
Manual convoying of automated urban vehicles relying on monocular

vision

P. Avanzini1,3, B. Thuilot1,3 and P. Martinet2,3
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Abstract— This paper deals with platooning navigation in
the context of innovative solutions for urban transportation
systems. More precisely, the case of a manually driven vehicle
leading a convoy of automated ones is considered. Vehicle
localization relies solely on monocular vision: a 3D map of
the environment is built beforehand from reference video
sequences, and then used to derive vehicle absolute location
from the current camera image. The 3D vision map presents
however distortions w.r.t. a metric world, but these latter can be
shown to be locally homogeneous. They can then be accurately
corrected via a 1-dim. function evaluated with a nonlinear
observer relying on odometric data. Next, the platoon reference
trajectory is built as a B-Spline curve extended on-line via
local optimization from the successive locations of the lead
vehicle, and a global decentralized control strategy, supported
by inter-vehicle communication, is designed to achieve accurate
platooning with no oscillation within the convoy. Experimental
results, carried out with two urban vehicles, demonstrate the
capabilities of the proposed approach.

Index Terms— automatic guided vehicles, platooning, nonlin-
ear control, monocular vision, trajectory generation.

I. INTRODUCTION

Reducing congestion in metropolitan areas is a critical

goal to be currently addressed in a sustainable perspective.

When public demand is properly structured, as within inner-

cities or large industrial areas, autonomous electric vehicles

available in free-access constitute an attractive solution. In

such a context, platooning navigation appears as a desirable

additional functionality, since on one hand it can improve

safety and fluidity in the traffic, and on the other hand

it can ease maintenance operations (e.g. to guide a group

of vehicles to some station in one journey). Platooning is

therefore considered in this paper and two points of special

interest are investigated more particularly.

First, a manual navigation mode is considered, that is to

say the lead vehicle is manually driven, defining on-line the

path to be followed by the other vehicles. To deal with

this problem, a first strategy consists in designing lateral

and longitudinal vehicle control laws so that each vehicle

tracks its direct predecessor and/or follower, see e.g. [1],

[2], [3]. However, with such strategies, servoing errors are

necessarily accumulated, leading when the platoon is long to
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unacceptable longitudinal oscillations and a growing lateral

drift between the followers and the original track of the lead

vehicle. To overcome these difficulties, vehicles must share

a common reference trajectory and their localization must be

supplied in a global coordinate system. In [4] and [5], this

problem is tackled by introducing virtual rigid structures.

However, they are not suited to the platoon application

considered here: since some pre-specified geometric patterns

are imposed, followers cannot accurately reproduce the lead

vehicle trajectory. To address specifically this objective, the

trajectory-based strategy proposed in [6] is considered. It is

supported by inter-vehicle communications. The reference

path is created on-line from the successive locations of the

lead vehicle and then lateral and longitudinal control laws are

designed respectively to ensure convergence to this path and

to maintain a pre-specified curvilinear vehicle inter-distance.

Fig. 1. Experimental vehicles: a Cycab leading a RobuCab

The trajectory-based strategy proposed in [6] has been

demonstrated with the experimental vehicles shown in Fig. 1,

equipped with RTK-GPS receivers for absolute localization.

However, cameras are arguably most appropriate sensors

in an urban context, since they are cheap and image pro-

cessing is enriched by the presence of buildings, which

in contrast mask satellite signals used by GPS receivers.

Therefore, the second point addressed here concerns absolute

vehicle localization by monocular vision. In the literature,

visual SLAM can be divided into two main approaches.

The first one relies on recursive statistical techniques [7]

which, though successful on the short term, suffer from error

accumulation on the long term. In order for the vehicles to

be supplied with a reliable localization, a monocular visual

SLAM strategy, relying on a bundle adjustment [8] has been
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investigated in [9] in order to complete accurate automated

platooning (i.e. the lead vehicle was autonomously controlled

with respect to a pre-specified reference trajectory).

The objective of this paper is to extend previous work [6]

and [9] in order to achieve high accuracy manual convoying

relying on monocular vision, i.e. the lead vehicle is this

time freely driven by a human operator. To meet this aim,

the slight distortions in the virtual vision world are first

investigated and a local scale factor function is proposed to

correct them. Next, a methodology is proposed to integrate

this correction, computed along the path used to build

the virtual vision world, to the reference trajectory created

on-line from the lead vehicle successive positions. These

two results ensure that, if a virtual vision world has been

preliminary reconstructed in a set of streets, then a platoon

can be manually driven freely within these streets, relying

only on monocular vision, with performances similar to those

achieved with an RTK GPS.

