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a b s t r a c t

In order to increase the reachable workspace of parallel robots, a promising solution consists of the
definition of optimal trajectories that ensure the non-degeneracy of the dynamic model in the Type 2 (or
parallel) singularity. However, this assumes that the control law can perfectly track the desired
trajectory, which is impossible due to modeling errors.

This paper proposes a robust multi-model approach allowing parallel robots to cross Type 2 singula-
rities. The main idea is to shift near singularities to a simplified dynamic model that can never degenerate.
The two main contributions are the definition of an optimal trajectory crossing Type 2 singularities and the
multi-model control law allowing to track this trajectory. The proposed control law is validated
experimentally through a Five-bar planar mechanism.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Contrary to serial robots, which are largely used in industry,
parallel robots are under-represented despite having many advan-
tages, such as higher acceleration capacities and a better payload-
to-weight ratio. The small number of parallel mechanisms in
factories can be explained by the relative complexity of their
model and by the presence of singularities (Arakelian, Briot, &
Glazunov, 2008; Conconi & Carricato, 2009; Gosselin & Angeles,
1990), which divide their workspace into different aspects (each
aspect corresponding to one or more assembly modes, Merlet,
2006). The manipulator workspace is therefore usually reduced to
only one of these aspects, resulting in a greatly reduced reachable
workspace size. The main idea of this paper is to propose a control
law allowing parallel manipulators to move between those differ-
ent aspects.

Various types of singularity exist, and for a global overview of
the singularity problem the reader is referred to Conconi and
Carricato (2009). However, since Type 2 (Gosselin & Angeles, 1990)
(or parallel) singularities are probably the most constraining ones,
this paper will focus only on this type. In these singularities, one
(or more) manipulator's degree of freedom becomes uncontrolla-
ble. In order to increase the workspace size several approaches
have been envisaged in the literature, such as:

� The design of parallel robots without singularities. This can be
done by using the optimal design approach (Briot & Arakelian,
2010; Liu, Wang, & Pritschow, 2006) or by creating decoupled
mechanisms (Gogu, 2004; Kong & Gosselin, 2002). This solu-
tion is the most usual one, but it usually leads to the design of
robots with a small workspace size or robot architectures with
very low practicability.

� The use of redundancy (Kurtz & Hayward, 1992; Nahon &
Angeles) or, to reduce costs, the use of mechanisms with variable
actuation modes (Arakelian et al., 2008; Rakotomanga et al.,
2006). These mechanisms can change the way they are actuated
without adding additional actuators, but this change can only be
carried out when the mechanism is stopped, thus increasing the
time necessary to perform the task.

� Planning assembly mode changing trajectories. A first way to do
this is to bypass a cusp point (Zein, Wenger, & Chablat, 2008).
However, this solution is hardly practical for two main reasons:
(i) it forces the mechanism to follow a particular trajectory,
which can be very different from the desired one; (ii) only a few
mechanisms have cusp points. A second solution is to go directly
through a Type 2 singularity (Briot, Arakelian, & Chablat, 2008;
Ider, 2005). In Briot et al. (2008), a physical criterion, obtained
through the analysis of the dynamic model, is presented. It
enables the computation of a trajectory which can cross a
singularity without the dynamic model degenerating, by
respecting the criterion in question on the singularity locus.

This last solution is promising, since it can considerably
increase the workspace size of any parallel mechanism. However,
in previous studies it was considered that the controller allowed
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the mechanism to perfectly track the desired trajectory. This is
obviously impossible due to modeling uncertainties. In order to fill
this gap, the aim of the present paper is to propose an advanced
control law dedicated to Type 2 singularity crossing.

Since Type 2 singularities have an impact on the dynamic of the
mechanism, the use of a geometric/kinematic controller would not
allow taking into account this dynamic degeneracy. Moreover, in
Briot et al. (2008) it has been shown that, in order to cross a Type
2 singularity, the mechanism has to track a trajectory that respects
a specific criterion on the singularity locus. This criterion gives a
relation between the singular position, the mechanism's speed
and its acceleration when crossing the singularities. However, only
dynamic controllers can perform tracking of velocity and accel-
eration (Khalil & Dombre, 2004). Most of the different dynamic
control loop algorithms can be considered as special cases of the
computed torque control (CTC) (Craig & Hall, 2005; Khalil &
Dombre, 2004; Spong, Hutchinson, & Vidyasagar, 2006). This
technique consists of an inner nonlinear compensation loop and
an outer loop with an exogenous control signal u. However, this
control law is sensitive to modeling errors, so the dynamic model
must be well identified (Briot & Gautier, 2012; Gautier, 1997).

