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This paper presents a method for calculating the direct and inverse dynamic models of a parallel
robot with a flexible platform. The system considered in this study is a Gough–Stewart 6-DOF
parallel robot however the method is general and can be used for other structures. The platform
of the parallel manipulator is considered as a flexible body and modeled using distributed
flexibility while the links of the legs are considered as rigid. The direct dynamic model gives the
elastic and Cartesian accelerations in termsof the input torques and the current state of the system
i.e. the position and velocities of both the rigid and elastic variables. The inverse dynamic model
calculates the elastic accelerations and the actuator torques from the current state variables and
the desired acceleration of the platform.
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1. Introduction

The dynamic modeling of Gough–Stewart robot with rigid elements has attracted many works with different algorithms. For
instance, the Lagrange–Euler formalism has been used in the works of Lee and Shah [1], Geng et al. [2] and Lebret et al. [3], Ait-
Ahmed [4], Bhattacharya et al. [5,6] and Liu et al. [7]. The principle of virtual work has been used by Tsai [8], Codourey [9] and Staicu
[10,11]. On the other hand, Newton–Euler equations have been used in thework of Sugimoto [12], Reboulet et al. [13], Ji [14], Gosselin
[15] and Dasgupta et al. [16,17]. However, recently, Carricato and Gosselin [18], Afroun et al. [19], Fu et al. [20] and Vakil et al. [21],
have pointed out common errors in many methods related to parameterization and instantaneous kinematic behavior of the legs.
These errors may cause kinematic and dynamic miscalculations. The correct dynamic modeling of the rigid Gough–Stewart robot,
which avoids these errors, has been demonstrated using different formalisms. For example using screw theory in Gallardo et al.
[22], the Newton–Euler approach in Khalil and Guegan [23], Khalil and Ouarda [24] and by Lagrange methods in Abdellatif and
Heimann [25].

The aim of this paper is to extend the dynamic method in [23,24] to parallel robots with flexible platforms. There are two possible
applications for this work. The first application is for robots with large platforms, where flexibility can no longer be neglected. The
platform'sflexibility can be taken into account in the design of the controller, thanks to thismodel. The second application is for robots
that carry out high speedmachining tasks, duringwhich large vibrations are induced. Generally to counteract this, the platform'smass
is increased until the effects of vibration are negligible. This solution leads to manipulators with high mass and greater energy
consumption.

To give an idea of the dimension involved, consider CMW's 6-DOF parallel robot the hexapode. The platform of this robot has a
mass of over 200 kg with a diameter of 600 mm. The total mass of the system is 900 kg. The maximum speed is just over 0.8 m/s.
If the flexibility is modeled, these manipulators can be designed with low weight platforms, thereby reducing the total mass and
permitting the use of high acceleration trajectories.

In the literature the main approaches to modeling flexibility in parallel robots are concerned with limb flexibility, this is because
the limb's flexibility can be approximated using beam elements. For instance, for the Gough–Stewart robot the effects of leg flexibility
: +33 2 40 37 69 30.
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Nomenclature

qi Joint positions of leg i
q̇i Joint velocities of leg i
q
::
i Joint accelerations of leg i

Γi Joint accelerations of leg i
qe Generalized elastic position variables of platform
q̇e Generalized elastic velocity variables of platform
q
::
e Generalized elastic acceleration variables of platform

Φdk(i) Displacement shape function of mode k at point i
Φrk(i) Rotation shape function of mode k at point i
Vi Kinematic twist at point i 30
vi Linear velocity at point i
ωi Angular velocity at point i
ri Vector from platform origin to point i
Fi Wrench at point i
fi Force at point i
ni Moment at point i
Q p Elastic generalized forces of the platform
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are examined in [26,27]. The optimum choice of flexibility representation is investigated in [28]. In [29,30] lumped spring mass
approximations have been used. By using distributed flexibility in [31], a solution for the dynamics calculation of parallel robots is
proposed in the case of flexible legs but with a rigid platform.

