
Simultaneous Auctions for “Rendez-Vous” Coordination Phases in Multi-Robot
Multi-Task Mission

Guillaume Lozenguez and Abdel-Illah Mouaddib
Laboratory GREYC, Caen, France

firstname.lastname@unicaen.fr

Aurélie Beynier
Laboratory LIP6, Paris 6éme, France

aurelie.beynier@lip6.fr

Lounis Adouane
Institut Pascal, Clermont-Ferrand, France

lounis.adouane@univ-bpclermont.fr

Philippe Martinet
Laboratory IRCCYN, Nantes, France
philippe.martinet@irccyn.ec-nantes.fr

Abstract—This paper presents a protocol that permits to
automatically allocate tasks, in a distributed way, among a fleet
of agents when communication is not permanently available. In
cooperation settings when communication is available only dur-
ing short periods, it is difficult to build joint policies of agents to
collectively accomplish a mission defined by a set of tasks. The
proposed approach aims to punctually coordinate the agents
during “Rendez-vous” phases defined by the short periods
when communication is available. This approach consists of a
series of simultaneous auctions to coordinate individual policies
computed in a distributed way from Markov decision processes
oriented by several goals. These policies allow the agents to
evaluate their own relevance in each task achievement and to
communicate bids when possible. This approach is illustrated
on multi-mobile-robot missions similar to distributed traveling
salesmen problem. Experimental results (through simulation
and on real robots) demonstrate that high-quality allocations
are quickly computed.

Keywords-Multi-robot systems; Task allocation by auctions;
Decision making

I. INTRODUCTION

Allowing a group of autonomous robots to cooperatively
achieve goals requires an automatic coordination process
of their actions. One challenge in modeling a robot as an
agent in a multi-agent system, consists in computing its
individual policy that maps the individual actions to perform
to each possible succession of local perceptions. The agents’
policies should allow the group to efficiently achieve their
goals while reacting safely to external events. In case of
dynamic and distributed knowledge of the environment (as
in exploration scenarios), the policies have to be actualized
several times during the missions.

The approach presented in this paper consists in a protocol
allowing the agents to coordinate their policies computed in
a distributed way. We are interested in cooperative multi-task
mission where each task requires only one robot. Individual
model allows each agent to evaluate its costs to perform
each task. The proposed protocol aims to quickly allocate
tasks between the agents in order to minimize the costs to

perform all the tasks.
In auction protocols, an item is assigned to the agent

that proposes the greatest value. Individual Markov Decision
Processes (MDPs) can be used to evaluate bids on tasks
in multi-robot missions [4], [18]. Solutions described in
the literature allocate one item at a time to a robot in a
sequential process. Though, there are often strong values
inter-dependencies between items. For mobile robots, costs
match movements and the task relevance value increases if
other tasks in a close range have to been performed by the
same robot [2]. The task relevance values depend on policy
computations which match traveling salesman problems. For
coordination, the difficulty consists in converging quickly
to a solution by testing a minimum number of candidates
allocations, each tested allocation induces new individual
policy computations.

In the targeted application, the common initial knowledge
of robots is built from the data of an UAV and is potentially
flawed (Fig. 1). Therefore, a fleet of mobile robots has to
visit a set of positions (points of interest declared by a human
operator) which identify important uncertain locations to
explore. The knowledge (map) is organized as a graph of
paths’ connectivity. Errors induce knowledge, policy and
task evaluation updates during the execution of the mission.

This paper addresses on-line multi-agent policy computa-

b

a

c

d

Figure 1. Problem statement: illustration with 3 robots and 4 points of
interest {a, b, c, d}. The initial map (the blue graph) includes errors
regarding the real obstacle shapes (in red).

firstname.lastname@unicaen.fr
aurelie.beynier@lip6.fr
lounis.adouane@univ-bpclermont.fr
philippe.martinet@irccyn.ec-nantes.fr

tion based on individual MDPs during “rendez-vous” coor-
dination phases. These coordination phases may take place,
punctually, several times during missions which consists
in distributed tasks achievement. A framework based on
Successive Simultaneous Auctions for Coordination (SSAC)
is presented to allow agents to evaluate and to exchange
several tasks at a time while each agent computes its
own policy. We prove the convergence on locally optimal
allocation, then, the proposed protocol is experimented on
multi-robot missions to statistically guarantee the capability
to control coordination phase durations while leading to
interesting allocation. Finally, the capability to distribute
policy computation is compared with a protocol based on
simple sequential auctions.