II. OVERVIEW OF THE PLATOONING STRATEGY

The proposed platooning strategy can be divided into

7 modules: a map of the urban environment is built be-

forehand via an off-line procedure, see module 1 below. A

manually driven vehicle (named lead vehicle or vehicle 1)

is then able to share on-line its trajectory with n − 1 fully

automated vehicles (named followers) so that these latter

can accurately repeat the lead vehicle trajectory with pre-

specified inter-distances. The module architecture for the lead

vehicle and for the followers is described respectively in

Fig. 2 and Fig. 3 and sketched in the sequel.

1. Map reconstruction During a preliminary step, a

vehicle is manually driven within the urban environment and

a video sequence as well as proprioceptive information are

jointly recorded with a single camera and odometers. From

the video sequence, a 3D reconstruction of the environment

in the vicinity of the vehicle trajectory is then computed

using a method relying on bundle adjustment, see [8],

and stored in an appropriate database. The reconstructed

trajectory, thereafter called original trajectory and denoted

Γ⋆, is however defined in a non-metric virtual vision world

and presents therefore distortions. An accurate localization

in a metric world can nevertheless be achieved, by using

corrections inferred from a non-linear observer that relies on

odometric data. More details can be found in [9].

2. Local perception During the platooning operation,

each vehicle can infer on-line its location in the virtual vision

world from the data supplied by its camera and the 3D map

built in module 1. Namely, (Ov
i , θv

i ) is supplied on-line:

- Ov
i : coordinates of the center of the rear axle of

the ith vehicle, expressed in the vision world,

- θv
i : heading of the ith vehicle in the vision world.

These data are supplemented with proprioceptive ones:

- vi: linear velocity of the ith vehicle at point Oi

- δi: front wheel steering angle of the ith vehicle.

Details and localization performances can be found in [8].

3. Trajectory creation In order to serve as an objective

for the followers, the successive localization data Ov
1 of
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Fig. 2. Platoon architecture : lead vehicle

the lead vehicle are converted into a smooth trajectory Γv

(named as reference trajectory in the sequel), extended on-

line via repeated local optimizations of B-Spline curves.

Such an approach had been introduced in [6], but the main

exteroceptive sensor was a RTK-GPS. The validation of

this trajectory creation procedure when the localization is

supplied in a non-metric and distorted vision world is the

first contribution of this paper, detailed in Section III-C and

investigated further in Section V-.1.

- new Γ
v control points

Reception

Emission

Communication4.

- Ov

1
, θv

1
, v1, δ1

- Ov

i−1
, θv

i−1
, vi−1, δi−1

- Ov

i
, θv

i
, vi, δi

5.
Platoon state

evaluation

- sv

i
, yv

i
, θ̃v

i

- sv

i−1
, yv

i−1
, θ̃v

i−1

- sv

1
, yv

1
, θ̃v

1

Low level

- motor and
steering actuators

High level

-nonlinear lateral and
longitudinal control laws

Control7.

rangefinder

laserObstacle

detection

Local perception2.

original trajectory Γ⋆

Map reconstruction1.

Γ⋆ correction
sequence

video

off-line processing

odometry

Correction

integration
6.

- si, yi, θ̃i

- s1, y1, θ̃1

- si−1, yi−1, θ̃i−1

on-line processing

- vi, δi

- Ov

i
, θv

i

& odometry

monocular

vision

Fig. 3. Platoon architecture : ith vehicle

4. Communication During platooning operation, on one

hand the lead vehicle transmits the updated control points

defining the B-Spline curve Γv to the followers, and on

the other hand these latter receive the local perception data

from both the lead vehicle and the preceding one, as well as

transmit their own local perception data to their immediate

follower, so that the global decentralized control strategy

discussed in Section I can be implemented.

5. Platoon state evaluation Any data obtained asyn-

chronously from the vehicle own sensors is timestamped.