The parallel robot treated in this paper is thewell knownGough–Stewart platform,which is considered as a good representation of
parallel robot's characteristics, however the proposed methods are general and can be applied to other parallel robots. The paper is
organized in the following way. In Section 2, the overall procedure is outlined, as well as the prescribed solution. In Section 3 the
geometric, kinematic and dynamic models of the manipulator legs are presented. In Section 4, the generalized Newton–Euler
model of a flexible platform is given. Furthermore the geometric and flexible parameters for the target platform are described.
Section 5 describes how the inverse dynamicmodel and direct dynamicmodel of the flexible robot are derived. In Section 6, a numer-
ical simulation validating the proposedmodel is given. Finally in Section 7 the conclusions are drawn and future areas of research are
described.
2. Problem statement

The objective of this work is to calculate the dynamic models of the Gough–Stewart robot with flexible platform. The inverse
dynamic model obtains the joint torques and forces for a desired acceleration of the platform using the state variables of the robot
(the positions and velocities). The direct dynamic model gives the elastic and rigid accelerations of the system's variables in terms
of the input torques and the state of the system.

In order to proceed, the system is decomposed into two subsystems, one is flexible and the other is rigid. The decomposition is
performed by opening (virtually) the spherical joints representing the connection points between the legs and the platform. The flex-
ible subsystem represents the platform, that is described using distributed flexibility [32,33] andmodeled using Cartesian coordinates
and the Newton–Euler formulation. The rigid elements of the robot, which consist of the legs and the fixed base of the legs, are
described as a tree structure robot using the Modified Denavit Hartenberg Parameters [34] and modeled using joint variables. The
two subsystems are connected by calculating the reaction forces at the connection points between the platform and the legs.
3. Leg system description and modeling

3.1. Geometric parameters

The studied system is a Gough–Stewart structure, as shown in Fig. 1. The platform has 6-DOF and is connected to the fixed base
by six legs. Each leg is connected to the base with a 2-DOF universal joint (U-joint) and to the platform with a 3-DOF spherical
joint (S-joint). Each leg has a variable length by means of an actuated prismatic joint (P-joint).

The base frame and the platform frame are denoted by Σo and Σp, respectively. The connection points between the base and the
U-Joints are denoted as bi and are arranged according to the convention established in [23]. The connection points between the
platform origin and the legs are denoted as pi, for i = 1 … 6.

After opening virtually the spherical joints, each leg i is composed of three joints and three links. The geometric parameters of the
links, j = 1 … 3, for each leg i are given in Table 1, for i = 1 … 6.



Fig. 1. Gough–Stewart manipulator.
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μ ji=1 for an actuated joint or μ ji=0 for a passive joint.σji=1 indicates the joint is prismatic andσji=0 indicates that the joint is
revolute. The parameters γji, bji, αji, dji, þetaji and rji define the location of frame j of leg i, defined as Σji, with respect to its antecedent
frame.

3.2. Kinematic models of the legs

The 3 × 1 vectors denoting joint position, velocity and acceleration for leg i are denoted as qi, q̇i and q
::
i respectively. The actuated

joint of leg i is denoted as q3i and the vector of all actuated joints of the system is given asqa ¼ q31 q32 q33 q34 q35 q36½ �T where
q3i is the distance between pi and bi. The velocity of the connection point, pi, is a linear velocity viwhich can be obtained from the joint
velocity of the corresponding leg using the kinematic Jacobian matrix of the leg:
Table 1
Geomet

ji

1i
2i
3i
vi ¼ Ji q̇ i: ð1Þ
The inverse kinematic model is written as:
q̇ i ¼ J−1
i vi: ð2Þ
The Jacobian matrix of leg i represented in the frame of Σ0i is given as:
0i Ji ¼
−q3isin q1ið Þsin q2ið Þ q3icos q1ið Þcos q2ið Þ cos q1ið Þsin q2ið Þ

0 q3isin q2ið Þ −cos q2ið Þ 3ð Þ
−q3icos q1ið Þsin q2ið Þ −q3icos q2ið Þsin q1ið Þ −sin q1ið Þsin q2ið Þ

2
4

3
5: ð3Þ
The inverse Jacobian matrix of leg i represented in the frame of Σ0i is given as:
0i J−1
i ¼

− sin q1ið Þ
q3isin q2ið Þð Þ 0 − cos q1ið Þ

q3isin q2ið Þð Þ
cos q1ið Þcos q2ið Þð Þ

q3i

sin q2ið Þ
q3i

− cos q2ið Þsin q1ið Þð Þ
q3i

cos q1ið Þsin q2ið Þ −cos q2ið Þ −sin q1ið Þsin q2ið Þ

2
666664

3
777775: ð4Þ
ric parameters for leg i.