II. BACKGROUND
This paper describes a distributed planning approach

where each agent computes its own policy. The coordi-
nation is performed by allocating individual sets of tasks
to achieve in a way that minimizes the robot action costs
(movements). The proposed approach is divided into 2 parts:
individual policy computations and negotiation protocol for
task assignments. The coordination between agents consists
in solving those 2 parts simultaneously. In fact, comparing
several policy values regarding different sets of tasks allows
an agent to evaluate its own relevance for each set. The
protocol, presented in the next section, aims to minimize
the number of individual policy computations in order to
speed up coordination phases.

A. Distributed policy computation
A Markov Decision Process (MDP) allows to model a

stochastic system in order to compute the control policy
which optimizes the expected gain [15]. In distributed mod-
els [4], [13], an MDP can be built for each agent where the
controlled systems are the agents themselves. An MDP is
defined as a tuple 〈S,A, t, r〉 with S and A respectively,
the state and the action sets that define the system and
its control capabilities. The transition function, defined as
t : S × A × S → [0, 1], gives the probability t(s, a, s′) to
reach state s′ from s while executing action a ∈ A. The
reward function is defined as r : S × A→ R, r(s, a) gives
the reward obtained by executing a from s.

Solving an MDP consists in searching an optimal policy
π∗ that maximizes the expected gain. A policy is a function
π : S → A mapping each state to an action. The value V π of
the expected gain regarding a policy π can be computed by
solving the Bellman equation [1]. This value depends on a
parameter γ ∈ [0, 1] which balances the importance between
future and immediate rewards:

V π(s) = r(s, a) + γ
∑
s′∈S

t(s, a, s′)V π(s′), a = π(s) (1)

Commonly, the states match the possible configurations
of the agent. For example, for a robot moving in a static

environment, with a perfect perception of its movements, the
individual MDP states match the positions of the robot in
the environment [4], [13]. Because of imperfect perception
skills, the agent’s state may be defined as its belief state
regarding its possible configurations. Partially Observable
MDPs (POMDPs) allow each agent to decide of its actions
from its observations. POMDPs can be used in robotics
when the evaluation of robot movements leads to imperfect
localization [18], [5].

In multi-agent systems under distributed control, each
agent decides its own actions given its own perceptions.
Policy computation could be distributed as well. In generic
distributed approaches, each agent computes its own policy
while considering that the policies of other agents are
fixed [6], [14]. In such case, any policy actualization of
an agent induces modification in the individual transition
and reward functions of the other agents. Thus, the agents
iteratively actualize their policies until stable coordinated
policies are reached.

A policy actualization needs computational resources.
Unfortunately, expressive and complete models are difficult
to solve since they lead to huge state (MDP) or belief state
(POMDP) spaces. It is notably true in case of multi-goal
problems (as traveling salesmen problems) where each state
has to memorize which goals are achieved or not [11].

B. Coordination by tasks allocation

In consensus approaches [16], cooperation based on auc-
tion sales consists in attributing tasks or resources as items
among agents. These approaches were successively used in
robotics [8]. In “Contract net” [7] or “MURDOCH” [9], an
item (object, resource or task) is put up for sale by a robot
who becomes manager. The other robots are potential clients
for the item. The item is allocated to the potential client with
the highest offer. Each robot can be manager or potential
client and several sales can be made simultaneously.

Bids and attribution rules can be defined differently to
optimize the sum of individual interests or to perform fair
allocations [19]. Individual MDPs and Bellman equation
can be used to compute individual gains regarding a set
of tasks or regarding the addition or the subtraction of
one task (or several) to the set of already assigned tasks.
This mechanism has been used to evaluate bids in robots’
auctions for coordination [4]. This way, the value of each
task depends on which other tasks the agent has to perform
and tasks with interdependencies could be put back in sale
several times.

Combinatorial auctions [17], where agents can bid on a
set of items, allow to express synergy between items’ values.
This kind of auctions reaches optimal tasks allocation in a
unique simultaneous sale [2] by biding on combinations of
items. However, agents have to detect and evaluate synergy
between tasks. This induces several policy computations, one

per possible task allocation. Thus, the number of policy com-
putations is exponential in the number of task combinations.

The difficulty is to allocate several interdependent items
with a minimum of individual policy computations in order
to allow agents to punctually update their coordination
during the mission. In fact, in the problem we tackle, we aim
to control coordination phases duration with a weak impact
on the solution optimality. This duration directly depends on
the number of successive policy actualizations.

