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Abstract—When applying service robotic tasks using sensor
based control, a classical exponential decrease of the error
is usually used in the control laws which can reduces the
performance of the executed task. In fact, due to this choice, the
convergence time greatly increases especially at the end of the
process. To ameliorate the performance of such tasks, we present
in this paper two new error regulation strategies to accelerate
the service tasks execution. These propositions are compared
with the classical one in the case of performing autonomous
object’s manipulation tasks using real-time visual servoing. The
Model Based Tracking method is used to apply head servoing
and grasping of different objects using Nao humanoid robot.

I. INTRODUCTION

When applying manipulation tasks, a key issue to be
considered is the study of the interaction between the robot
and its environment. Indeed, the control of the position,
velocity or forces applied on the contact points is essential
to perform the desired tasks. In uncertain environments,
robot’s end-effectors motion may be subject to online
modifications to accommodate unexpected events or to
respond to sensor inputs. When controlling the interaction
between the manipulator and the environment, the desired
task is often specified in the Operational Space and requires
precise control of the end-effector motion, Joint Space
Control schemes are not suitable in these situations. Thus
programming of service and manipulation tasks is most
conveniently accomplished by directly specifying data at the
contact points, rather than specifying the joint positions and
velocities required to achieve them [1].

The use of sensor based control for the robotic service
tasks is very common and was applied in several developments
these last years: different works have been carried out in
teleoperation area, by controlling a robotic system to perform
manipulation tasks at a distance using a multi-modal human-
system interface. It was also applied to bi-manual manipulation
while walking [2], dexterous telemanipulation [3] and in space
teleoperation [4].

Furthermore, many practical learning control systems are
used to control complex robotic systems involving multiple

feedback sensors and multiple command variables during
both repetitive and nonrepetitive operations [5]. The issue
of teaching a robot to manipulate everyday objects through
human demonstration has been studied by [6] who proposed a
method that enables a robot to decompose a demonstrated task
into sequential manipulation primitives, series of sequential
rotations and translations [7].

Among all feedbacks used in sensor based control, the
visual information provides the most important and instant
cues for perception of the interaction with the working
environment. Compared to already mentioned methods, 3D
visual servoing provides very efficient solutions to control
robot motions. It supplies high positioning accuracy, good
robustness to sensor noise and calibration uncertainties, and
reactivity to environment changes [8][9].

In this paper, only Sensor Based Control formalism is
used to perform the desired tasks. More precisely, 3D visual
feedback data and Model Based Tracking (MBT) techniques
are used to execute, in real-time and closed loop, manipulation
tasks on the humanoid mobile robot Nao. The main goal is to
execute these tasks as fast as possible, thus we propose to im-
prove the task performance by using two new error regulation
strategies instead of the classical exponential decrease of the
error. In the second section, we present the used visual servoing
control law and the different error regulations strategies. In
section III, we introduce the case study platform: the Nao
robot and the elementary tasks employed to apply object’s
manipulation. A comparison of the experimental results given
by the proposed strategies is presented in section IV. The final
section discusses conclusions and draws future works.

II. SYSTEM ARCHITECTURE

A. Visual servoing control law

A large variety of positioning or target tracking tasks can
be implemented by controlling from one to all DOF of the
system. Whatever the sensor configuration, which can vary
from one camera mounted on the robot end-effector to several



free-standing cameras, a set of visual features (s) has to be
designed from the visual measurements obtained from the
system configuration x(t) allowing control of the desired DOF.

In the case of a motionless environment, the signal time
derivative (ṡ) is directly related to the sensor velocity screw
(Vc) expressed in the sensor frame:

ṡ = LsVc (1)

where Ls is named the interaction matrix of s. Its analytical
form can be derived for many features coming from
exteroceptive sensors. It depends mainly on the type of
considered sensory data s and on the sensor intrinsic
parameters.