μ ji σji γji bji αji dji θji rji

0 0 γ1i b1i −π
2 d1i q1i 0

0 0 0 0 π
2 0 q2i 0

1 1 0 0 π
2 0 0 q3i
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It should be noted that the third row of the Jacobian matrix corresponds to the unit vector along the axis of the prismatic joint of
the serial leg i, a3iT . This leads to an expression of the actuated joint velocity of leg i in terms of vi as:
q̇3i ¼ aT3ivi: ð5Þ
The second order inverse kinematic model of the leg is given by:
q
::
i ¼ J−1

i v̇i− J̇i q̇iÞ:
� ð6Þ
vi and v̇i are obtained fromVp and V̇p, the velocity and acceleration of the platform respectively, using the elastic equations given in
Section 4.

3.3. Inverse dynamic model of the legs

The inverse dynamic model of leg i is obtained by considering the tree structure sub-system of the legs (after separating the
platform).

Let the dynamic model of the 3 DOF system be given as τi ¼ Ai qið Þq::i þ ci qi;q̇iÞ
�

where τi represents the joint torques if the leg is
not connected to the platform. The positions, velocities and accelerations of the joints are obtained from the position, velocity and
acceleration of point pi using the inverse kinematicmodel.Ai is the inertiamatrix of leg iwhereas ci is the vector of Coriolis, centrifugal
and gravity torques.

Γi is the torque of the closed loop structure of leg i, composed of the dynamic of open loopAi qið Þq::i þ ci qi;q̇iÞ
�

and the effect of the
forces generated by the moving platform on the legs. It can be written as:
Γ i ¼ Aiq
::
i þ ci þ JTi f i ð7Þ
with
Γ i ¼ 0 0 Γ3i½ �T : ð8Þ
Thefirst two components of Γi are zero as they correspond to the torques of the passive joints. This equation permits the calculation
of the reaction forces of the leg on the platform in terms of the actuated joint torques of the manipulator:
f i ¼ a3iΓ3i− J−T
i Aiq

::
i þ ciÞ:ð ð9Þ
Eqs. (4) and (8), (9) can be manipulated to leave and expression in terms of the torque of the actuated joint:
fi ¼ a3iΓ3i− J−T
i Aiq

::
i þ ciÞ:ð ð10Þ
4. Modeling of flexible Gough–Stewart platform

4.1. Platform description

Fig. 2 shows the flexible platform. The flexibility is represented by a series of shape functions and is modeled using the generalized
Newton–Eulermodel [32,35]. The platform containsN flexible DOF, i.e. the total number of shape functions characterizing the flexible
behavior.

For the generalized Newton–Eulermodel, the Cartesian variables are used to describe the rigid bodymotionswhile the Lagrangian
variables are used to describe its elastic motions. Themain hypothesis in this formalism is themanipulator undergoes small deforma-
tions that can be described usingmodal shape functions. Therefore themotion of the flexible body can be approximated by the sumof
the rigid bodymotion and the flexible body deformation. The frame Σp is fixed with the platform, and its origin is located at an oper-
ational point of the platform, for example the geometric center. The location of the Σp in the world frame is defined by 0Tp, the 4 × 4
homogeneous transformation matrix.

The most common boundary conditions for representing the flexibility are clamped-free, free–free, pinned–pinned and clamped–
clamped. The boundary conditions not only define the deformation characteristics of the object but also the reaction force transmitted
by the joints. In this case the platform has six boundary conditions, located at the connection points of the platform i.e. the S-joints.
Each joint allows the platform to freely rotate but not translate, corresponding to a pinned–pinned boundary condition. However
in this paper, we outline a more general approach and model the platform using free–free boundary conditions, where the shape
functions can be obtained using finite element software, for instance MSC Nastran©.
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Fig. 2. Flexible platform, (TOP) flexible platform forces and attachment point vectors (bottom) representation of free–free boundary conditions.
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4.2. Platform kinematics

The position of the connection point i, denoted as pi for i = 1 … 6, can be calculated from the position of the platform and the
position vector from the origin to this connection point as:
qe = (
pi ¼ pp þ ri ð11Þ
where ri is defined as the position vector from the origin of the platform frame, denoted as pp, to pi. The vector ri is a function of
the flexible parameters of the platform. It is obtained by the summation of the rigid body position, ri(0), and the deformation due
to flexibility using Eq. (12), as shown in Fig. 2.
ri ¼ ri 0ð Þ þ
XN
k¼1

Φdk ið Þq̇ek ð12Þ

qe1 … qek … qeN), is the N × 1 vector of generalized elastic coordinates. The derivative of Eq. (12), leads to

ṙi ¼ ωp � ri þ
XN
k¼1

Φdk ið Þ q̇ek ð13Þ

andΦrk(i) are the kth displacement and rotation shape functions at point i.Φdk(i) andΦrk(i) are not independent, rather they
Φdk(i)
are linked by the curl operator. Since the shape functions are defined with respect to the platform frame Σp, all other variables in the
following are represented in this frame unless otherwise stated.ωp is defined as the vector of angular velocity of themoving platform.
q̇e and q

::
e are the vectors of velocity and acceleration of the generalized elastic coordinates.