III. PROBLEM STATEMENT AND FRAMEWORK

An allocation of goals G = 〈G1, G2, . . . , Gn〉 defines
the set of goals Gi ∈ G allocated to the agent i ∈ [1, n]
(G the set of all goals). In the addressed problem, a goal
matches a task to perform by an agent. Each task (or goal)
is assumed to be attributed to one and only one agent.
Then, the set of possible allocations DG is composed by
a total of n|G| elements. The value of an allocation G
is defined as the sum of all agents expected gains (gni)
considering their individual current state, their individual
tasks to accomplish and the others tasks allocated to the
others agents. An optimal allocation G∗ is an allocation in
the set of all candidates DG which maximizes this sum:

value(G) =

n∑
i=1

gni(Gi), G∗ = argmax
G∈DG

(value(G)) (2)

The expected gain of an agent i corresponds to its indi-
vidual interest decreased by a social cost. The interest can
be computed using the Bellman value (Eq. 1) of an optimal
policy from the current state sic. The social cost aims to
individually evaluate the impact of the agent policy on the
rest of the group. In task allocation, the proposed social
cost aims to decrease the group needed times by balancing
the allocation and it matches the difference between the
assignment size |Gi| and an ideal size gs∗ (gs∗ = |G|/n if
each task is as important as the others). The more important
is the difference, the greater is the social cost:

gni(Gi) = V
π∗Gi
i (sic)− oc

|gs∗−|Gi||∑
j=0

j (3)

The opportunity cost oc defines the threshold value that
allows an agent to unbalance its allocation comparatively to
the other agents’ gains. By this way, the first task which
unbalances the allocation costs oc, the second costs 2oc
and so on. The notion of decreasing individual rewards
with opportunity costs has been already used in multi-robot
planning of constrained missions with interesting results [3].

In sequential auctions for tasks allocation, at each step, a
task is assigned to the agent that proposes the greatest utility
value. The utility ui(Gi, g) of a task g ∈ G is computed for
each agent i by adding or subtracting g from its individual
current allocation Gi. The utility matches the difference
between the expected gain regarding the referent allocation

Gi and the new one G′i built by addition/subtraction of g
(G′i = Gi + g or G′i = Gi − g).

ui(Gi, g) =

{
gni(Gi)− gni(Gi + g) if g /∈ Gi
gni(Gi − g)− gni(Gi) if g ∈ Gi

(4)

To ensure that all tasks will be performed, the utility to
assign a task to an agent has to always be positive. Utility
functions are bounded by [0,maxu]. The opportunity cost oc
can be defined proportionally to the maximal utility maxu .

oc = noc.maxu, maxu = max
i, Gi, g

(ui(Gi, g)) (5)

By this way, an oc value of 100% of maxu prevents to
unbalance the allocation. Using this framework, we present
an approach which allows us to find a locally optimal
allocation in a distributed way and that minimizes the
number of policies to evaluate.

IV. MULTI-TASK ALLOCATION

The particularity of auctions for tasks allocation among
agents is that bids depend on policies that change while
tasks are allocated. Sequential auctions consist in switching
a single task from an owner to another at each iteration. This
mechanism allows only 1 or 2 agents at a time to re-compute
their policies. We propose the Sequential Simultaneous
Auctions for Coordination (SSAC) protocol in order to allow
all the agents to compute new policies at a time. The SSAC
protocol starts with an initial allocation (possibly empty)
and converges to a locally optimal solution deduced from
exchanged utility values (Eq. 4). At each iteration, SSAC
searches all the possible modifications which improve the
built allocation with respect to bids computation.

A. Simultaneous auctions for coordination

In order to evaluate each task utility for the current
allocation, each agent builds and solves individual MDPs.
The SSAC protocol permits to combine utilities in order to
improve the allocation. The process is iterated until no more
improvment in the allocation is found. The SSAC is splited
into 5 steps:

1) Opening: A SSAC is opened with an agent demand
which becomes the manager. A demand results from mod-
ifications in the individual knowledge of the agent which
induce updates in the set of tasks and utilities. This step
consists in taking inventory of participants. The participants
are all the agents with an efficient communication connec-
tion (direct or not) with the manager. Once the registration
is done, agents can not enter or leave the SSAC before the
end of the protocol. This step is also useful to identify the
communication network in order to allow the most efficient
message transmission.

2) Task identification: This step allows the agents to
identify the set G of tasks to assign. All uncompleted
tasks can be reallocated and thus belong to G. This step
allows the agents to compute their shared parameters such

as the opportunity cost. The role of the manager is not
required when all agents communicate in broadcast. With no
manager, deterministic attribution rules have to be defined
in order to guarantee that all the agents will build the
same allocation. Finally, a heuristic initializes the initial
allocation G. For example, the initial allocation could be
empty, random or based on the existing allocation before
the SSAC opening.