When applying a CTC control law for singularity crossing, the
degeneracy of the dynamic model near the singularity results in
computing infinite torques, thus leading to the instability of the
controller. No controller has ever been developed for singularity
crossing,1 and most studies concentrate on solutions in order to avoid
the singularities. In order to be used when crossing a Type 2 singu-
larity, the dynamic model used by the CTC must not degenerate near
singularities, even if the trajectory does not perfectly respect the
physical criterion mentioned above. As a result, in this paper, a new
multi-model CTC (e.g. see Craig & Hall, 2005; Spong et al., 2006) is
proposed, which guarantees that the robot dynamic model of the
mechanism does not degenerate near a singularity. This multi-model
control law was developed thanks to the definition of a new dynamic
criterion based on Briot et al. (2008). The contribution of this paper is
to propose a complete methodology, from the trajectory planning to
the achievement of singularity crossing on an experimental robot
without path restriction.

This paper is organized as follows: first the approach used to
compute the criterion for crossing Type 2 singularities is recalled,
and a method developed to increase the robustness of the planned
trajectory is proposed. Then, in Section 3, the multi-model CTC
control law developed for crossing singularities is presented.
Section 4 introduces the robot used to validate the Type 2 singu-
larity crossing approach proposed. Finally, the relevancy of this
controller is demonstrated through full-scale experiments on a
Five-bar mechanism.

2. Trajectory generation for crossing a Type 2 singularity

2.1. Dynamic modeling of parallel mechanisms

This section will briefly recall the dynamic equations of a
parallel manipulator composed of m links, n degrees of freedom
(dof) and driven by n actuators. The manipulator is composed of
legs attached to the base and to the mobile platform (for a more
detailed analysis of closed-loop kinematic chain, the reader is
turned to Merlet, 2006). The position and the speed of the
manipulator can be fully described using:

� q¼ q1; q2;…; qn
� �T and _q ¼ _q1; _q2;…; _qn

� �T which represent
respectively the vectors of active joint variables and active
joint velocities,

� x¼ x; y; z;ϕ;ψ ;θ
� �T and t¼ � _x; _y; _z; _ϕ; _ψ ; _θ

�T
which are the

mobile platform pose parameters and their derivatives with
respect to time; x, y and z represent the position of the platform
controlled point and ϕ, ψ and θ represent the orientation of the
platform about three axes aϕ, aψ and aθ (Briant angles).

Since the mechanism is moving, all of these terms depend on
the current time t. However, for purposes of clarity, this dependency
will not be written in all equations, and only not time-dependent
terms will be specified. Those generalized coordinates are not
independent. Indeed, let us consider the vector v regrouping the
independent elements of t. The matrix D relates the platform twist
t (expressed in the base frame) to the vector v by (Merlet, 2006)

t¼Dv ð1Þ
Note that for mechanism with 6 degrees of freedom, the matrix

D is the identity ½6� 6� matrix.
Relations between the platform coordinates are found by

writing the closed-loop equations. Using Lagrangian formalism,
the dynamic model of the mechanism can be written as

τ¼wbþBTλ; ð2Þ

wp ¼ ATλ ð3Þ
where

� τ is the ½n� 1� vector of the input efforts,
� λ is the ½n� 1� vector of the Lagrange multipliers,
� A and B are two ½n� n� matrices deduced from the mechanism
loop-closure equations, such that Av¼ B _q (Merlet, 2006),

� wb and wp are ½n� 1� terms related to the Lagrangian L of the
system by

wb ¼
d
dt

∂L
∂ _q

� �
� ∂L
∂q

; wp ¼
d
dt

∂L
∂v

� �
� ∂L
∂x

ð4Þ

In this expression, wp is the wrench applied to the platform by
the legs and the external forces (Briot et al., 2008) and t is the time.

Then, assuming that matrix A can be inverted and by substitut-
ing (3) into (2), the general dynamic model of parallel manipula-
tors is obtained (Khalil & Dombre, 2004):

τ¼wbþ JT0wp; ð5Þ

where

� 0wp is the expression of the wrench wp in the base frame, i.e.
0wp ¼Dwp,� J¼ 0A�1B is the matrix relating the platform twist t and _q,
with 0A the expression of matrix A in the base frame, i.e.
0A ¼AD�1.

2.2. Type 2 singularity crossing

Based on the analysis of the kinematic model, a classification of
singularities into three different types is proposed in Gosselin and
Angeles (1990):

� Type 1 singularities or serial singularities occur when the
mechanism is in a position such that the kinematic matrix B
becomes rank deficient. In such configurations, the mechanism
loses its ability to move in one given direction.

1 Note that a possible solution for crossing singularities is to plan a fast trajectory
toward the singularity locus. Once the mechanism is close enough from the
singularity, the controller could declutch the actuators, and couple them back once
the mechanism is far enough from the singularity. This solution is obviously not
robust at all and presents many disadvantages.