The velocity screw at the platform origin is defined as Vt which is composed of vt andωt the total (including the effects of flexibil-
ity) linear and angular velocity of the platform respectively. The total velocity screw can be obtained as the sum of the rigid body
velocity screw evaluated at that point and the velocity due to the effects of the flexibility.
Vt ¼ Vp þ
Φd pð Þ
Φr pð Þ
� �

q̇e ð14Þ
Φd pð Þ ¼ Φd1 pð Þ Φd2 pð Þ … ΦdN pð Þ½ � ð15Þ

Φr pð Þ ¼ Φr1 pð Þ Φr2 pð Þ … ΦrN pð Þ½ � ð16Þ



with
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Vp ¼ vp
ωp

� �
Vt ¼ vt

ωt

� �
: ð17Þ
vp is defined as the component of rigid velocity of the platform, while v̇p and ω̇p denote the linear and angular acceleration.
The linear velocity and acceleration at connection point are defined as vi and v̇i respectively. The linear velocity can be obtained

from the effect of the rigid platform velocity, plus the effects of flexibility at point i:
vi ¼ vp þωp � ri þΦd ið Þq̇e: ð18Þ
The joint variables can be obtained by using Eq. (2). Therefore, substituting Eq. (5) into Eq. (18):
q̇a ¼
aT31 r̂1a31ð ÞT aT31Φd 1ð Þ
⋮ ⋮ ⋮

aT36 r̂6a36ð ÞT aT36Φd 6ð Þ

2
4

3
5 vp

ωp

q̇e

2
4

3
5: ð19Þ
Eq. (19) is rewritten as
q̇a ¼ J−1
p J−1

e

h i Vp

q̇e

� �
ð20Þ
with
J−1
p ¼

aT31 r̂1a31ð ÞT
⋮ ⋮

aT36 r̂6a36ð ÞT

2
64

3
75 J−1

e ¼
aT31Φd 1ð Þ

⋮
aT36Φd 6ð Þ

2
4

3
5 ð21Þ

x̂ designates the 3 × 3 skew symmetric matrix associated with a vector x, such that x̂y ¼ x � y. It should be noted that Jp−1 and
where
Je−1 are defined directly and are not obtained from inverting any matrices.

By differentiation of Eq. (18), the acceleration of the connection point i can be obtained:
v̇i ¼ v̇p þ ω̇p � ri þωp � ωp � ri þΦd ið Þq̇e

� �
þΦd ið Þq::e þωp �Φd ið Þq̇e ð22Þ
which can be rearranged as:
v̇i ¼ 13 − r̂iΦd ið Þ� � v̇p
ω̇p

q
::
e

2
64

3
75þ hi ð23Þ

hi ¼ ωp �ωp � ri þ 2ωp �Φd ið Þq̇e: ð24Þ
Finally, taking into account all legs of the system, h is defined as:
h ¼ hT
1 hT

2 hT
3 hT

4 hT
5 hT

6

h iT
: ð25Þ
4.3. Platform forces

Since the connection points of the platform constitute S-joints, only pure forces can be transmitted to the platform from the robot
legs. The force transmitted by connection point i is denoted as fi. The contribution of this force at the platform origin, fpi, npi andQ pi, is
given by:
fpi
npi
Q pi

2
4

3
5 ¼

13
r̂i

ΦT
d ið Þ

2
4

3
5f i: ð26Þ
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Taking into account all six connection points of the flexible platform, the platform forces, moments and elastic generalized forces
denoted as fp np and Q p respectively can be obtained as:
fp
np
Q p