A control law is thus designed so that these features s reach
a desired value s∗, defining a correct realization of the task.
Indeed, in visual servoing, for a desired decrease ė of the error
e = (s− s∗), the camera velocity is considered as input of the
robot controller and given by:

Vc = L+
s ė (2)

where L+
s is the pseudo-inverse of the interaction matrix (for

more details refer to [10]).

Using the kinematic matrix J which relates camera velocity
Vc with robot’s joints velocity (Vc = J q̇), the general control
law used to define a task will be given by:

q̇ = (LsJ)
+ė (3)

B. Error regulation strategies
1) Classical exponential decrease:
When executing service tasks, and especially object’s ma-

nipulation, the main goal is to carry out these tasks precisely
and as fast as possible. Thus to decrease the task error
rapidly and to arrive to an acceptable precision. Classically,
an exponential decrease (4) is used to decrease the error when
applying this control law:

ė = −λ e (4)

with λ a proportional gain that is usually tuned to minimize
the time to convergence.

In this case, the error follows an asymptotic exponential
decrease to zero. But this choice leads to a larger regulation
time (red curve in Fig.1) . Furthermore, this gain should be
tuned to reduce the convergence rate of the main task while
preserving the stability of the system [11] and reducing error
oscillations near convergence.

Moreover, when this classical regulation is applied into
visual servoing tasks, and especially object’s tracking, an
increase of the gain λ may lead to tracking loss due to large
camera velocities, or robot’s joint velocity saturation. To avoid
these issues, a small gain value is generally used to initialize

the tracking and maintained constant till the end of the task.
But in the other hand, this consideration leads to an increase
of the convergence time.

Indeed near convergence, the displacement of the robot’s
camera and control points become smaller, thus a larger gain
may be used to ameliorate task performance. From that, a first
proposal is to increase the value of λ after task initialization.
Note that the gain used initially is optimal for the task
initialization and cannot be increased from the beginning.
Actually the use of a higher value leads to tracking crash and
task failure due to the fast motions.

2) First proposition of error regulation:
The goal is thus to decrease the convergence time of

the control law to apply manipulations tasks rapidly without
loosing the system stability.

Thus we introduced a varying reduction of the error (5)
which acts as an exponential decrease (with a gain λ0) from
initial value (e0) until arriving to a specified threshold (elim)
near the equilibrium where it switches to a faster exponential
decrease of the error (with a gain λ1 > λ0) to carry out the task
as fast as possible and to arrive to the desired precision (einf )
which indicates the task accomplishment (blue curve in Fig.1).

The used decrease of the error is thus given by:

ė =

{
−λ0 e for ‖e‖ ≥ elim
−λ1 e for ‖e‖ < elim

(5)

As presented in Fig.1, this function is continuous and allows
a decrease of the convergence time from tf with the classical
exponential decrease given in (4) to t1 with this method.

Fig. 1: Comparison between the proposed strategies of error
regulation



The improvement in time owned to this method, in function
of the initial (λ0) and final (λ1) exponential gains, initial
values of error e0, desired moment of switching elim and the
desired precision einf , can be calculated theoretically by:

t1
tf

=
λ0

λ1
+

(
1− λ0

λ1

) log
(

e0
elim

)

log
(

e0
einf

) (6)

3) Second proposition of error regulation:
To avoid discontinuity in error regulation velocity and

possible task instability due to the switch from a low gain
value to a higher one, another formulation of the error
regulation can be used to have a smoother curve and to
further decrease the time to convergence.

The formulation given by (7) uses the error norm to increase
the gain value when the error decreases:

ė = −λ e with λ = λ0 + a exp (−b ‖e‖) (7)

where a, b and λ0 are positive constant scalar values.

On the contrary of the classical method where the gain
value is constant during error regulation, in this case the value
of λ begins with a small value, to ensure task initialization
and stability, and then increases when the error norm arrives
near zero. The gain variation for this proposition is illustrated
by the magenta curve in Fig.1.

The representation of the corresponding error regulation
(black curve) shows that the error variation function is
continuous and decreases the convergence time from tf with
the classical exponential decrease to t2 (depending on the
choice of the parameters).