Moreover, a NTP client ensures that all the vehicles that are

exchanging timestamped data via wireless communication

share the same time reference. Consequently, an actualization
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procedure ensuring the temporal consistency of all data can

be run: at each control sample time on a given vehicle,

all data are updated to that instant by simulating vehicle

kinematic models on short time horizons. Finally the platoon

state variables required in the global decentralized control

strategy are evaluated in the virtual vision world. For the ith

vehicle, these variables are related to the lead vehicle, the

preceding and the current one:

- sv
k∈{1,i−1,i} : vehicle arc-length coordinate along Γv ,

- yv
k∈{1,i−1,i} and θ̃v

k∈{1,i−1,i}: vehicle lateral and angular

deviations with respect to. Γv.

6. Correction integration In order to ensure high accu-

racy platooning, platoon state variables have next to be ex-

pressed in metric world. Proper integration of the corrections,

computed in module 1 along reference trajectory Γv, is the

second contribution of this paper, presented in Section IV-

B and demonstrated in Sections V-.2 and V-.3. For the ith

vehicle, this supplies variables sk∈{1,i−1,i}, yk∈{1,i−1,i} and

θ̃k∈{1,i−1,i} expressed in metric world.

7. Control Relying on nonlinear control techniques,

vehicle lateral and longitudinal control can be decoupled

in an exact way: lateral control for the ith vehicle is then

designed to ensure the convergence of yi and θ̃i to zero, when

in the nominal case longitudinal control is independently

designed to regulate s1 − si, i.e. the gap between the ith

vehicle and the lead one. Since each vehicle within the

platoon is controlled with respect to common references

(trajectory Γv for lateral control, lead vehicle arc-length s1

for longitudinal control), the whole platoon can be guided

without any error accumulation, so that high performances

can be achieved. Nevertheless, for obvious safety reasons, if

the preceding vehicle is abnormally close, the longitudinal

control law is then smoothly modified to regulate si−1 − si,

i.e. the gap to the preceding vehicle. And if an obstacle was

detected by the vehicle laser rangefinder, then longitudinal

control would be overridden to avoid any collision risk.

More details on control strategy, as well as performance

analysis with respect to experiment reports involving up to

four vehicles, are supplied in [6].

III. PRECISE LOCALIZATION FROM MONOCULAR VISION

Since the 3D reconstruction of the environment achieved

in module 1 relies solely on monocular vision, the scale of

the resulting virtual vision world is not properly defined. As

a first step, this world can be roughly scaled by introducing

a global scale factor inferred from the comparison between

the total covered distance supplied by the vehicle odometers

and the same quantity evaluated from vision algorithm.

However slight local distortions can still be noticed, so that

a localization accurate to within few centimeters, as required

for control purpose, cannot alas be guaranteed. The distortion

phenomenon is first highlighted in Section III-A. Next, the

approach proposed in [9] to correct these distortions when

the vehicle is in the vicinity of the original trajectory Γ⋆

is recalled in Section III-B. Finally, it is demonstrated in

Section III-C that distortions can be handled in the same way

even when vehicles are few meters apart from Γ⋆, making

it possible to consider manual convoying within the urban

environment reconstructed in module 1.

A. Distortion in the virtual vision world

The distortion phenomenon is illustrated in Fig.4, compar-

ing trajectories recorded from an RTK-GPS receiver and a

calibrated camera. Despite global scale factor correction, it

clearly appears that the two trajectories do not properly fit.
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Fig. 4. Error in arc-length distance estimation with vision

To investigate distortions further, the main plot in Fig.4

shows the difference between the covered arc-length dis-

tances computed from monocular vision and from RTK-

GPS data. It can be noticed that the distortion between the

two worlds is largely varying, since the difference comes

up to 3.25m in the mid-part of the trajectory. The vehicle

inter-distances evaluated in the vision world are therefore

inaccurate, so that high precision longitudinal control cannot

be achieved if local distortions are not taken into account.

The situation is different when lateral control is considered:

since the sign of yv
i and θ̃v

i is always correct, distortions

reflect as control gain variations, but lateral control objectives

are still accurately achieved.