G. Pagis et al. / Control Engineering Practice 39 (2015) 1–112



� Type 2 singularities or parallel singularities occur when the
kinematic matrix 0A becomes rank deficient. In Type 2 singula-
rities, one or more of the robot's degrees of freedom become
uncontrollable. Such singularities divide the workspace into
different aspects, resulting in a reduction in the manipulator's
workspace. Moreover, in the presence of these singularities, the
robot may also not be able to resist an external wrench applied
to the platform, and the reactions in its joints grow to infinity.

� Type 3 singularities are configurations where both Type 1 and
Type 2 singular configurations appear at the same time. They
are disregarded in the rest of the paper as they appear if both
Type 1 and Type 2 singularities exist.

Finally, parallel mechanisms with fewer than 6 dof can have
another type of singularity: the constraint singularity (Conconi &
Carricato, 2009; Zlatanov & Bonev).

If a parallel mechanism is in a singular Type 2 position, matrix
AT cannot be inverted in Eq. (3). The dynamic model degenerates
and therefore cannot be solved.

However, as explained in the Introduction, it has been proven in
Briot et al. (2008) that a mechanism can cross a Type 2 singularity
without a torque discontinuity. Indeed, on a Type 2 singularity, the
columns of 0A are linearly dependent, i.e. a vector ts exists such that
0Ats ¼ 03tTs

0AT ¼ 0 ð6Þ
The ½n� 1� vector ts represents the twist of the uncontrollable

motion of the platform at the singularity locus (Merlet, 2006).
Thus, multiplying (3) by tTs leads to

tTs
0AT λ¼ 0 ð7Þ
In this case, the following condition must also be satisfied:

tTs
p
0w ¼ 0 ð8Þ

which is the condition for the non-degeneracy of the dynamic
model (Briot et al., 2008).

As a result, if the desired manipulator motion does not guarantee
the achievement of a wrench wp that respects condition (8), the
dynamic model is degenerated and the desired manipulator input
strains must grow to infinity to produce the desired platformmotion.
Physically, this condition means that the parallel manipulator can
cross the Type 2 singularity if and only if the wrench 0wp exerted by
the legs and external efforts on the platform is reciprocal to the twist
ts of the uncontrollable motion in the Type 2 singularity.

In order to better understand this phenomenon, let us consider
the Five-bar mechanism depicted in Fig. 1. A Five-bar mechanism
is a planar parallel mechanism composed of two actuators located
at the revolute joints located at points A1 and A2 and three passive
revolute joints at points B1, B2 and C.

It is considered that the mechanism is not moving and that the
gravity effects are canceled. A force f is applied on the mobile
platform. A simple analysis of the effort transmission shows that
the reactions in the passive joints located at points B1 and C (B2
and C, resp.) must be colinear to the vector B1C

��!
(B2C
��!

, resp.) for any
mechanism configurations and that f ¼ r1þr2 (with ri the force in
the joint of the leg i).

Fig. 2 represents the same mechanism in a singular configuration.
B1C
��!

is colinear to B2C
��!

and, as a result, r1 is colinear to r2. It can be
proven that, in such a case, the robot gets an uncontrollable motion
along the vector ts which is perpendicular to B1C

��!
and B2C

��!
(Fig. 2). To

compensate a force f which is not colinear to r1 and r2 (i.e. for which
the criterion (8) is not respected as tTs f will be different from zero in
this case), the reactions r1 and r2 must have infinite norms. If the
force f is colinear to r1 and r2 (i.e. the criterion (8) is respected as
tTs f ¼ 0 in this case), the reactions r1 and r2 will have finite norms.

This simplified problem gives an insight onto the general
theory presented in this section.

2.3. Generation of a robust trajectory for crossing a Type
2 singularity

In order to cross a singularity without a torque discontinuity, the
mechanism has to follow a trajectory which respects criterion (8) on
the singularity locus. Theoretically, the dynamic model degenerates
only at the singularity locus; however, numerically matrix A is
singular in a space around the singularity locus. In order to prevent
this degeneracy around the singularity, the trajectory has to respect
the criterion (8) not only on the singular point, but also around it.

Trajectory generation is achieved using polynomials, whose
degree can vary. Indeed, in order to guarantee that criterion (8) is
respected around the singularity locus (contrary to what was done
previously), it is proposed in this work to vanish the criterion (8)
and n of its derivatives:

tTs
diwp

dti
¼ 0; i¼ 1;…;n; ð9Þ

where di=dti represents the derivative to the ith degree.
To the best of our knowledge, this is the first time that such

criteria have been proposed. Generating a trajectory based on these
criteria (9) enables us to increase robustness to model uncertainties
and control error around the singularity.