2
4

3
5 ¼

13 … 13
r̂1 … r6
ΦT

d 1ð Þ … ΦT
d 6ð Þ

2
4

3
5 f1

⋮
f6

2
4

3
5: ð27Þ
Eq. (27) can be rewritten as:
Fp
Q p

� �
¼ W

f1
⋮
f6

2
4

3
5 ð28Þ
where Fp contains the forces and moments at frame ∑p,
Fp ¼ fp
np

� �
: ð29Þ
The matrix W, given in Eq. (28), is a (6 + N) × 18 matrix, whose transpose relates the velocities of the connection points to the
platform velocity as shown in Eq. (18). Likewise it transforms forces applied by the legs of the parallel robot to the total platform
forces.W can be decomposed into Wp a 6 × 18 matrix andWe a N × 18 matrix as shown in Eq. (30).Wp andWe relate the leg forces
to the platform's rigid and flexible variables respectively.
W ¼
13 … 13

r̂1…r̂6
ΦT

d 1ð Þ … ΦT
d

2
4

3
5 ¼ Wp

We

� �
: ð30Þ
Each column of W can also be decomposed into its rigid and elastic parts:
Wi ¼
Wpi

Wei

� �
¼

13
r̂i

ΦT
d ið Þ

2
4

3
5: ð31Þ
Comparing Eq. (31) with Eq. (18), it can be seen that
Wpi ¼
∂vi
∂Vp

 !T

Wei ¼
∂vi
∂q̇e

	 
T

: ð32Þ
From Eq. (32), it is obvious that W relates the kineostatic variables at the platform frame to the variables at connection point i.
These relations are used in the derivation of the dynamic model given in Section 5. However, since the objective is to relate the
joint torques to the Cartesian acceleration, an expression must be obtained that links the platform and the leg variables. Therefore
using Eq. (21) and Eq. (32), it can be seen that:
J−T
pi ¼ Wpiai ¼

∂q̇3i
∂Vp

 !T

J−T
ei ¼ Weiai ¼

∂q̇3i
∂q̇e

	 
T

: ð33Þ
4.4. Platform dynamics

In order to find the dynamics of a flexible body moving in space the principle of virtual powers is used. The principle of virtual
power is analogous to the principle of virtual work, the difference being the use of a virtual velocity instead of a virtual displacement.
It states that the virtual power due to the acceleration of the body is equal to the sumof the virtual power due to internal forces and the
virtual power due to external forces. The generalized Newton Euler model for the platform taking into account the flexibility is given
as [32,35]:
fp
np
Q pÞ

2
4

3
5 ¼

m13 MŜTr MSde
MŜr I0p MSre
MSTde MSTre mee

2
64

3
75 v̇p−gω̇pq

::
e

h i
þ

fc
nc
Q c

2
4

3
5þ

0
0

Keeqe

2
4

3
5þ

0
0

Dee q̇e

2
4

3
5 ð34Þ
wherem ¼ ∫
ΣP0

dm is the mass of the body.MŜr ¼ MŜr0 þ∑N
k¼1 ŝkqek is the anti-symmetric tensor of first moments of inertia of the

platformwhereMSr0 is the vector of rigid first moments of inertia and∫
ΣP0

Φdkdm ¼ sk is the kth elastic counterpart.MSde=(s1… sn)
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is the displacement first elastic moments whereas MSre = (β1 + ∑ k = 1
N λk1qek + … + βN + ∑ k = 1

N λkNqek) is the rotational first

elastic moments. I0p is the 3 × 3 total rigid inertia matrix of the platform.mee ¼ diagi; j¼1…N∫ΣP0
Φ2

dk

� �
dm is the matrix of generalized

mass. fc, nc and Qc are the vectors of centrifugal and Coriolis forces and moments. Kee = diagi,j = 1 … Nkij is the matrix of generalized

stiffness. Dee ¼ diagi; j¼1sN2dij
ffiffiffi
k

p
ij is the matrix of generalized damping. Finally, ΣP0 is defined as the initial, undeformed state of the

flexible platform, λik ¼ ∫
ΣP0

ΦdkΦdið Þdm and βk ¼ ∫
ΣP0

ri �Φdkdm while g is the gravity vector.

For the numerical simulation given in Section 6, to calculate the above variables, the platform is discretized in a series of elements
joined together at nodes. Themodal analysis gives thenodalmass (dm), the generalized stiffness for eachmode, the shape functions of
each mode evaluated at every node and the distance from each node to the platform origin.