B. Accurate localization along the original trajectory Γ⋆

In previous work [9], lateral guidance along the original

trajectory Γ⋆ has been carried out with several vehicles,

different cameras and light conditions. It has then been

shown that the distortions in the evaluation of the vehicle

arc-length coordinate are definitely repeatable. Consequently,

a nonlinear observer fed by vehicle odometric data has been

designed to estimate a local scale factor function λ⋆(sv
i )

attached tangentially to Γ⋆. Accurate arc-length coordinate

can then be evaluated on-line as follows:

si =

∫ τ(sv

i
)

0

λ⋆(τ)

∣

∣

∣

∣

∣

∣

∣

∣

∂Γ⋆

∂τ
(τ)

∣

∣

∣

∣

∣

∣

∣

∣

d τ (1)

where τ(sv
i ) is the parameter value of the 2D-curve Γ⋆(τ) at

the arc-length coordinate sv
i , and high accuracy longitudinal

control has been demonstrated when the platoon follows a

lead vehicle guided (in an automated mode) along Γ⋆ .

C. Toward accurate localization along an alternative refer-

ence trajectory Γv

When manual convoying is considered, arc-length coordi-

nates are no longer computed along the original trajectory Γ⋆,

but along the reference trajectory Γv created on-line by the

lead vehicle. It is shown below that distortions are locally

homogeneous, so that the local scale factor function λ⋆(sv
i )

introduced above can still be used to supply relevant inter-

vehicle distances. More precisely, distortions tangentially and
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perpendicularly to the original trajectory Γ⋆ are investigated

here. An experimental study was quite uneasy since it would

have demanded for a large navigation area and for complex

devices to ensure temporal consistency between the data

obtained from several lateral guidance experiments at related

distances from Γ⋆. For these reasons, the analysis has been

conducted from simulations. The motion of a camera has

been emulated in an environment consisting of textured

blocks. The 3D reconstruction, shown in Fig.5 part c), has

been obtained from a sequence recorded when the camera

is moving in the middle of the track for four successive

rounds. The distortions are attested by the spiral shape of

the trajectory. Localization with respect to this trajectory has

then been computed from images recorded on sequences off-

centered by 4m on each side of the track, as presented on

parts a) and b). The simple shape of the trajectory allows to

adjust the camera speed and measurement intervals so that

the images acquired on the off-centered trajectories can be

matched temporally.a) b) c)

Fig. 5. a) and b) Images obtained resp. left and right w.r.t. the initial track,
c) 3D reconstruction of the simulated circular environment.

The lateral component of the distortion (measured between

off-centered sequences) and the tangential one (measured

between two adjacent images in the same sequence) are

plotted in the left part in Fig.6. It can be noticed that

lateral and tangential components are similarly distorted

(a linear profile is here observed because of the circular

shape of the trajectory). This local homogeneity property

ensures that the distances evaluated in the vision world can

be corrected with solely a 1-dimensional function attached

to Γ⋆. Consequently, provided that the local scale factor

function λ⋆(sv
i ) computed during the 3D map reconstruction

is properly integrated, the arc-length distance along any

alternative trajectory Γv, as well as any other vehicle variable

(just as the reference trajectory curvature (required in control

laws) shown in the right part in Fig.6) can be accurately

evaluated on-line, enabling high performance platooning.
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IV. TRAJECTORY GENERATION

Platoon state variables are expressed with respect to the

reference trajectory Γv, which must be at least C2 since

the reference path curvature is required in control laws. To

meet this requirement, it is here proposed to describe Γv

as B-Spline curves, inferred from the set Ω of successive

absolute localizations of the lead vehicle and evaluated in the

virtual vision world. Since Γv must be as close as possible

to the actual lead vehicle trajectory, the extension procedure

is viewed as an optimization problem. The difficulty lies in

extending Γv without modifying what had been previously

built, in order for any variable (sv
i , yv

i , θ̃v
i , etc.) to keep

consistent values although Γv is being extended. In previous

work [6], this problem has been addressed when vehicle

localization data were supplied by an RTK-GPS receiver.

The proposed B-Spline extension process is first recalled

and the way it can be extended in order to deal with vehicle

localization obtained from monocular vision is then detailed.

A. B-Spline optimization

B-Spline curves consist in the concatenation of 2-dim.

polynomial curves Qi(t) = (Qi
x(t) , Qi

y(t) ), with t ∈ [0, 1].

Each polynomial Qi(t) is a linear combination of basis

polynomials {bj(t)}(0≤j≤d) whose degree d and coefficients

are selected to satisfy continuity constraints. The ith B-

Spline curve Qi(t) can then be expressed as:

Qi(t) =
(

b0(t) . . . bd(t)
)







P i
x P i

y
...

...