The determination of the derivative order is directly linked to
the length of the portion of the trajectory which should respect
the criterion (8). The higher this order is, the longer will be the
portion of the trajectory impacted by this new criterion. On the
other hand, if this order is too low the controller may switch back
to the complete dynamic model before exiting the area where A is
numerically bad conditioned. Experimental results show that
nullifying the first two derivatives of the criterion is sufficient on
our prototype (the singularity crossing is robust and yet the
trajectory is not impacted a lot by this criterion).

Fig. 1. Kinematic chain of the Five-bar mechanism.

Fig. 2. 5R mechanism in a singular position.
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The next section will present the control law used to enable
singularity crossing.

3. Control law dedicated to Type 2 singularity crossing

3.1. Computed torque control

The computed torque control (CTC) (Paccot, Andreff, & Martinet,
2009; Spong et al., 2006) is an advanced control law which computes
the input torques that the actuators must apply to the mechanism in
order to follow a given trajectory. It is based on the dynamic model
presented in Section 2.

As for any type of control law in robotics, the aim of the CTC controller
is to minimize the error in either joint or task space. Since near to a Type
2 singularity the kinematic matrix A is singular, it is not possible to
compute the Cartesian velocities v from the joint velocities _q using the
DKM (Direct kinematic Model). Furthermore, on industrial robots on-
board sensors usually measure joint space values, and therefore only the
joint space control law should be used to cross Type 2 singularities.

According to Spong et al. (2006) and Ghorbel, Chételat, and
Longchamp (1994), the dynamic model of the mechanism satisfies

τ ¼wbþ JTwp ¼M €qþH ð10Þ
where

� H is the ½n� n� positive-definite inertia matrix. This matrix
depends on the actuator's coordinates q and the mobile plat-
form Cartesian coordinates x,

� H is the ½n� 1� matrix regrouping the gravitational terms and
the centrifugal and Coriolis terms. This matrix depends on the
actuator's coordinates and speed q and _q,

This expression of the dynamic model is obtained by substitut-
ing every term depending on the platform coordinates by terms
depending only on the actuators' coordinates (using the closed-loop
equations). Even though this model is not linear regarding the
position and the velocities of the mechanism, it is linear regarding
its acceleration. Therefore, by replacing the angular acceleration €q
in Eq. (10) by an adapted control signal u, the dynamics of the
system is linear with respect to the control variable :

τ¼MuþH
u¼ €q ð11Þ
A double integrator between the control signal and the joint

variables appears and thus, only a PD control law is used to impose
the control signal:

u¼ €qdþKdð _qd� _qÞþKpðqd�qÞ ) €eþKd _eþKpe¼ 0 ð12Þ
where

� u is a ½n� 1� vector.
� qd (respectively _qd and €qd) is the desired joint position

(respectively velocity and acceleration),
� q (respectively _q and €q) is the current measured joint position

(respectively velocity and acceleration).
� e (respectively _e and €e) is the position error (respectively speed

and acceleration) in the joint space ðe¼ qd�qÞ.
� Kp and Kd are the two gain tunings that do not depend on

the time.

This control signal is a classic second-order control law.
This control input converts a complicated nonlinear controller

design problem for a linear system consisting of n decoupled
subsystems. Of course, this controller is based on the dynamic
model of the mechanism. If this model is not accurate, the tracking

error can therefore be important, but the control signal still
guarantees that this tracking error respects Eq. (12) and therefore
tends to zero with the desired second order dynamics.

Consequently, CTC computes the input torques that ensure the
second order dynamics on the tracking error:

τ ¼M €qdþKd _eþKpe
� �þHðq; _qÞ ð13Þ

Fig. 3 represents a classic computed torque control law applied
to a parallel mechanism whose dynamic model can be expressed
by Eq. (10).

The robustness and stability of the CTC control law have been
studied in Samson (1987). In this paper, the authors show that the
CTC control law is stable if the matrix H is positive definite.
However, in our case, H represents the positive definite inertia
matrix of the robot (Merlet, 2006), which is always positive
definite. Therefore, the proposed CTC control law is stable.

It should be noted that the vector of positions in the task space x
is necessary to compute matrices M and H. However, in industrial
cases sensors only measure the vector of positions in the joint space
q. Therefore the DKM is required. Unfortunately, when planning a
Type 2 singularity crossing trajectory, the mechanism changes its
assembly mode, and so the solution of the DKM has to change. To do
so, the controller needs the information that the mechanism has
changed its assembly mode, which cannot be deduced from the
joint positions. Experimentally, the most reliable solution is to
choose the DKM solution based on the desired trajectory.

It should be mentioned that, when using the proposed CTC for
crossing Type 2 singularities, the trajectory planned in order to
respect the crossing criterion (Section 2) will be different from the
real one, due to errors in the dynamic model. As a result, numerically
speaking, the crossing criterion (8) will never be respected and the
computed torque control could send infinite torques to the robot,
preventing singularity crossing due to the inversion of the matrix A.
The proposed control law avoids this problem and allows parallel
mechanism to safely cross singularities.

