delays. Clock jitter effect may be also taken in to account
by this delay.

We can see that the platoon can be stable in the presence of
lags, sensing and even communication delays. The stability
conditions are given by (24) and in appendix in (40 and
45). These conditions can be applied to the constant spacing
policy and we can get a stable platoon, contrary to the
conclusion in [4]. We can also see that by adding the new
term λ1, the error transfer function ||Ge(0)|| becomes always
smaller than 1. This removes the weak stability in CTH
law, this weak stability appear in CTH near low frequencies
when the error transfer function gain becomes equal to
1 so the error is not damped. The maximum acceptable
communication delay ∆cmax is defined by safety conditions.

V. SAFETY

To ensure safety of the platoon we have to ensure that
the maximum error is smaller than the desired distance
max(ei(t)) < L.

For the first car, we want to ensure that |e1(t)| is always
less than L. By adding (τhV̈ +hV̇ +λhV (t−∆)+λ1xV (t−
∆)) to the left and right side of (12), then by calculating the
Laplace transform we get:

E1(s) = −Ke(s) EV (s)+KV (s)AV (s)+GV (s)V (s) (29)

where EV (s), AV (s) are the Laplace transform of
eV (t) = Xv − x0 and the acceleration of the virtual truck
aV (t) respectively.

Ke =
τhs3 + h s2 + (λhs+ λ1)e−∆ s

τhs3 + h s2 + ((1 + λh)s+ λ+ λ1)e−∆ s
(30)

KV =
λhs+ h

τhs3 + h s2 + ((1 + λh)s+ λ+ λ1)e−∆ s
(31)

If we choose the leader speed v0 as the common shared
speed V , the error ev becomes zero; so the first error
becomes:

E1(s) = KV (s)AV (s) +GV (s)V (s) (32)

So we have:
||e1(t)||∞ ≤ ||KV ||∞max |aV (t)|+ ||GV ||∞max |V (t)|

(33)

To ensure that e1 ≤ L, it is sufficient to verify:

||KV ||∞max |aV (t)|+ ||GV ||∞max |V (t)| ≤ L (34)

From (50) and (34) we get the safety condition for first
error:

∆c ≤ (L− h

λ+ λ1
max |aV (t)|) λ+ λ1

λ1 max |V (t)|
(35)
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For other errors, from (9) and for the transfer functions
Gei(s), GVi(s) with positive impulse functions gei(t), gVi(t)
we get for i = 2...N :

||ei(t)||∞ ≤ ||Gei(ω)||∞||ei−1(t)||∞ + ||GVi(ω)||∞||V (t)||∞
(36)

In this case, the following condition is a sufficient condi-
tion for safety ||Gei(ω)||∞L+||GVi(ω)||∞max(|V (t)|) ≤ L

then ||GVi(ω)||∞ ≤ (1− ||Gei(ω)||∞)L/max |V (t)|
Then by using (47) and (41) we get the upper limit for

communication propagation delay that prevents collisions:

∆c ≤
L

max |V (t)|
(37)

VI. SIMULATIONS

Simulations have been done using Matlab. A large platoon,
of 60 vehicles, is simulated. In practice, the platoon would
likely be much more smaller. Here we use this large platoon
just to check that the error does not increase, even for a
vehicle with a large index. We tested the system in critical
scenarios (acceleration from zero to maximum speed with
maximum acceleration, moving at maximum speed and then
applying emergency stop from maximum speed) to check the
validity of stability and safety conditions at their limits. The
desired inter-vehicle distance is L = 12 m. The maximum
speed of the leader is 140 km/h. We take the maximum ac-
celeration equal to 5 m.s−2 which is beyond the comfortable
acceleration and also exceeds the ability of most vehicles.
According to [10] the lag delay is about 70 ms, we take
larger values for the actuating lags equal to τ = 200 ms
and a sensing delay equal to ∆ = 200 ms. According
to [6] the communication propagation delay is smaller than
∆c = 50 ms. We take h = 2, λ = 0.7, λ1 = 0.2. For
clarity, we only show the speed of one of ten vehicles.

We can see in fig. 4 that the platoon is stable, since the
errors do not increase through the platoon. In addition, we
can see that the spacings between vehicles are always larger
than zero, so the platoon is safe. Previously in [2] we chose
l = 5 m, we notice here that we have enlarged the desired
inter-vehicle distance to compensate for the errors generated
by lags and delays. In practice, we would add an additional
safety margin distance in the desired distance to ensure more
safety.

VII. DISCUSSION

• The new modification improves the performance of our
control law, without requiring new data from other
vehicles. Each car can calculate the current position of
the truck using the shared speed V . So XV is always
the same for all vehicles.

• In the event of a loss of communication, all vehicles
switch to stable autonomous mode (classical time head-
way) by making V and XV smoothly become equal to
0 and xi (for the i-th vehicle) respectively.