III. TASKS IDENTIFICATION

In this section, we introduce briefly the system architecture
of the Nao robot and we present the generic tasks which are
used in the experimental part to apply object’s manipulation,
and consequently to compare the proposed error regulation
strategies.

A. Nao Architecture
Nao Robot [12], developed by Aldebaran robotics, is a

biped robot with 25 Degrees of Freedom (DOF). It has 3-
fingered robotic hands used for grasping and holding small
objects (it can carry up to 300g using both hands). It is
equipped with: 2 ultrasound devices situated in the chest that
provide space information in 1 meter range distance, 2 cameras
situated on the top and bottom of the head, 2 bumpers (contact
sensors on the robot’s feet), a gyrometer and an accelerometer
(to determine whether the robot is in a stable or unstable
position).

To execute the different tasks, we should define frames on
the robot’s body and environment’s items (see Fig. 2). In Nao’s
body we consider the following frames: Nao’s space frame

Fig. 2: Useful frames in Nao’s environment

Fn (between robot’s feet), Ft on robot’s torso, Fc a camera
attached frame, robot’s hand frame Fh, robot’s gripper frame
Fg and a pre-grasping frame Fpg . In the robot’s environment,
we define the object’s frame Fo.

B. Tracking technique

Many tracking tools have been implemented in several
visual servoing toolboxes. On the Visual Servoing Platform
(ViSP) [13], we find a dot tracker, a moving edges tracker,
and a 3D model-based tracker. The last one [14] provides a
robust solution to track geometrical shapes (lines, cylinders,
ellipsoids, ...) as soon their perspective projection can be
computed. It estimates online the position of a known object
in the camera frame.

This method consists of locally tracking 2D contour points,
and to estimate model’s pose based on a non linear iterative
algorithm using a virtual visual servoing technique. It requires
a 3D model and needs to compute the initial pose which is
used to project the model on the image. The tracking method
assumes that the pose corresponding to the previous image is
known, the new lines are tracked, and the goal is to move the
pose to match the object in the new image with the projection
of the model. The error function (err) between image features
pi and model projection qi is thus minimized along the normal
direction "n (see Fig. 3):

err =
∑

i

∆(pi, qi) =
∑

i

|(qi − pi) · (ni)| (8)

C. Generic Tasks

While Nao is a capable platform; due to the complexity of
the problem to be solved, the capabilities of the robot can be
enhanced and the complexity of the problem can be reduced
by decomposing it in simpler generic tasks:



Fig. 3: Model Based tracking system using the Moving edge
detection.

1) Detection and Tracking Tasks:
Using the MBT technique of ViSP, we initialize the

tracker manually and determine in real-time the pose
(position/orientation) of the desired item to manipulate. An
automatic re-initialization of the tracker is implemented: it
uses the last poses of the tracked object to be reinitialized in
case of a failure due to an occlusion or the fast motions of
the robot’s camera. Thus the model is automatically detected
and tracked; this task allows us to determine instantly the
pose of the desired item frame in the robot camera’s frame in
form of a homogeneous transformation matrix (cMo) .

2) Visibility Task:
This task consists of controlling the robot’s head pose to

focus a (fixed/mobile) point of the environment (item’s center,
gripper, virtual point...) in the center of the camera’s image.
Throughout this application on Nao robot, the visibility task
is used for controlling the orientation of the head to focus the
object’s center in the center of the camera’s image. 2 DOF
are used by this task to control the head’s Yaw and Pitch.
The task’s goal is thus to regulate the horizontal and vertical
position of the center of the object projection sx,y = cTo(x,y)

to zero (s∗ = (0, 0)).

Using the object 3D pose cTo = (X,Y, Z)T , and the 2D
pose (x, y)T of the tracked point (projection of 3D point in
the normal image plane), we apply the control law defined in
(3) using the visual primitive s = (x, y) and its corresponding
interaction matrix Ls given by:

Ls =

[
− 1

Z 0 x
Z xy −(1 + y2) y

0 − 1
Z

y
Z 1 + x2 −xy −x

]
(9)

Note that for this task the kinematic matrix J required
in the control law (3) uses the Jacobian of the robot’s head
control point calculated from the robot’s geometric model.