3) Value computation: Each agent computes its own
optimal policies based on MDPs it builds in consideration of
its individual current allocation Gi ∈ G. Each MDP is built
for a set G′i based on the Gi set of tasks assigned to the agent
i and more or less one task. This step, involves |G| − |Gi|
policy computations on 2|Gi|+1 states. However, the MDPs
of an agent are strongly similar, that permits to speed up
the computing process. The general idea is to reuse policies
of previously solved MDPs. These policies allow agents to
compute and exchange their current utilities regarding all
tasks in G.

4) Allocation update: Once the last utility message is re-
ceived by the manager or by all the agents (n.|G| messages)
the allocation G can be updated . The allocation is updated
by switching a task from an agent (sender), if exists, to
another (receiver) with a greater utility. Task modifications
are chosen in a sequential process by selecting tasks with the
greatest difference between sender and receiver utilities in
a manner that induces a unique task modification per agent.
If at least one update has been done, the protocol returns to
step 3.

5) Closing: When no update is no more possible (The
agent utilities do not allow switch on task allocations) a
consensus is found (with a locally optimal task allocation).
At this moment, agents end the SSAC and start completing
their individual set of tasks.

The SSAC protocol locks agents during its process, it is
designed for missions with punctual efficient communication
phases. Under this hypothesis, the difference between peer
to peer communication and broadcast communication costs
is insignificant. The broadcast communication permits the
allocation update process to be done separately by each
agent while they wait for all agents’ step 3 to end.

The SSAC protocol is parametrized by the heuristics
used to initialize the allocation (step 2) and the assignment
rules that update the allocation from the utilities (step
3). The SSAC protocol permits task allocation between
heterogeneous agents. The utility function definition is not
necessarily shared by all the robots (while they share similar
coherence in reward and cost definitions). Moreover, each
robot can have its own individual MDP model.

B. Convergence

The convergence of SSAC protocol is guaranteed by the
updated allocation (step 4) which has a greater value than
the old one. The main reasons come from the following

assumptions: the allocation is modified in a way that involves
a unique modification per agent at each iteration and the
individual gain functions are constant during SSAC process.
The demonstration is done by considering that it is always
positive for an agent to perform a task. Thus, adding a task
to the allocation of an agent always leads to an improvement
in the individual gains (Eq. 3) and the utilities are positive
(Eq. 4). That facilitates the proof but it is not a restriction.

Each update based on the utility function (Eq. 4) for a
task g , induces an improvement in the utility between old
and new individual allocations of the 2 agents (sender and
receiver). Thus, the loss in gain of the sender is lower than
the gain of the receiver. Each update induces that the sum
of gains of the group is increased by the difference in the
utilities of the sender and the receiver.

The convergence is conditioned to a unique modification
in each agent’s allocation at the same iteration of the step
4. The utility function is defined for a single task. The
difference in gain function of an agent, in case of several
modifications at a time, is not equal to the sum of its utility
values. Each modification may lead to utility actualizations.

However, the update of the allocation (step 4) can include
several modifications concerning different agents. By this
way, increasing the number of agents, theoretically, weakly
impacts the number of SSAC iterations. It is also expected
that increasing the number of agents will speed up the SSAC
coordination if gain functions aim at balancing the number
of tasks between agents (oc ' maximal difference between
task individual relevances).

Considering that for all SSAC iterations the individual
gain values of the allocations are constant and there is
a finite number of possible allocations, there is therefore
at least one optimal allocation which maximizes the sum
of expected gains (Eq. 2). Thus, the finite number of
solutions and the convergence of the allocation value ensure
that the succession of simultaneous auctions will terminate.
Furthermore, the resulting allocation G is locally optimal
regarding the range-1 allocations (allocations built with a
single difference in task assignments).

C. Desynchronization

The proposed SSAC protocol for task allocation has two
main limitations. It is not fully desynchronized (the agents
have to continuously wait for all the other agents) and
the solution is only range-1 optimal. In SSAC, the process
distribution is limited by step 4 (allocation update), where
the agents have to be synchronized before actualizing a
common new allocation. Asynchronous individual processes
induces the possibility of inconsistencies in task assignments
that will conclude on unallocated or multi-allocated tasks.

The SSAC can be upgraded to a desynchronized SSAC
protocol (D-SSAC) based on locking tasks to limit errors in
allocations. The idea consists in adding a mechanism that
prevents several agents to take the same task. At each time

(a) (b) (c)

Figure 2. (a) one pioneer robot, (b) the experimental area and
(c) the Google aerial view. Figure 3. Experiments in free area. Figure 4. Experiments in urban area.

step, the agent i, with the higher utility, locks the task g by
communicating an unreachable utility for g (higher than the
maximal one). A predefined hierarchy between the agents
allows them to disambiguate situations where several agents
lock the same task at the same time.