P i+d
x P i+d

y






(2)

The coefficients (P k
x , P k

y )(i≤k≤i+d) constitute the so-called

control points, that shape the B-Spline curve Qi(t). Approxi-

mating raw data Ω consists then in finding optimal values for

(P k
x , P k

y ), such that each B-Spline Qi(t) fits at best with the

raw trajectory Ω. In order to limit the modifications on the

trajectory previously built and bound the computing time,

only the most recent polynomials Qi(t) are here updated

when a new localization data is available. More precisely,

let nac (as active curves) be the number of polynomials Qi(t)
entering into the optimization process, see Fig. 7. In order

to freely shape nac polynomials, nap = nac + d control

points (with nap as active points) should be adjusted. The

drawback of such a choice is that nac+d polynomials would

then be altered by the update on these control points, when

the optimization criterion considers only nac polynomials.

The fitting performance on the d polynomials disregarded

in the optimization could then be damaged. In contrast, if

only nap = nac control points are adjusted, then only the

nac polynomials in the optimization criterion are updated,

but optimal fitting might not be reached since d control

points are missing to freely shape these polynomials. The

best compromise on nac and nap values has been discussed

in [6] via extensive numerical simulations.

: modified curves

: fixed curves

: active curves
assiciated with Ω

: active points
: fixed points

: raw localization data

Qn−nac+1

Qn−nac+2

Qn

P n+dP 2
P 1

P 3

Qn−nap+1

Ω

Fig. 7. B-Spline creation process with d = 3, nac = 3, nap = 4

Reference trajectory Γv is therefore built incrementally

by considering a sliding optimization window on the latest

localization data of the lead vehicle. Thus, when a new

position Ov
1 is available, it is incorporated to Ω. When the

arc-length value along the last polynomial Qn(t) is beyond a

given threshold, the subset of Ω associated with Qn−nac+1(t)
is removed from the optimization criterion and a new control
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point is added to the trajectory representation, introducing a

new polynomial Qn+1(t).

B. Integration of local scale factor corrections

Since the reference trajectory Γv is expressed in the vision

world, the local scale factor function λ⋆(sv
1), computed off-

line during the preliminary reconstruction step (module 1),

has to be properly integrated on Γv . At each step of the on-

line extension procedure, it has to be incorporated on the last

nap polynomials of Γv modified at this step. Since distortions

have been shown to be locally homogeneous, the local scale

factor value at any point P on Γv is chosen as the one active

at point P ′, defined as the projection of P on Γ⋆.

b)a)

Fig. 8. a) image a short instant before the vehicle avoidance, b) vehicle
representation in the 3D reconstruction

The integration of the local scale factors is illustrated

in Fig.8 during the avoidance experiment described further

in Section V. More precisely, the lead vehicle1 is avoiding

another one stopped on the traffic lane previously followed

to record Γ⋆. The red line represents Γ⋆, when blue line

and points are respectively the active B-Spline curves of Γv

and their control points. The orange line describes the local

scale factor correspondence between the current lead vehicle

trajectory captured by Γv and the original trajectory Γ⋆.

V. EXPERIMENTAL RESULTS

In order to investigate the capabilities of the proposed

approach, several experiments have been carried out in

Clermont-Ferrand at the “PAVIN Site”, an open platform

devoted to urban transportation system evaluation. The ex-

perimental vehicles are shown in Fig. 1. They are electric

vehicles, powered by lead-acid batteries providing 2 hours

autonomy. Two (resp. four) passengers can travel aboard the

Cycab (resp. the RobuCab). Their small dimensions (length

1.90m, width 1.20m) and their maximum speed (5m.s−1)

are appropriate for urban environments. Vehicle localization

algorithms and platoon control laws are implemented in C++

language on Pentium based computers using RTAI-Linux

OS. The cameras supply visual data at a sampling frequency

between 7 and 15Hz, according to the luminosity. The inter-

vehicle communication is ensured via WiFi technology. Since

the data of each vehicle are transmitted as soon as the

localization step is completed, the communication frequency

is similar to the camera one. Finally, each vehicle is also

equipped with an RTK-GPS receiver, devoted exclusively to

performance analysis: its information are not used to control

the vehicles.

1see also the video :
http://www.irccyn.ec-nantes.fr/∼martinet/PierreAvanzini/video lr.mp4

The experiments have been carried out with two vehicles.

