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Abstract—In this paper, a force/vision control strategy is
proposed for the robotic cutting of soft materials. The separation
is performed by repeating a series of cuts, called passages, along
a deformable three dimensional curve. An image based visual
servoing system is proposed to control all six degrees of freedom of
the cutting tool. This allows the system to change the cutting depth
and angle in response to changes in the profile of the surface.
The force is used to ensure the cut is performed cleanly without
globally deforming the soft material. The proposed controller is
validated experimentally by cutting soft foam material.

I. INTRODUCTION

Robotic interaction with soft, deformable objects is a chal-

lenging and increasingly important topic with applications in

several domains [1]. The variability of the object’s behavior

leads to two classes of solutions. Firstly, the use of advanced

object models that can predict the deformation in response to

external forces [2]. Secondly, the use of exteroceptive sensors

to modify the robot’s behavior in order to compensate for the

object deformation [3], [4].

The food industry, in particular the meat processing sector,

is an area that would benefit from deformable object manipula-

tion solutions. Indeed, existing robotic solutions have resulted

in improved hygiene and precision in the manufacturing envi-

ronment [5]. The ARMS1 project, A multi arms Robotic system

for Muscle Separation, aims to contribute to the robotization of

the meat industry in particular the separation of beef shoulder

muscles. A multi-arm system is proposed in order to deal with

key challenges such as the flexibility of the target object and

its variability [4].

In this study, a force vision controller is proposed for the

cutting task. A camera, fixed on the cutting tool, is used to

capture an image of the cutting zone. The objective is to

change the robot configuration so that the image converges to

a desired cutting zone image. This is known as IBVS (Image

Based Visual Servoing) in contrast to the more conventional

PBVS (Position Based Visual Servoing) where the image

is used to reconstruct the 3D-pose of the target object [6].

IBVS is known to have several advantages over PBVS. For

1arms.irccyn.ec-nantes.fr

example IBVS is more robust with respect to calibration errors

whereas in PBVS, due to the reconstruction of the 3D position,

these errors directly affect the task convergence. Moreover, by

controlling the system in the image space, the IBVS system

can ensure the image always remains in the field of view [7],

[8]. On the other hand, in order to follow an image trajectory

the end effector may have to execute unfeasible Cartesian

velocities. Furthermore a poorly chosen image feature may

lead to a singularity of the interaction matrix.

Image moments provide a robust description of a diverse

set of image objects and have been widely used in computer

vision tasks [9]. Recently image moments have been applied

to visual servoing schemes. By careful combination of image

moments, an interaction matrix of maximal decoupled structure

and low condition number can be built for a variety of complex

images [10], [11], [12].

Generally, force/vision research has been focused on con-

tour following tasks where a force is applied normal to the

surface. If the surface is unknown, its pose with respect to

the tool must be obtained. By studying the force sensors

measurements and approximating the frictional effects of the

motion, the normal to the surface can be constructed [13], [14],

[15]. The disadvantage of this approach is that the orientation

of the tool relies on noisy force measurements and requires

a filtering operation to obtain an accurate solution [16].

Moreover in cutting applications this approach is no longer

valid, since in order to separate the object the tool must

necessarily pass through the contour. In [17], the normal to

the surface is obtained using vision data by using an external

camera observing the scene. However, these so called eye-to-

hand systems are limited due to problems regarding spatial

resolution and limited field of view [18].

In this paper, we propose a force/vision controller capable

of cutting objects while following a 3D deformable trajectory.

In contrast to previous works, the orientation of the tool is

controlled using an eye-in-hand camera. Therefore, the use of

noisy force measurements in the precise positioning task is

avoided. In addition to this, by using a local camera instead

of an external system, a clear unimpeded view of the desired
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trajectory is provided. For the separation of deformable objects,

a local view is essential due its inherent flexibility.

The paper is organized in the following way. In Section II,

the robotic cell and notation are described. In Section III,

IBVS strategy is outlined. In Section IV the global control

scheme is illustrated. In Section V the results are given. Finally,

in Section VI the conclusions are drawn and future work is

discussed.

II. ROBOTIC CELL

A 7-DOF Kuka LWR robot is used for this experiment, as

shown in Fig.1. The robot is equipped with an ATI gamma

6-axis force sensor a marlin 1394 camera and a razor blade.

The Modified Denavit-Hartenberg (MDH) notation [19] is

used to describe the geometry of the system. The following

geometric and kinematic models are obtained:

0
Tt =

[
0Rt

0pt

0 1

]
, Vt =

0
Jtq̇ (1)

The 4 × 4 transformation matrix iTj represents the location

of frame Rj with respect to frame Ri consisting of the 3× 3
rotation matrix iRj and the 3 × 1 position vector ipj . iVj

denotes the kinematic screw of frame Rj with respect to the

fixed world frame and represented in frame Ri.
i
Jj is the

kinematic Jacobian matrix of the robot evaluated at frame Ri

and represented in frame Ri. q and q̇ are the vectors of joint

positions and velocities respectively.