If another agent j communicates a utility greater than the
hidden utility of the agent i, the task g will be unlocked.
The agent i subtracts the task from its assignment and
communicates again, its real value. By this way, the other
agent j can take and lock the task at its turn. This mechanism
guarantees the coherence of the allocations built in a protocol
with asynchronous agents such as robots.

In D-SSAC protocol, each agent is focused only on its
individual task assignments and not on the global allocation.
Even if several agents are interested in the same tasks, the
lock mechanism ensures that each task will be assigned to
one and only one agent at the end of the process. By this
way, it is also possible to start the D-SSAC with an empty
allocation where no task is assigned. D-SSAC ends if all
agents’ processes are in step (4) “allocation update” with no
modification on the allocation and all tasks are allocated.

D. Range-m optimality

The second limitation also exists in sequential auction pro-
tocols and concerns the range-1 optimality of the solution.
Most of the time, range-1 optimality builds coherent and
acceptable allocations but, this limitation can lead to poor
results if a balanced allocation is expected (oc ' maximal
difference between task individual relevances).

In fact, with an already balanced allocation, it is impos-
sible for an agent to remove a task from its allocation, in
order to take another one in the next steps. It is possible to
increase the optimality range guarantee to m by considering
utilities with at most m task modifications. This will induce
a number of utilities |Ui| that is exponential in m (Ui the
set of considered utilities):

Ui = {ui(Gi, g), . . . , ui(Gi, g, . . . , gm)} (6)

In a range-m succession of simultaneous auctions for co-
ordination protocol, the allocation update (steps 4), consists
in searching up to m allocation modifications per agent with
a maximal sum of combinatorial bibs. Nonetheless, range-
m combinatorial auctions make the allocation update (step

4) more difficult. The updates are computed from n.|Ui|
communicated values and lead to an exponential number of
combinations of task exchanges between agents. The range
dimension m has to be defined as small as possible and such
that it guarantees efficient allocation processes.

V. EXPERIMENTS

The proposed approach is illustrated by the need for a
fleet of cooperative robots to visit a set of points of interest
given an initial approximate topological map. The mission
execution is divided into 2 kinds of phases: the individual
execution task phases and the coordination phases. The
proposed approach D-SSAC is used in coordination phases.
A first coordination phase is initialized with all the robots
of the fleet at the beginning of the mission. Several other
coordination phases take place with a sub-group of robots
when robots meet each other during task execution.

D-SSAC was tested on 3 real mobile ground robots during
the initial coordination phase (cf. videos1) in an experimental
indoor free area (Fig. 3) and outdoor urban area (Fig. 2 and
4). In the rest of the paper, we present experiments showing
that SSAC and D-SSAC allows robots to coordinate their
policies with interesting characteristics.

A. Topological map and decision making

A topological map 〈W, P 〉 (Fig 1) is a graph where: nodes
W represent particular way-points; edges P represent the
paths connectivity between nodes [10]. Way-points match
particular positions in the environment where the robot is
able to localize itself. The path achievement is uncertain
and can end in unexpected way-points. In fact, we consider
that the robots are equipped with a module allowing them to
reactively move along a path p with deviation probabilities
(dp(w) ∈ [0, 1]) [12]. The deviation models the difference
between an expected movement and its real outcome regard-
ing the way-point set W . The robots set of goals G match
a subset of the nodes to visit (named the points of interest).

Using this architecture, the decision making problem
consists in building a policy mapping each node in the map
to a path to take. In case of multi-task achievement, this path
also depends on the current step in task achievement. An

1 R-Discover project: www.greyc.fr/node/1629

www.greyc.fr/node/1629

Figure 5. The 2 tested maps and examples of coordinated policies: (a)(b) with few obstacles and (c) the labyrinth

c

c

c

b

b

b

(1)

(2)

(3)

(4)

state

achived task state

move action

validation action

a
Individual MDP

Data

Figure 6. Example of states and actions enumeration for an individual
MDP oriented by 2 goals b and c. (1) ∀s ∈ Si, Gs = ∅, (2) ∀s ∈
Si, Gs = {b}, (3) ∀s ∈ Si, Gs = {c}, (4) ∀s ∈ Si, Gs = {b, c}.

individual Goal Oriented MDP (GO-MDP) 〈Si, Ai, ti, ri〉 is
defined for each robot from the current knowledge shared
in the topological map and a set of goals Gi as points of
interest to visit Gi ⊂ W . A state s ∈ Si includes the last
recognized way-points ws ∈W and the set of achieved goals
Gs ⊆ Gi. The actions match the set of paths Pi. An action
ps is added for all way-points ws ∈ Gi as a symbolic action
validating that the way-point ws is visited (Fig. 6).