3) Pre-Grasping and Grasping Tasks:
This task uses the hand’s control point and allows the

robot to move it to a desired static/mobile pose. It can be
used to perform the pre-grasping, grasping, and displacing
objects tasks.

In case of pre-grasping task the goal pose (gMpg) is deter-
mined using the grasping strategies. These strategies depend on
the geometry of the object to manipulate and the geometry of
the robot’s gripper. The grasping strategy controls the relative
position and/or angle between the gripper and the item to grasp
[15].

According to Nao’s gripper’s geometry (of one DOF) and
the item’s shape (rectangular model), 4 DOF are enough to
execute this task: 3 DOF constraints the gripper’s pose and
1 DOF (yaw angle) for the gripper’s orientation. The task’s
target is then to move the robot’s arm to the pre-grasping
pose. The task’s error is extracted from the relative pose
between the gripper and pre-grasping point (gMpg) which is
regulated to zero.

In case of a grasping task, the same technique is
considered and the same number of DOF is constrained as in
the previous case of pre-grasping, except the desired gripper
pose which is changed to the object’s pose. Thus the task’s
error will be extracted from the relative pose between the
gripper and the item gMo which is also regulated to zero [16].

Considering that the visual primitive is parameterized by
s = (t,uθ) where t is the position error between the current
and desired frame, while uθ is the orientation error, decom-
posed as the axis u and angle θ of the rotation between
these two frames. The control law (3) is then applied using
the Jacobian at the robot’s gripper and the corresponding
interaction matrix Ls given by:

Ls =

[
−I3 [t]×
03 Lω

]
(10)

where I3 and 03 are the 3 × 3 identity and zero matrices
respectively, [t]× is the skew symmetric matrix associated
with vector t , and Lω = I3− θ

2 [u]×+
(
1− sinc(θ)

sinc2(θ/2)

)
[u]×

2.

IV. EXPERIMENTAL RESULTS

The presented tasks in the previous section have been
implemented and tested on the Humanoid Nao robot with a
control rate equal to that of the camera (20 Hz). To visualize
the effect of the varying decrease of the error, presented
previously, theses tasks are executed on parallel using the three
propositions of error decrease given in (4), (5) and (7). The
initial conditions and parameters used for each method are
given in Table I.

Experiment photos of the grasping tasks executed by Nao
robot are presented in Fig. 4 and correspond to the tasks
presented in section III-C above. The first one, Fig. 4-a,
shows the item to grasp deposed on the table before launching
the MBT to detect and track it (Fig. 4-b). The visibility
task is used to center the object on the camera’s image, and
simultaneously the pre-grasping task is executed in Fig. 4-c,
where we can identify the different frames on the robot’s arm
and gripper in addition of the object’s frame. Afterwards, the
gripper’s frame approaches the object’s one when executing



Parameters Visibility Pre-Grasping Grasping
Task Task Task

e0 0.3 m 0.25 m 0.005 m
180 deg 15 deg

einf 0.005 m 0.005 m 0.001 m
15 deg 3 deg

elim 0.05 m 0.05 m 0.005 m

λ,λ0 0.02 1.2 1.2

TABLE I: Initial conditions and parameters values

the grasping task (Fig. 4-d). Finally the gripper closes and the
manipulation task is completed (Fig. 4-e-f).

A. Exponential regulation of the error
In this part, we present experimental results using the

control law (3) and the exponential decrease of the error given
by (4). The regulation of the error in each task is presented
in Fig.5a: the first graph represents the horizontal and vertical
position error during the head servoing task (visibility task),
initially the object is on a distance of approximately 300 mm
from the center of the camera’s image, we remark that this
error is successfully regulated exponentially to zero during
almost 29 sec with a precision of 5 mm.