Rewriting Eq. (34) the dynamic equation of the flexible platform of the Gough Stewart platform is obtained as:
Table 2
Modal p

Mode

7
8
9
10
11
12
13
14
15
16
Fp
Q p

� �
¼ Arr Are

AT
re mee

" #
V̇pq

::
e

h i
þ cr

ce

� �
ð35Þ
where Arr is the spatial 6 × 6 inertia matrix of the platform.

5. Dynamic model of the Gough Stewart robot

In the following, the steps taken to calculate thedynamicmodel of the systemare outlined. From the dynamic relations, the inverse
dynamic problem, outlined in Section 5.1, and the direct dynamic problem, outlined in Section 5.2 can be solved.

The first step is to transform the dynamics of leg i to attachment point i. By using Eq. (6), the dynamic equation of leg i, given in
Eq. (10), can be rewritten in terms of the acceleration of the connection point:
f i ¼ a3iΓ3i− J−T
i Ai J

−1
i v̇i− J̇i q̇i

� �
− J−T

i ci 36
which becomes:
fi ¼ a3iΓ3i−Axi v̇i−cxi: ð37Þ
Axi is the inertiamatrix of leg i transformed into the Cartesian space at the connection point pi, such thatAxi= Ji−TAi Ji−1. Since ci, Ai

and J̇i q̇i are functions of the state variables of leg i, i.e. the joint positions and velocities of leg i, a new variable cxi is defined that groups
these terms together, where cxi ¼ J−T

i ci−Axi J̇i q̇i.
The second step is to eliminate the acceleration at the connection points by expressing it terms of platform acceleration. Rewriting

Eq. (23) as:
v̇1
⋮
v̇6

2
4

3
5 ¼ WT

p V̇p þWT
eq
::
e þ h: ð38Þ
Therefore fi can be written in terms of Γ3i such that:
fi ¼ a3iΓ3i−Hxi ð39Þ
where from Eq. (38), Hxi is defined as:
Hxi ¼ AxiW
T
piV̇p þ AxiW

T
eiq
::
e þ Axihi þ cxi: ð40Þ
roperties of flexible plate.

no. Natural frequency (rad/s) Generalized stiffness Damping ratio

188.7473 35625.55 0.4
188.7475 35625.63 0.4
315.7169 99677.16 0.4
401.0187 160816 0.4
474.7468 225384.5 0.4
709.5586 503473.4 0.4
709.5814 503505.8 0.4
828.2868 686059.1 0.4
828.3062 686091.1 0.4

1310.581 1717622 0.4



Table 3
Base inertial parameters of legs.

Link 1 2 3

XX (kg m2) 0 4.823 1.068
YY (kg m2) 0 0.945 1.068
ZZ (kg m2) 5.11 5.11 0.0234
XY (kg m2) 0 0.215 0
XZ (kg m2) 0 0 0
YZ (kg m2) 0 0 0
MX (kg m) 0 4.29 0
MY (kg m) 0 −12.628 0
MZ (kg m) 0 0 −3.018
M (kg) 3.176 30.176 5.390
IA (kg m2) 0 0 45.89
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The force at attachment point i can be transformed to the platform frame using Eq. (26). Thus, by gathering all six legs andmaking
use of Eq. (33), the following expressions are obtained:
Table 4
Coordin

leg

bj(x)(
bj(y)(
q1j(ra
q2j(ra
q3j(m
Wp

f1
⋮
f6

2
4

3
5 ¼ J−T

p Γ−Wp AxW
T
p V̇þ AxW

T
eq
::
e þ Axhþ cx

� �
ð41Þ
We

f1
⋮
f6

2
4

3
5 ¼ J−T

e Γ−We AxW
T
p V̇p þ AxW

T
eq
::
e þ Axhþ cx

� �
ð42Þ

Ax is an 18 × 18 block diagonal matrixwhose 3 × 3 diagonal components are equal to Ax1…Ax6. cx is an 18 × 1 vector such that
where
cx = [cx1 … cx6]T.

Eqs. (41) and (42) constitute the dynamics of the system in terms of the platform acceleration, the generalized elastic accelera-
tions, the joint torques and the forces at the connection points.