3.2. Multi-model control law

3.2.1. Robot dynamic models dedicated to the multi-model control
law

As explained previously, the complete dynamic model can
numerically degenerate when the mechanism approaches a sin-
gularity. To avoid these numerical issues, the proposed solution is
to plan a trajectory respecting around the singularity locus the
criterion

wp ¼ 0 ) tTs 0wp ¼ 0

di

dti
wp ¼ 0 ) tTs

di

dti
wp ¼ 0; i¼ 1;…;n ð14Þ

This new criterion still guarantees that (9) and (12) are
satisfied. Vanishing wp leads to the deletion of the part of the
dynamic model which is directly linked to the kinematic coupling
and which degenerates near the Type 2 singular configurations.
Therefore if this new criterion is perfectly guaranteed, the

+- ++
+

++ RobotKp

K

dt dt

dt

dq
dt

d
d

d
x u

IKM

H

M
q q

Fig. 3. Classic computed torque control law.
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mechanism can cross the singularity without having its dynamic
model degenerating and with its platform being controlled.

Of course during the real robot displacement, numerically wp

will not be null, but such a new criterion enables the implementa-
tion of a multi-model control law. The multi-model CTC law
presented in this paper consists of using two models (Fig. 4):

� Model 1: The complete dynamic model, as long as matrix A
introduced in Section 2.1 is invertible:

τA ¼wbð €q; _q;qÞþ JTwpð €q; _q;qÞ ð15Þ
In order to control the system, the control law presented in Eq.
(13) is applied:

τA ¼Mð €qdþKd _eþKpeÞþHðq; _qÞ ð16Þ

� Model 2: A reduced dynamic model which cannot degenerate
when the mechanism is close to a singular position:

τB ¼wbð €q; _q;qÞ ð17Þ
Once again, this second model is used to control the mechan-
ism using the control law presented in Eq. (13):

τB ¼M0ð €qdþKd _eþKpeÞþH0ðq; _qÞ ð18Þ

By definition, this new matrix M0 is still positive definite.
Therefore, this control law is stable (Samson, 1987).

The second dynamic model is used to compute input torques
only when the trajectory has been planned in order to have
wp ¼ 0. Considering that the control law is correctly adjusted,
the effective trajectory is close enough to the desired one and
therefore the hypothesis wp ¼ 0 is acceptable. Once the mechan-
ism is far enough from the singularity locus, i.e. the criterion (14) is
no longer respected, the control switches back to the complete
dynamic model and the mechanism can finish its trajectory. The
index choice that determines when the control law can switch
from one model to another is discussed in the next paragraph.

3.2.2. Index choice for model switching
In order to cross the singularity locus, the controller requires an

index which defines the moment when Model 2 has to be used. The
discussion about the best indicator of singularity proximity is a well-
known problem (Merlet, 2006; Glazunov et al., 2012; Voglewede &
Ebert-Uphoff, 2004). However, since Model 2 is valid only when wp

is null, here the index used will be based on the value of Jwp J .
Therefore, based on the assumption that the control error is

well regulated, the desired value of wp (computed according to the
reference trajectory) is used as the switching variable. This pre-
vents issues due to the computation of the actuators' accelerations.

3.2.3. Switching function: σ
In order to guarantee torque continuity when the control

switches from one model to another, the input torques are computed

using the logistic function σ (shown in Fig. 5) such that

τ ¼ στAþ 1�σð ÞτB ð19Þ

This function σ is equal to:

� 1 when the first model must be used,
� 0 when the second model must be used, i.e. when the

mechanism is close to a singular position,
� 1=ð1þe�αtÞ or 1�1=ð1þe�αtÞ when switching between the

two models, where t is the current time, with α denoting the
length of the transition phase.

The logistic function σ varies continuously between 0 and 1,
which prevents any torque discontinuity. This α parameter is
computed based on the value of the derivative of wp such that σ
is null when wp and its derivatives are null, i.e. when the mechan-
ism is in a singular position, as presented in Fig. 6.

The resulting control law can be written as

τ¼ σMþð1�σÞM0� �
€qdþKd _eþKpe
� �þσHþð1�σÞH0

¼Mðq;σÞuþHð _q;q;σÞ ð20Þ

In this equation, the matrix M is defined as M ¼ σMþð1�σÞM0,
where the matrices H and M0 are both positive-definite. Moreover,
since σ and ð1�σÞ are real positive numbers, this new matrix M is
also positive-definite. Therefore, based on the stability proof of the
computed torque control proposed in Samson (1987), the pro-
posed multi-model control law is stable.

The next section presents experimental results for Type 2 sin-
gularity crossing using this multi-model control law on a planar
Five-bar mechanism.

4. Case study

This section presents the 5R mechanism designed in IFMA. This
mechanism was used in order to validate the proposed approach.
Experimental results are detailed in Section 4.5.