Si = { s = (ws, Gs) | ws ∈Wi, Gs ⊆ Gi }
Ai = { pa ∈ Pi } ∪ { ps = (ws, ws) | ws ∈ Gi }

(7)

When executing the available action a = pa from the way
point ws, the transition function t returns the probabilities to
reach neighbor positions according to the deviation function
dpa . A deterministic transition for each validation action
reaches the corresponding state where the set of achieved
goals is augmented if the way-point matches a point of
interest to reach by the robot i (if ws ∈ Gi):

ti((ws, Gs), pa, (ws′ , Gs)) = dpa(ws′)
ti((ws, Gs), ps, (ws, Gs ∪ (Gi ∩ ws)) = 1

(8)

The reward function returns a negative value regarding the
movement cost (related to the path), and a positive constant
gain rg common to all robots if a new point of interest is
reached. By this way, the MDP structure guarantees that the

positive rewards rg can only be perceived once per goal.

ri((ws, Gs), pa) = cpa
ri((ws, Gs), ps) = rg if ws ∈ Gi −Gs | else 0

(9)

B. Experiments on optimality

A first series of experiments aims to validate the efficiency
of the range-1 D-SSAC protocol. From 9600 experiments,
the value of the D-SSAC allocation is compared to the
maximal and minimal allocation values computed in an
exhaustive centralized way (Eq. 2). Optimality is defined
regarding the maximal value of the possible task allocations
(cf. Eq. 2). Each experiment involves 3 robots placed in one
of 2 different maps (Fig. 5) and between 2 and 13 points of
interest (tasks). Therefore, for 13 tasks, there are 313 possible
allocations and between 50 × 213 and 70 × 213 (regarding
|W |) states in the GO-MDPs involving all tasks.

The cost of each path p is defined as the distance between
the start and targeted way-points of p. The maximal cost
for reaching a target is defined as the environment diagonal
(51.2). The task achievement reward (rg in Eq. 9) is set to
1000 for all tasks in order to guarantee that each task will
be reached. Finally, the normalized opportunity cost (noc in
Eq. 5) is set to 0 or 0.1.

The experiments are classified regarding the type of map
used, the number of tasks considered, and the value assigned
to the opportunity cost. The series of experiments is based
on 200 random generations of task positions for each of
the 48 class of experiments. Considering the value of an
allocation as the sum of the associated individual expected
gains (Eq. 2), a score (in percent) is computed for each built
allocation by comparing its value with the worst (0%) and
the best (100%) allocation values. For example, one of the
experiments in the class (labyrinth, |I| = 4, oc = 0) gave the
values: 3891.11 (best allocation) ; 3836.41 (worst allocation)
; 3890.84 (D-SSAC allocation) so, a score of 99.5% for D-
SSAC. Table I presents averages of obtained scores.

The obtained scores allow us to validate that allocations
built using D-SSAC protocol are close to optimal ones in
restricted sizes of problems. We denote only 2 experiments
over 9600 with scores less than 70%. On the other hand, the
probability to find an optimal allocation decreases when the

Table I
OBTAINED SCORES ON RESTRICTED SIZES OF PROBLEMS

|I| few obstacles, noc = 0 few obstacles, noc = 0.1
Score Opt. Score Opt.

D-SSAC Wo. D-SSAC Wo.
2-3 99.5 85.8 89.5 99.6 80.0 92.5
4-5 99.0 77.5 80.3 99.0 47.4 69.3
6-7 98.9 83.3 71.8 99.2 82.6 47,8
8-9 98.4 86.1 63.8 99.2 86.5 45.0

10-11 98.1 72.7 57.0 99.3 87.6 44.5
12-13 98.4 83.9 55.7 99.2 91.6 37.0

labyrinth, noc = 0 labyrinth, noc = 0.1
2-3 99.7 89.0 97.8 99.5 78.7 86.8
4-5 99.7 77.8 85.5 99.7 88.8 63.0
6-7 99.5 81.4 73.6 99.2 75.8 42.0
8-9 99.3 85.5 67.2 99.0 75.0 34.0

10-11 99.0 85.1 53.8 98.8 82.8 32.3
12-13 98.8 83.2 44.5 98.8 86.8 23.0

(D-SSAC): average scores of the D-SSAC allocations, (Wo.) Worst obtained score
by D-SSAC. The column (Opt.) gives the percentage of experiments where D-SSAC
built an optimal allocation (score = 100%).