The next step is to introduce the platform dynamics into the above expressions. By using Eq. (28), the Newton–Euler equation of
the flexible platform can be rewritten in terms of the forces at the connection points.
Wp

We

� � f1
⋮
f6

2
4

3
5 ¼ Ar Are

AT
re mee

� �
V̇pq

::
e

h i
þ cr

ce

� �
: ð43Þ
Therefore by equating the elastic part of Eq. (43) with Eq. (42), an expression for q
::
e is obtained in terms of the joint torque and

platform accelerations:
q
::
e ¼ A−1

ee J−T
e Γ− AT

re þWeAxW
T
p

� �
V̇p−WeAxh−Wecx−ce

� �
ð44Þ
where for convenience:
A−1
ee ¼ mee þWeAxW

T
e

� �−1
: ð45Þ
This equation can be integrated to obtain q̇e andqe. It should benoted thatAee is a definite positive squarematrix of dimensionN×N.
ates of legs in the world frame.

1 2 3 4 5 6

m) 0.1 0.3 1.3 1.0 −0.2 −0.7
m) −0.2 −0.2 0.4 1.0 0.9 0.5
d) −1.671 −1.373 −2.016 −1.958 −1.656 −1.936
d) 1.767 1.764 1.814 1.859 1.389 1.345
) 1.025 1.039 1.142 1.126 1.0203 1.099



Fig. 3. Simulation schematic.
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Finally, by equating the rigid part of Eq. (43) with Eq. (41) and replacing the acceleration of the generalized elastic variables with
Eq. (44), the dynamic model is written as:
AV̇p þ c ¼ J−T
sys Γ: ð46Þ
Eq. (46) constitutes the closed form equation of the Cartesian dynamic model of the system. Both A and Jsys are square matrices
which, outside special configurations, are invertible. Thus, both the inverse dynamic problem and the direct dynamic problem can
be solved using this expression, after which the generalized elastic accelerations of the platform q

::
e are obtained using Eq. (44).

The 6 × 6 matrix A is the equivalent total inertia matrix of the legs and the flexible platform is written as:
A ¼ Arr þWpAxW
T
p

−AreA
−1
ee AT

re þWeAxW
T
p

� �
−WpAxW

T
eA

−1
ee AT

re þWeAxW
T
p

� � ð47Þ
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where the 6 × 6 system Jacobian matrix is given by
F

J−T
sys ¼ J−T

p − Are þWpAxW
T
e

� �
A−1
ee J−T

e : ð48Þ
The 6 × 1 vector c, the total Coriolis, centrifugal and gravity torques of the legs and the flexible platform, are given as:
c ¼ cr þWpAxhþWpcx

− Are þWpAxW
T
e

� �
A−1
ee WeAxhþWecx þ ceð Þ ð49Þ
where cx is an 18 × 1 vector whose such that cx = [cx1 … cx6]T.

5.1. Inverse dynamic problem

The inverse dynamicmodel of a parallel robot gives the actuated joint torques as a function of the desired trajectory of the platform
frame and the current state of the robot. Themain objective of thismodel is in non-linear control strategies, for instance the computed
torque algorithm.

Inputs:
V̇p: The desired rigid body Cartesian velocity of the platform.
q;q̇;qe;q̇eÞ
�

: The state of the robot i.e. the position and velocity of the joint and the generalized elastic variables respectively.
The joint positions and velocities are obtained from the platform variables using Eq. (11) and Eq. (18), followed by the inverse
geometric and kinematic model of each leg, respectively. The generalized elastic variables are obtained by integration.
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Outputs:
Γ: The vector of motor torques is obtained by solving Eq. (46), by using the Jacobianmatrix of the system, J sysT , after first obtaining
the total inertia matrix from Eq. (48) and the total Coriolis, centrifugal and gravity torques from Eq. (49).
q
::
e: The generalized elastic accelerations of the platform, can be obtained using Eq. (44).

5.2. Direct dynamic problem

The direct dynamicmodel of the robot gives the platform accelerations and the accelerations of the generalized elastic coordinates
as a function of the input torque of themotorized joints and the state of the robot, which consists of the positions and velocities of the
rigid and elastic variables. The primary use of the direct dynamic model is the simulation of robotic systems.

Inputs:
Γ: The vector of motor torques.
q;q̇;qe;q̇eÞ
�

: The state of the robot i.e. the position and velocity of the joint and the generalized position elastic variables
respectively.
Outputs:
V̇p: The rigid body Cartesian acceleration of the platform. It can be obtained by Eq. (46) after inverting the inertia matrix, A, of the
system. The inertia matrix, the vector containing the total Coriolis, centrifugal and gravity torques and the system Jacobianmatrix
are obtained in the same manner as in the inverse dynamic problem. Finally the rigid body velocity, Vp, and the pose of the
platform, 0Tp, are obtained by integrating the rigid body Cartesian acceleration.
q
::
e: The generalized elastic accelerations of the platform, can be obtained using Eq. (44).