MGI
xd d

+- ++
+

++

Robot
Kp

Kd

++

+
+

d
dt

d
dt

d
dt

d
dt q

q

q̇

q̈

τA

τB

H

H

M

M

σ

1 σ

Fig. 4. Multi-model computed torque control law. −5 −4 −3 −2 −1 0 1 2 3 4 5
0
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e

α
t

6
α

Fig. 5. Variation of the logistic function and influence of parameter α.
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σ

Fig. 6. Variation in sigma based on the value of wp when crossing a singularity.
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4.1. Presentation of the Five-bar mechanism

A Five-bar mechanism is a planar parallel mechanism com-
posed of two actuators located at the revolute joints positioned at
points A1 and A2 and 3 passive revolute joints at points B1, B2 and C
(Fig. 7). The mechanism used in this work was designed so that it
can reach all the workspace positions without any collision
between the proximal and the distal legs.

The mechanism and its parameters are presented in Fig. 7. The link
dimensions were calibrated using a Laser Tracker (Table 1). The sight
was fixed on the rotation axis of each joint. Using various positions of
the mechanism, the length of each link has been computed from the
average of the distances measured on each position.

The mechanism itself was made out of shaped aluminum, the
joints are made of bearings which avoid having high friction
effects in the passive joints. The distal and proximal legs are in
different planes and therefore cannot collide with each other. The
mechanism is actuated using 2 PARVEX brushless servo motors
and two 1/15 reducers. The servo motors are controlled using an
Adept control cabinet working with a Cþþ software developed by
Adept FRANCE: CIDE. The dynamic control law has sampling
frequency of 250 Hz. Finally, the only sensors used are those
provided by the brushless motors.

4.2. Gain tuning

The proportional and derivative gains were tuned based on the
mechanism's natural frequency (Khalil & Dombre, 2004). This
frequency was retrieved using a ring-out procedure: the mechan-
ism was excited using an impedance hammer, and its response
was recorded using 5 accelerometers. The first natural frequency
of the Five-bar mechanism in its isotropic configuration (when
links BC and CD are perpendicular) is 34.2 Hz.

For a given control bandwidth fixed by a frequency ω both
gains are adjusted as

Kp ¼ω2; Kd ¼ 2ξω ð21Þ

where ξ is a damping coefficient, usually fixed as 1 to have a
critically damped system. To guarantee that the gains do not bring
the system into the neighborhood of the instability domain, the
chosen frequency must be smaller than the natural resonant
frequency (Khalil & Dombre, 2004). Therefore a frequency of

ω¼ωr=2 was chosen, resulting in the following gain values:

Kp � 289; Kd � 34 ð22Þ

4.3. Dynamic modeling and identification

A full dynamic model of the robot was computed using the
methodology presented in Briot and Gautier (2012) and its identi-
ficationwas performed using a weighted least square method based
on the use of exciting trajectories, followed by a classic geometrical
control law (Gautier, 1997). The identification resulted in the
following model that fully describes the robot dynamics of the
studied mechanism:

τ¼m3J
T

€x
€y

 !
þ

zz1 €q1

zz2 €q2

 !
þ

f v1 _q1

f v2 _q2

 !
þ

f s1 signð _q1Þ
f s2 signð _q2Þ

 !
ð23Þ

where

� m3 is a mass equivalent located on the end effector;
m3 ¼ 0:4070:02 kg;

� zz1 and zz2 are rotational equivalent inertial terms, respectively
on the first and second actuator; zz1 ¼ 1:83� 10�276:97�
10�4 kg m2; zz2 ¼ 1:96� 10�276:60� 10�4 kg m2;

� fs1 is a Coulomb friction term on the first actuator (respectively
fs2 on the second actuator); f s1 ¼ 2:9470:10 N m; f s2 ¼
2:9570:09 N m, and signð Þ is the function returning 1, �1 or
0 depending of the sign of the input;

� fv1 is a viscous friction term on the first actuator (respectively
fv2 on the second actuator); f v1 ¼ 6:7670:018 N m s f v2 ¼
6:7570:17 N m s.

This identified dynamic model is related to Eq. (3) by

wp ¼m3

€x
€y

 !
;

wb ¼
zz1 €q1

zz2 €q2

 !
þ

f v1 _q1

f v2 _q2

 !
þ

f s1 signð _q1Þ
f s2 signð _q2Þ

 !
ð24Þ

It should be noted that the friction terms in both passive joints
are insignificant and therefore the identification routine returned
null values.

Different trajectories were computed in order to cross-validate
the dynamic model identified. For each trajectory, the positions,
velocities and input torques were retrieved for both actuators. Using
the identified dynamic model and the measured positions and
velocities, the input torques can be computed and compared to the
measured ones, as illustrated in Fig. 8 which represents the input
torques measured and computed along a trajectory. This trajectory,
and therefore the evolution of the input torques, has been defined
randomly and contains both high and low acceleration phases.