Three coordinate frames are defined for this work. R0 is

the fixed world frame. Rt is frame fixed to the razor blade.

Rc is fixed to the camera where the z axis is aligned with

the camera’s optical axis. The transformation matrix tTc, the

camera with respect to the tool frame, is obtained through off-

line calibration methods. Finally, it should be noted that the

camera frame is parallel to the frame of the cutting tool.

III. IMAGE BASED VISUAL SERVOING

The cutting trajectory is composed of a series of dense

objects located along an unknown curve that varies in three

dimensions as shown in Fig.1. The visual controller is used

to position all six degrees of freedom of the end effector

by ensuring that the extracted image feature s converges to

a desired image feature s∗. The desired image, learned off-line

using the teach by showing method, specifies the reference

cutting frame, including the desired depth and the cutting

angle. The camera velocity is found from:

cVc = ΛL+
s (s∗ − s) (2)

where Ls is the interaction matrix. cVc is the camera ve-

locity composed of a 3 × 1 vector of linear velocity cvc =[
vx vy vz

]T
and a 3 × 1 vector of angular velocity

c
ωc =

[
ωx ωy ωz

]T
. Λ is an adaptive gain matrix. In

the following the image primitive which are used for the IBVS

control scheme are described.

Fig. 1. Experimental Platform where the surface curvature is described in
the fixed world frame

A. Image Control Algorithm

The flow diagram in Fig.2 describes the steps taken to

ensure the knife follows a trajectory rather than simply con-

verging to a desired pose. The control scheme selects an object

and binarizes the image such that the pixels within the objects

boundaries are given an intensity value I = 1. The remaining

part of the image, including other objects in the field of view,

are given a value of I = 0. Once the object has converged

to the desired position, the next object on the trajectory is

selected. The image moments are extracted for the segmented

object as described in the following section.

B. Image Moments

Image moments can describe a diverse shape of objects after

segmentation or binarization. For a binary image, with pixel

coordinates (x, y), where the object of interest has intensity
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Fig. 2. Image Segmentation Process

I(x, y) = 1, the raw moments are defined by:

mij =
n∑

k=1

xi
ky

j
k (3)

The central moments are defined as :

μij =

n∑
k=1

(xk − xg)
i
(yk − yg)

j
(4)

where xg and yg are defined as the center of gravity of the

object:

xg =
m10

m00

, yg =
m01

m00

(5)

Recently, image moments have been successfully used in visual

servoing applications [10]. The image moments are selected to

ensure that both the linear and angular velocity of the camera

can be controlled. Furthermore they are chosen such that the

condition number of the resulting interaction matrix is low. In

order to control the cutting tool the following image moments

are selected:

s =
[
xn yn an τx τy α

]
(6)

The first three components are known as the normalized

coordinates of center of gravity and the normalized area [11].

These components are used to control the linear velocity of

the camera, they are defined as:

xn = anxg yn = anyg an = z∗

√
a∗

a
(7)

where a∗ and z∗ represent the desired area and the distance

between the object and the camera in the desired configuration

respectively.

The angular velocity, ωz , about the optical axis of the

camera is controlled by the component α. This feature is

calculated using the central moments from (4) as:

α =
1

2

(
2

μ11

μ20 − μ02

)
(8)

Finally, in order to control the velocities ωx and ωy , a careful

selection of the image moments τx, τy must be carried out with

respect to the task, the object and the desired object.

Referring to Fig.1, it can be seen that in order to keep the

object parallel to the image plane the camera must undergo

large rotations around its x axis. Therefore, using the off-line

selection method proposed in [20] the following pair of image

moments are selected:

τx =
I3

I4
τy =

I14

I15
(9)

I3, I4, I14 and I15 are four invariant image moments given

in [20] calculated using (3) and (4) and based on those

originally obtained in [9]:

I3 = (μ30 − 3μ12)
2 + (3μ21 − μ03)

2 (10)

I4 = (μ30 + μ12)
2 + (μ21 + μ03)

2 (11)

I14 = (μ50 − 2μ32 − 3μ14)
2 + (μ05 − 2μ23 − 3μ41)

2 (12)

I15 = (μ50 − 10μ32 + 5μ14)
2 + (μ05 − 10μ23 + 5μ41)

2

(13)

τx and τy are invariant to translational motions and to rotations

around the optical axis [10].

C. Interaction Matrix

As shown in (2) an interaction matrix is required to relate

the error in the image features to the camera velocity. The

chosen interaction matrix is computed from the desired image,

s∗ where the desired object is parallel to the image plane.

By ensuring the desired image is parallel to the image, the

interaction matrix is greatly simplified.