6. Simulation

In order to validate the above model a simulation is carried out of the Gough–Stewart manipulator with flexible platform. The
objective of the simulator is to follow a spatial trajectory. In the following, the steps taken to execute the simulation are described.
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6.1. Simulation setup

The flexible platform is a regular hexagon that is inscribed in a circle of radius 0.5 m. The plate has a Young's Modulus of 2
× 1010 Nm, a uniform thickness 15 × 10−3 m, and a density of 7.5 × 103 kg/m3. The total mass of the flexible platform is 73.069 kg.
A modal analysis is carried out on the hexagonal plate using MSC Nastran©. The first ten non-rigid body modes are used to represent
the flexibility of the platform. Table 2 contains the natural frequency, generalized stiffness and generalized damping of each mode. It
should be noted that the modes are normalized such that the generalized mass, mee, is the identity matrix.

The dynamic parameters of each leg are identical and are given in Table 3. The inertial parameters that are set to zero, either have
no effect on themodel or do not exist due to the symmetry of the links. The inertia tensor of link text j is givenwith respect to frame j
as follows:
−

−

−

m
m

−

−

−

m

jI j ¼
XX j XY j XZ j
XY j YY j YZ j
XZ j YZ j ZZ j

2
4

3
5:
IAj represents joint j's rotor inertia. The firstmoments of link j are calculated using themass, denoted asMj and the vector of center-
of-mass coordinates denoted as Sj, as follows:
MS j ¼ MX j MY j MZ j
� �

:
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Table 4 gives the location of the base frame j, denoted asbj, for j=1… 6 in theworld frame. The components along z,bj(z)=0, for
all legs. Furthermore, in this table, the initial joint values of the robot are given.

6.2. Results

A spatial trajectory using 5th order polynomial interpolation, continuous in acceleration, is defined as the input to the system. Two
rest periods are defined at the beginning and at the end of the trajectory, between which, the system must reach several poses that
vary in both position and orientation.

The inverse dynamicmodel, denoted IDM, calculates the joint torques from the desired acceleration of the platform and the robot's
state variables. The direct dynamic model, denoted DDM, is used to simulate the response of the platform by calculating the rigid
body's acceleration and the acceleration of generalized elastic variables. From the acceleration, the state variables of the system are
obtained via integration. An overview of the simulation is shown in Fig. 3.

From the inverse dynamic model the joint torques are calculated and are shown in Fig. 4.
The rigid linear and angular acceleration of the platform, as calculated by the direct dynamic model, are given in Fig. 5. In addition

to this, Fig. 5 also shows the differences between the desired acceleration components obtained from the trajectory generator and the
calculated accelerations, which are almost zero.

In Fig. 6, the linear and angular deformation of the platform at the platform origin (Φd(p)qe andΦr(p)qe) are given. These variables
are represented in the platform frame. The deformation is greatest in the z direction, which as shown in Fig. 1 corresponds to the nor-
mal of the platform plane. The angular deformation is greatest around the x and y axes.

Finally in Fig. 7, the linear deformation at each of the attachment points is given. This deformation is due to the free–freemodeling
strategy, and can be described as the deformation the platform undergoes to ensure the constraints at the attachment point are
satisfied.

7. Conclusions

This work has presented a general strategy for modeling parallel manipulators with flexible platforms. The robot is decomposed
into two subsystems, the first consisting of the rigid legs and base, the second of the flexible platform. The effects of the flexible
subsystem on the rigid subsystem and vice versa are obtained by calculating the reaction forces at the connection points of the plat-
form. A dynamicmodeling equation is derived in terms of the Cartesian accelerations of the platform. The inverse dynamicmodel and
the direct dynamic model can be calculated from this dynamic equation. A closed form solution, relating the torques to the Cartesian
accelerations, is given in both cases in terms of the elastic and inertial parameters of the robot.

Themodel is validated using a numerical simulation of theGough–Stewartmanipulatorwithflexible platform,where theflexibility of
the platform is represented by 10modes. The simulation gives the output of the inverse and direct dynamicmodel while demonstrating
the effects of flexibility on the platform.

In future work, using thesemodels, control schemes can be constructed that would allow accurate positioning of a terminal frame
while minimizing vibrations associated with the flexibility. Furthermore a complete description of the manipulator including the
flexibility of the legs can be derived.
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