4.4. Control law implementation

The Five-bar mechanism is controlled by an industrial control
architecture developed by ADEPT with an open architecture. This
control architecture allows the user to control the mechanism either
in position, speed or torque, using a C/Cþþ software developed by
ADEPT France: CIDE. This software was designed mostly for position
control; therefore safety elements preventing mostly physical
damage had to be developed for the computed torque control law.

The dynamic model identified contains accelerations in both
the joint space and the task space. Therefore, in order to express
the dynamic model as in Eq. (10), the task space acceleration has
to be expressed as a function of the joint space acceleration. This

Fig. 7. Five-bar mechanism designed and manufactured at IFMA.

Table 1
Five-bar mechanism: geometric parameters.

Parameter a L1 L2 L3 L4

Value (m) 0.2822 0.2130 0.1888 0.1878 0.2130
Precision (m) 1�10�5 1�10�5 1�10�5 1�10�5 1�10�5
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can be done by differentiating the kinematic model:

v¼ J _q ) _v ¼ _J _qþJ €q ð25Þ
By substituting (25) into (23) one can obtain the dynamic

model used for the computed torque control law as presented in
Eq. (10):

τ¼M
€q1

€q2

 !
þH ð26Þ

where

M¼m3J
T Jþ

zz1 0
0 zz4

 !

H¼m3J
T _J

_q1

_q2

 !
þ

f v1 _q1þ f s1 signð _q1Þ
f v2 _q2þ f s2 signð _q2Þ

 !
ð27Þ

Around the singularity locus, the CTC computes the input
torques using the reduced dynamic model defined such as

τ¼M0 €q1

€q2

 !
þH0 where

M0 ¼
zz1 0
0 zz4

 !

H0 ¼
f v1 _q1þ f s1 signð _q1Þ
f v2 _q2þ f s2 signð _q2Þ

 ! ð28Þ

Finally, in order to compute the dynamic model of the robot
and the CTC control law on-line, the actuator's positions and
speeds were filtered by using the oversampling method at 1 KHz
(the control law running at 250 Hz).

4.5. Experimental results

4.5.1. Generation of a crossing trajectory
Crossing trajectories were generated using two polynomials Px

and Py such that

x¼ Pxðxf �x0Þþx0; y¼ Pyðyf �y0Þþy0 ð29Þ
where

� xðt0Þ ¼ yðt0Þ ¼ _xðt0Þ ¼ _yðt0Þ ¼ €xðt0Þ ¼ €yðt0Þ ¼ 0,
� xðtf Þ ¼ yðtf Þ ¼ _xðtf Þ ¼ _yðtf Þ ¼ €xðtf Þ ¼ €yðtf Þ ¼ 0,

They are both 8th order polynomials, corresponding to 8 condi-
tions on each axis: two conditions for the initial position and speed,
two for the final position and speed, one for the singular position and

three to guarantee that the singularity crossing criterion (14) is
respected around the singularity locus (Briot et al., 2008).

Table 2 details the coefficients of those two polynomials.
Fig. 9 represents a crossing trajectory in the task space as well

as the evolution of the task space coordinates along this trajectory
and the evolution of the dynamic criterion (14) for

x0 ¼ 0; y0 ¼ 0:1;
xs ¼ 0:05434; ys ¼ 0:2;

xf ¼ 0:1; yf ¼ 0:34; ð30Þ

4.5.2. Type 2 singularity crossing with classic computed torque
control law

Theoretically, the computed torque control law can cross a
singularity following a trajectory generated as explained in
Section 4.5.1. However, numerically the dynamic model degener-
ates (e.g. Section 3.1) and the control law computes infinite torques.
Fig. 10 presents the experimental results when following a crossing
trajectory computed as presented in Section 4.5.1 with a classic CTC.

When the mechanism approaches the singularity locus, the
input torques τ become discontinuous and tend to infinity. There-
fore, even if the mechanism should reach the singularity locus after
0.5 s, it can be seen in Fig. 10 that the input torques tend to infinity
before reaching the singularity. The result of the robot displacement
is shown in Fig. 11. To avoid causing physical damage to the
actuator, a security stops the mechanism, which remains blocked
inside the singularity, resulting in an increase of the articular error.

4.5.3. Type 2 singularity crossing with the multi-model CTC: results
and process repeatability

This section presents the results of Type 2 singularity crossing
for different trajectories computed according to the method
presented in Section 2.3 and in the previous paragraph.

Fig. 12 shows the input torques generated by the computed
torque control law along different crossing trajectories from one
assembly mode to another, as well as the desired trajectory and
the control error. For each trajectory, the mechanism crosses the
singularity without torque discontinuity. Fig. 13 presents different
configurations of the motion of the mechanism along the first
trajectory at different time instants.