For the 2nd and 3rd graphs, we present the pre-grasping
and grasping tasks errors on X, Y and Z components (in Nao’s
frame), and the Yaw angle of the gripper orientation. During
these tasks, they are regulated exponentially to the desired
precision during 31 sec.

B. First proposition of error regulation
In Fig.5b, we used the control law (3) with the first

proposition of error regulation given by (5) with the same
initial conditions and parameters (Table I). The switching
between the two modes is executed when arriving to elim.
Referring to the error regulation curves, the visibility task is
executed in 21.7 sec and the grasping tasks in 18.6 sec with a
40 % time improvement with respect to the previous method.
This result is a bit different from the theoratical one using
the relation (6) which gives an improvement of 45 % due to
experimental reasons.

Fig. 4: Experiment Photos of tracking and grasping of an item
showing the arm’s, gripper’s and object’s frames

(a) Case of exponential decrease of the error

(b) Case of the first strategy of error regulation

(c) Case of the second strategy of error regulation

Fig. 5: Experimental results for the three methods



Method Visibility Task Pre-Grasping Task Grasping Task

Case (4) 26.3 sec 10.96 sec 17.41 sec

Case (5) 15.56 sec 5.43 sec 9.06 sec
40.1 % 50.4 % 48 %

Case (7) 11.74 sec 6.41 sec 8.26 sec
55.4 % 41.5 % 52.6 %

TABLE II: Average convergence time (in seconds) and im-
provement (in percent) over the classical method

C. Second proposition of error regulation
The control law (3) is used with the second proposition of

error regulation given by (7). Referring to the variation of the
error in each task, presented in Fig.5c, the visibility task is
executed in 11.8 sec with a 59 % time improvement over the
classical one. The pre-grasping and grasping tasks are executed
in 15.1 sec with a 51 % time improvement.

D. Discussion
To ensure the feasibility and efficiency of the proposed error

regulation strategies, and their improvement in convergence
time. The previously presented experiments have been repeated
40 times (for each method) with the same initial conditions and
we calculated the average of the required convergence time in
each case and the improvement over classical one (Results are
represented in Table II).

Referring to the results of the three strategies and the
represented graphs (Fig.5), we remark that the manipulation
task is executed faster with a good improvement of the
convergence time between 40 % and 55 %. Furthermore,
the system is stable after finishing the desired tasks and not
perturbed by the defined varying gains.

By comparing the defined gains for each task, we remarks
that in the first proposition (5) the gain begins with a small
value λ0 than increases to λ1, otherwise in this case (7) the
gain begins with a relatively high value and increases all the
time until stabilizing when arriving to a small error value
(magenta curve in Fig.1). Thus the first method (5) is good
for the visibility task because of the low gain at the beginning
of the tracking but the switch to high gain may leads to some
oscillations when convergence of the grasping task. Otherwise,
a good behavior is remarked near convergence for the second
proposition but it begins with a relatively high gain which may
influence on the tracking initialization due to high camera’s
motion, furthermore parameter tuning is very necessary for
avoiding oscillations or instability.

Furthermore, the represented graphs shows that the MBT
is ensured to be efficient for robot’s tracking and grasping
tasks. These results shows also that this method is robust to
camera occlusion by the robot’s hand, and robust to small
object movements due to hand-object collision.

V. CONCLUSIONS

In this paper, we studied the use of the real-time visual
servoing techniques to perform object’s manipulation tasks.

Indeed, the Model Based Tracking method is used to apply,
in parallel, head servoing and grasping of different objects.
To accomplish the task as fast as possible, two propositions
of error regulation are introduced and compared with the
exponential decrease used in classical control law. Repeated
experiments on the Nao robot have been executed to ensure
the efficiency of the proposed methods.

Future works will concentrate on the extension of these
regulation strategies from the autonomous object grasping to
other service robotic tasks. Moreover, their implementation
on other complex platforms with different objects should be
accomplished to ensure the robustness of this method. For the
experimental part, other sensor’s feedbacks should be used
to improve the manipulation reactivity against dynamic or
unusual changes in the environment, especially after grasping
the object where many occlusions and brutal motions appears.
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