The use of a constant intersection matrix, computed us-

ing the desired configuration, is justified since the trajectory

consists of a series of objects very close to each other. Thus

the current object is unlikely to be outside the localized

area of convergence. By making the above simplifications an

interaction matrix is obtained with the following form:

L
‖
s=s∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 0 xnωx xnωy y∗n
0 −1 0 ynωx ynωy −x∗

n

0 0 −1 anωx anωy 0
0 0 0 τxωx τxωy 0
0 0 0 τyωx τyωy 0
0 0 0 αωx αωy −1

⎤
⎥⎥⎥⎥⎥⎥⎦

(14)

The analytic expressions of the quantities in (14) can be

found in [10], [11], however the decoupled structure of the

matrix is more important. A particularly interesting feature is

the direct link between the distance to the object i.e. the cutting

depth and the area of the image object. In the following section,

this relationship is used to implement a force controller.

IV. GLOBAL CONTROL STRATEGY

A. Robot Controller

An overview of the global robotic control strategy is given

in Fig.3. The control scheme is designed to move the camera

such that the next image in the trajectory sequence converges

to the desired image, as illustrated in Fig.4. If the tool exits the
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Fig. 3. Global Control scheme

Fig. 4. (a) Extracted scene at time t, (b) Desired Image, (c) Current Image

material, the robot returns to the initial position. The robot’s

movement from the initial position to the moment the tool

leaves the media is denoted as a passage. In order to overcome

the discrete nature of the trajectory, an adaptive gain matrix Λ

in (2) is used to increase the rate of convergence as the error

decreases.

B. Force Controller

The force controller is used to ensure that excessive resistive

forces are avoided during to the cut [21]. The resistive forces

oppose the motion of the tool i.e. they act along the y-axis of

the tool. We propose to link the resistive force directly to the

desired image features as:

δa∗n = min
(
0, kz

tfy
)

(15)

In this case the min function is used to prevent the knife

entering deeper into the material.

V. EXPERIMENTAL VALIDATION

A. Experimental Setup

The experimental setup is shown in Fig.1. A 200mm ×

200mm×100mm block of foam known as Bultex c© is used.

The foam is pre-cut to create an irregular surface. A series

of identical objects are adhered to the foam in a curvilinear

configuration. The curve varies in the x, y and z directions. The

desired image is shown in Fig.4. At the desired configuration,

the object is parallel to the image plane and the distance is

given as zd = 0.08. The numerical value of the interaction
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Fig. 5. Camera Trajectory with optical axis in the y − z plane in the fixed
world frame

matrix is given as:

L−1
s=s∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0.016 0.071 0.007
0 −1 0 0.030 −0.297 −0.008
0 0 −1 0.006 −0.028 0
0 0 0 0.385 −3.687 0
0 0 0 −0.194 −0.867 0
0 0 0 −0.044 −0.056 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

(16)

while the value of the desired image feature is given as:

s∗ =
[
−8.04 −7.0 80 11067 1038.0 38.556

]
× 103

(17)

B. Experimental Results

Fig.5 gives the evolution of the camera position in the y−z

plane, the surface profile and the orientation of the optical axis.

It can be seen that the orientation of camera’s optical axis is

adjusted throughout the trajectory in order to keep the object

parallel to the image plane.

Fig.6 shows the resistive force due to the cutting action.

As the force increases the controller induces a change in the

desired normalized area as described by (15). This slicing

action then results in a drop in the magnitude of the force.

This is particularly clear for passage 10.

Finally, Fig.7 shows the error of the image moments for two

consecutive objects. It can be seen that all the image features
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Fig. 6. Deviation due to resistive cutting force

converge to their desired values. The spikes in the graphs at

iteration number 2300 and 3400 indicate the detection of the

next object in the trajectory and thus an instantaneous change

in the value of s as described in Fig.2. It is also clear from

Fig.7 that the convergence of τx and τy is much slower than

the other image features.

VI. CONCLUSION

In this paper, a force/vision control strategy was proposed

for the robotic cutting of soft materials. In contrast to previous

works, a local vision system is used to control the angle

between the surface and the cutting tool thereby eliminating

the effect of noisy force measurements on the orientation task.

Furthermore, this system allows the cutting tool to follow a

three dimensional surface while maintaining a constant cutting

depth.

By controlling the system using IBVS and by adding the

force deviation directly to the image space, the sensitivity to

calibration errors is reduced. However since discrete objects

are used to represent a continuous cutting trajectory, the

convergence of the image features may lead to an unsatisfac-

tory cutting trajectory. In the cutting task, this could lead to

unnecessary forces on the tool. In future work, we will address

this issue by firstly increasing camera resolution, allowing the

discrete objects to better approximate a continuous trajectory

and secondly, taking into account the next object in the control

law.
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