2 3 4 5 6 7 8 9 10
n0

5

10

15

20

25

30

35

global average

average of
themaximals

average sum

number of
modification

few obstacles labyrinth

Figure 7. Average numbers of useful iterations per robot (with D-SSAC)
by increasing the number of robots and tasks (n robots and 4n tasks).

probability to fall into a local optima grows. It is particularly
true in the labyrinth environment.

C. Experiments on scalability

A second series of experiments is proposed to validate the
capacity of the Desynchronized Simultaneous Auctions for
Coordination (D-SSAC) protocol to deal with large fleets of
robots. The experiments involve up to n = 10 virtual robots,
an average of 4 tasks per robot (|G| = 4n) and a normalized
opportunity cost fixed to 0.1. An optimal allocation is in a set
of 1040 possible solutions. Figure 5(c) presents experimental
results for 6 robots and 24 tasks in the labyrinth (to show the
allocations, the robot paths drawn represent the movement
done in case of no deviation.)

Using D-SSAC, we count the number of individual mod-
ifications for each robot in the initial coordination phase
and no task allocated yet. Each modification is associated to
policy computations for all the sets built with the new task
assignments and one more or less task. The computations are
followed by the broadcast of the new utilities. A set of 200
experiments with random task positions has been performed
for each considered fleet sizes. Figure 7 presents average
numbers of modifications regarding all the robots and only
the robot with the highest number of modifications.

number of policy
computation steps

SSAC Sequential

|G|
2 4 6 8 10 12 14 16 18 20 22 24

30

5

10

15

20

25

Figure 8. Sequential auctions versus SSAC: number of paralleled policy
computation steps.

It is possible to conclude that few modifications in regard
to the total number of tasks are necessary to converge
to a range-1 locally optimal allocation. This statistically
means that each robot’s D-SSAC process uses a number
of modifications which is proportional to the number of
expected tasks per agent (|G|/n).

D. Comparison with sequential auctions

The third series of experiments aims to compare the effi-
ciency and the convergence speed of SSAC with sequential
auction protocols. The experiments were performed in the
labyrinth environment (Fig. 5(c)) by considering a fleet of
6 robots. The normalized opportunity cost is defined to 0.1
(10% of the theoretical upper bound) in order to encourage,
without forcing, balanced allocations. The number of goals
is increased successively from 2 to 24.

200 simulations have been done for each considered
number of goals by randomly positioning the goal points
of interest in order to compare the allocations built by the 2
protocols. The comparison mainly concerns the number of
iterations and the number of commutations in the allocation.
In fact, in sequential protocol, each iteration does not involve
commutation and policy actualizations.

The comparison between the 2 protocols of the number of
needed policy computation steps requires to count the num-
ber of steps with parallelized policy computations (Fig. 8).
In the sequential protocol, the number of computation steps
matches the number of commutations and involves only 2
robots. In SSAC, this number matches the number of itera-
tions and each iteration involves several commutations at a
time which induces more parallelized policy computations.

Thus (Fig. 8), in these experiments (labyrinth, 6 robots
and between 2 and 24 goals), the number of sequences
of policy computations in SSAC is decreased by 42.9%
comparatively to sequential auctions. It is an important result
since the critical point in distributed coordination process
consists in actualizing the individual policies regarding dif-
ferent sets of parameters.

VI. CONCLUSION
This paper details the Sequential Simultaneous Auctions

for Coordination (SSAC) protocol based on goal-oriented
MDP bids valuation allowing multi-agent coordination in a
distributed way. In order to model uncertain outcomes of
actions, we proposed to use GO-MDPs that allow agents
to compute their expected values regarding possible alloca-
tions. SSAC protocol converges and yields a range-1 optimal
coordination while task and/or resources can be assigned
punctually and separately to agents during “rendez-vous”
phases. The use of this solution is illustrated by the problem
where n robots have to visit a set of points of interest. The
SSAC protocol is extended with a desynchronized protocol
(D-SSAC) more suitable to mobile robot applications.

Experimental results in virtual conditions allow us to con-
clude about the quality of the solutions and the efficiency of
the distributed process. In fact, the computed task allocations
are close to optimal ones in restricted sized problems. The
distributed process seems to be linear, in the computing
resources, when increasing the number of robots and, pro-
portionally, the number of goals. Furthermore, comparative
experiments exhibit the relevance of using simultaneous
auctions rather than sequential auctions in case of costly
distributed policy computations. Experimental results prove
the capability of SSAC to better parallelize the coordination
process by allowing several pairs of agents to improve their
cooperative policies at a time.