The multi-model control law leads to an increase of the error
around the singularity locus. Therefore, when the control law
switches back to the complete dynamic model, the input torques
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Fig. 8. Verification of the identified dynamic model.

Table 2
Coefficients of the polynomials for each trajectory used on the Five-bar mechanism.

Coefficient a1 a2 a3 a4 a5 a6 a7 a8 a9

xðtÞ ¼ P9
i ¼ 1 ait

i 0 0 0 �0.25173 0.80819 �0.98914 0.21007 0.59110 �0.48834

yðtÞ ¼ P9
i ¼ 1 ait

i 0.1 0 0 4.44755 �14.27911 17.47601 �3.71157 �10.44354 8.62799
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can significantly increase in order to nullify this error. This can be
seen for the first trajectory at 0.7 s.

All three trajectories represented in Fig. 12 were planned to
cross the singularity at 0.5 s and end at 1 s. For each trajectory, the
first figure illustrates the desired trajectory in the task space and
the Type 2 singularity of the mechanism.

Each trajectory was run five times to test the robustness of the
proposed controller. Moreover, the starting and ending points
were chosen randomly and neither those points nor the crossing
direction had any effect on the singularity crossing.

Fig. 14 represents the Cartesian coordinates of the mobile
platform along 5 other examples of crossing trajectories, each of
them having different starting and ending points and crossing in
either direction. It can be seen that even if the starting and ending
points are chosen randomly, the multi-model CTC is able to cross
the singularity successfully.

During our different experiments using this controller, the robot
has always successfully crossed the singularity locus without any
difficulty. Thus the new controller proposed, coupled with the new
dynamic criterion, enables a parallel mechanism to cross a Type 2
singularity without torque discontinuity. Even though themulti-model
control law induces an overshoot, it does not impact the singularity
crossing, which is totally robust with respect to the desired trajectory.

This methodology can therefore considerably increase the mobile
platform reachable space of almost any parallel mechanism.

4.5.4. Discussion on the tracking error
During the singularity crossing, the tracking error tends to

significantly increase. This is due to the multi-model controller
used. If the controller was perfect, when approaching the singu-
larity locus the dynamic term wp would be null. Therefore, the
second model used in the multi-model controller would describe
perfectly the dynamic of the mechanism, and the tracking error
would still be null. However, the tracking error cannot be null
which involves that wp is not null. Considering that the controller
is correctly configured, its value is negligible compared to wb, but
still it slightly changes the dynamic of the mechanism. Therefore,
the second model does not completely describe the dynamic of the
mechanism which results in an increase of the tracking error.

The main objective of the singularity crossing is to access
different assembly modes, and thus increase the workspace size.
Despite the fact that the tracking error could increase during the
singularity crossing, the mechanism has always successfully chan-
ged its assembly mode by using the multi-model control law.
However, the use of an advanced controller (such as an adaptive or
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predictive control law) coupled with the proposed multi-model
controller is under investigation. The first results concerning this
adaptive approach are promising, however this development is
out of the scope of the present paper.

5. Conclusion

The presence of singularities in the workspace of parallel robots
greatly reduces their effector's reachable positions. Several solutions

have been proposed to either increase the workspace size (e.g.
changing the assembly mode) or bypass the singularity problem
(e.g. design mechanisms without singularities). A promising solution
consists of changing the assembly mode by crossing Type 2 singula-
rities. This solution requires the definition of an optimal trajectory
that must be tracked by a dynamic controller. However, the classic
dynamic control laws are unsuitable. This solution requires that the
crossing trajectory respect a dynamic criterion at the singularity
locus, which prevents the dynamic model from degenerating. How-
ever, if this criterion is not perfectly verified (which is always the case

Fig. 11. Images of the mechanism trying to cross a singularity with a classic CTC control law.
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numerically) the kinematic and dynamic model degenerates, result-
ing in the computation of infinite torques.

This paper proposes a multi-model controller dedicated to Type 2
singularity crossing which avoids dynamic model degeneration near
the Type 2 singularity locus. It does so by generating a trajectory that
nullifies the degenerating part of the dynamic model around the
singularity locus. A dynamic multi-model controller is used to follow
the trajectory generated this way; the controller switches to a simpli-
fied dynamic model when the mechanism is close to a singularity.
This prevents the dynamic model from degenerating even though
the desired trajectory is not perfectly tracked, and therefore allows
the mechanism to cross the Type 2 singularity without torque
discontinuity.

This new controller was validated experimentally on a Five-bar
mechanism. It was compared to a classic dynamic control law
without multi-model that was not able to cross the singularity,
while the multi-model CTC was validated on various singularity
crossing trajectories, thus proving its experimental robustness.
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