• Losing communication prevents the vehicles from hav-
ing the same value for XV ; so it is necessary to update
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Fig. 4. Inter-vehicle spacings in the presence of lags, sensing and
communication delays

XV for all the vehicles after each loss of communication
in a common predetermined way.

• The integration of the error in V will have no effect on
stability because this error will be the same for all ve-
hicles. This error will have an effect on safety between
the first vehicle and the leader. As we saw before, the
most important condition to maintain stability is to keep
Xv − x0 limited.

• We can see that the control law proposed in this paper,
with the one proposed in [2] in addition to the classical
time headway, represent an integrated framework for
controlling the platoon. These laws enable us to switch
from one law to another smoothly, without losing stabil-
ity, according to decreasing communication capability.

VIII. CONCLUSION

In this paper, we have addressed the control of platoons
on highways. The longitudinal dynamics are modeled using
modified flatbed tow truck model. We proved the robustness
of this control law to lags, delays and even communication
delays. Sufficient stability conditions have been given in
equations (24), (40) and (45). The safety of the platoon
was also studied and corresponding sufficient conditions
established in equations (37), (35), (40), (45) and (49).
The maximum acceptable communication propagation delay
without losing safety is bounded by the conditions given in
equation (35) and (37). In future work, non homogeneous
platoons with non-homogeneous delays will be studied.
Passenger comfort will also be taken into account.

IX. APPENDIX

- To ensure string stability and safety, we have to find
||Ge||∞ and to make it as small as possible.

From (19) and when ω = 0 we have ||Ge(0)|| = λ
λ+λ1

.
We also have, from (19) and (21):
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||Ge|| ≤

√
ω2 + λ2

ω2 + λ2 + α1ω6 + α2ω4 + α3ω2 + λ2
1 + 2λλ1

(38)

We already found in (24) the conditions that make
||Ge(ω)|| ≤ 1. It is always better to make ||Ge(ω)||∞ as
small as possible to decrease the amplitude of the propagated
error. In our case we make ||Ge(ω)||∞ = ||Ge(0)|| < 1. This
can be verified by imposing an upper limit for the right term
of (38) for all ω:√

ω2 + λ2

ω2 + λ2 + α1ω6 + α2ω4 + α3ω2 + λ2
1 + 2λλ1

≤ ||Ge(0)||

(39)

This imposes the following condition:

α3 ≥
λ1

λ
− 1 (40)

So:
||Ge(ω)||∞ = ||Ge(0)|| = λ

λ+ λ1
< 1 (41)

- We also want to find ||GV ||∞. We have:

||GV (ω)|| =

√
(λ2 h2 ω2 + λ2

1)(2− 2 cos(∆c ω))

ω2(µ0 + µ+ λ2
1 + 2λλ1)

(42)

Using Taylor series near ω = 0 we can find that√
2− 2 cos(∆cω)→ ∆cω. So we can find ||GV (0)||:

||GV (ω)|| ω−→0−−−−→ λ1

λ+ λ1
∆c (43)

Again, it is better to make ||GV ||∞ as small as possible to
decrease the error generated due to the communication delay,
and propagated through the platoon.

So we want to make ||GV (ω)||∞ = ||GV (0)||. We can
write ||GV || as follows:

||GV (ω)|| =
√

a1

a1 + b1 + λ2
1 + 2λλ1︸ ︷︷ ︸

η1

√
(2− 2 cos(∆c ω))

ω2︸ ︷︷ ︸
η2

(44)

where b1 = α1ω
6 + α2ω

4 + (2λh(1− cos(∆cω)) +
(1− 2λ1h cos(∆cω))ω2, a1 = λ2 h2 ω2 + λ2

1.
η1 ≤ 1 if b1 + λ2

1 + 2λλ1 ≥ 0. To satisfy this inequality,
all the coefficients of ω must be positive, so:

λ1 ≤
1

2h
(45)

In addition, we always have η2 ≤ ∆c because:

η2 ≤

√
4 sin2(∆c ω/2)

ω2
≤
√

4(∆c ω/2)2

ω2
≤ ∆c (46)

So ||GV (ω)|| ≤ ||GV (0)||, for all ω:

||GV (ω)||∞ = ||GV (0)|| = λ1

λ+ λ1
∆c (47)

- We calculate ||KV ||∞ as follows:

||KV || =
√

a2

a2 + b1 + λ2
1 + 2λλ1

(48)

where a2 = τ2h2ω2 + h2.
We have ||KV (0)|| = h

λ+λ1
.

It is also better to make ||KV || as small as possible so we
try to make ||KV (ω)||∞ ≤ ||KV (0)||,∀ω. This is satisfied
under the following condition:

(λ+ λ1)2τ2 ≤ (τ2 + λ2)h2 − 2λ1h (49)

So we get:

||KV (ω)||∞ = ||KV (0)|| = h

λ+ λ1
(50)
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