Future works aim at studying different frequencies of
coordination phases in exploration missions and aim at
extending the SSAC protocols to cooperation problems
where coordination variable domains are not the agents
themselves. For example, tasks and resources allocation
between robots could depend on common behavior rules
definitions (priorities rules, etc.).

REFERENCES

[1] R. Bellman. A markovian decision process. Journal of
Mathematics and Mechanics, 6:679–684, 1957.

[2] M. Berhault, H. Huang, P. Keskinocak, S. Koenig, W. El-
maghraby, P. Griffin, and A. Kleywegt. Robot exploration
with combinatorial auctions. In International Conference on
Intelligent Robots and Systems, volume 2, pages 1957–1962,
2003.

[3] A. Beynier and A. Mouaddib. An iterative algorithm for
solving constrained decentralized markov decision processes.
In The 31st National Conference on Artificial Intelligence,
pages 1089–1094, 2006.

[4] W. Burgard, M. Moors, C. Stachniss, and F. Schneider.
Coordinated multi-robot exploration. IEEE Transactions on
Robotics, 21, 2005.

[5] J. Capitan, M. T. J. Spaan, L. Merino, and A. Ollero. Decen-
tralized multi-robot cooperation with auctioned pomdps. In
International Conference on Robotics and Automation, pages
3323–3328, 2012.

[6] I. Chades, B. Scherrer, and F. Charpillet. A heuristic approach
for solving decentralized-pomdp: Assessment on the pursuit
problem. In ACM symposium on applied computing, pages
57–62, 2002.

[7] R. Davis and R. G. Smith. Negotiation as a metaphor for
distributed problem solving. Artificial Intelligence, 20:63–
109, 1983.

[8] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz. Market-based
multirobot coordination: A survey and analysis. Proceedings
of the IEEE, 94:1257–1270, 2006.

[9] B. P. Gerkey and M. J. Mataric. Sold!: auction methods
for multirobot coordination. Transactions on Robotics and
Automation, 18, 2002.

[10] B. Kuipers and Y.-T. Byun. A robot exploration and mapping
strategy based on a semantic hierarchy of spatial representa-
tions. Journal of Robotics and Autonomous Systems, 8:47–63,
1991.

[11] G. Lozenguez, L. Adouane, A. Beynier, P. Martinet, and A.-I.
Mouaddib. Map partitioning to approximate an exploration
strategy in mobile robotics. In Advances on Practical Appli-
cations of Agents and Multiagent Systems, volume 88, pages
63–72, 2011.

[12] G. Lozenguez, L. Adouane, A. Beynier, A.-I. Mouaddib, and
P. Martinet. Map partitioning to approximate an exploration
strategy in mobile robotics. Multiagent and Grid Systems,
8:275–288, 2012.

[13] L. Matignon, J. Laurent, and A. Mouaddib. Distributed
value functions for multi-robot exploration. In International
Conference on Robotics and Automation, 2012.

[14] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo. Net-
worked distributed pomdps: A synthesis of distributed con-
straint optimization and pomdps. In National Conference on
Artificial Intelligence, page 7, 2005.

[15] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons, Inc.,
1994.

[16] W. Ren and R. W. Beard. Distributed Consensus in
Multi-vehicle Cooperative Control, Theory and Application.
springer, 2008.

[17] M. H. Rothkopf, A. Pekec, and R. M. Harstad. Computa-
tionally manageable combinational auctions. Management
Science, 44, 1998.

[18] M. T. J. Spaan, N. Goncalves, and J. Sequeira. Multirobot
coordination by auctioning pomdps. In International Confer-
ence on Robotics and Automation, pages 1446–1451, 2010.

[19] C. Tovey, M. Lagoudakis, S. Jain, and S. Koenig. The gen-
eration of bidding rules for auction-based robot coordination.
Multi-Robot Systems. From Swarms to Intelligent Automata,
3:3–14, 2005.

	INTRODUCTION
	BACKGROUND
	Distributed policy computation
	Coordination by tasks allocation

	PROBLEM STATEMENT AND FRAMEWORK
	MULTI-TASK ALLOCATION
	Simultaneous auctions for coordination
	Convergence
	Desynchronization
	Range-m optimality

	EXPERIMENTS
	Topological map and decision making
	Experiments on optimality
	Experiments on scalability
	Comparison with sequential auctions

	CONCLUSION
	References