The 3D reconstruction of the environment supplied to each

vehicle has been built from the 170m-long trajectory shown

in Fig. 9. Manual convoying has then been achieved, at a

constant velocity of 1m.s−1, according to three scenarii:

➀ close to the original trajectory Γ⋆,

➁ off-centered of 1m from Γ⋆,

➂ close to Γ⋆, excepted to avoid a static vehicle (see Fig.8).

2 3

Fig. 9. Original trajectory and scenarii

1) Relevance of the corrections provided on Γv: For

evaluation purpose, the actual local scale factors along Γ⋆

and Γv have been computed a posteriori, by comparing the

arc-length distances obtained by monocular vision with the

ones supplied by the RTK-GPS receiver. More precisely,

experimental results of scenario ➂ have been used and local

scale factors have been evaluated on successive 2m-long

segments. First, it can be observed that the profiles of the

two sets of local scale factors, shown in Fig. 10, are very

similar: the local homogeneity property of the distortions in

the vision world, supported by simulations in Section III, is

therefore corroborated experimentally.
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Next, the relevance of the local scale factors attached

to Γv , computed on-line during scenario ➂, is investigated:

arc-length distances along parts of Γv of different sizes (6m,

10m and 30m) have been computed from raw vision data

and when local scale factors computed on-line are used.

Their average and maximum errors with respect to the actual

arc-length distances evaluated a posteriori with the RTK-

GPS sensor are compared in Fig. 11. The distances directly

deduced from raw vision data are largely erroneous and their

magnitude grows when the trajectory parts are longer. In

contrast, when the corrections computed on-line are used,

the average error is definitely smaller and no longer diverges

when the trajectory parts are longer. The approach proposed

to take distortions into account appears therefore relevant,

even when long platoons are considered.

part length average error (m) maximum error (m)
along Γv raw corrected raw corrected

(m) vision vision vision vision

6 0.2190 0.0625 0.4792 0.1618

10 0.3391 0.0828 0.7378 0.2112

30 0.7807 0.1366 2.12 0.2257

Fig. 11. Quality of corrections provided along Γv

2) Relevance of the Γv creation procedure: The tra-

jectories created on-line during scenarii ➀, ➁ and ➂ are

investigated in Fig. 12 with respect to two criteria. For

comparison purpose, the same quantities are also computed
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when an RTK-GPS receiver is used to create on-line the

reference trajectory in scenario ➁. First, the average euclid-

ian distance between the raw data (i.e. measured vehicle

locations, obtained from the camera or the RTK-GPS sensor)

and their projection on the proposed reference trajectory

shows that the trajectories created with a vision sensor are

very satisfactory: they describe the actual trajectory of the

lead vehicle to within 2cm, so that single-trace platooning

can actually be achieved. Moreover, this result is very close

to what can be obtained when relying on an RTK-GPS.

Next, Fig. 12 displays also the average absolute variations

in distance, in direction and in curvature between reference

trajectories Γv generated at two successive iterations of the

extension procedure. It can be noticed that they are all in

the same range whatever the scenario and the localization

sensor considered. Their quite small magnitudes demonstrate

that Γv is smoothly extended, so that all variables required

in platooning control laws (sv
i , yv

i , θ̃v
i , . . .) keep consistent

values although one extremity of Γv is moving.

average average absolute variations in
error distance direction curvature

(m) (m) (rad) (m−1)

vision ➀ 0.0165 0.0059 0.0119 0.0180

➁ 0.0173 0.0056 0.0102 0.0165

➂ 0.0172 0.0061 0.0123 0.0183

RTK-GPS 0.0089 0.0041 0.0141 0.0128

Fig. 12. Quality of the trajectory Γv generated on-line

3) Navigation performances: Accuracy of platooning

control laws are eventually discussed. More precisely, lateral

and longitudinal errors recorded from RTK-GPS measure-

ments during scenario ➂ are plotted respectively in Fig. 13

and 14. Navigation performances are however similar in the

other experiments.
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Fig. 13. follower lateral deviation
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Fig. 14. longitudinal error

The lateral deviation of vehicle 2 remains mainly within

±10cm from the leader trajectory, even during the avoidance

maneuver, and does not exceed 17cm during the last sinuous

part of the path, see Fig. 13. Lateral guidance is therefore

as satisfactory as in previous work [6], although manual

convoying is here achieved relying on monocular vision

instead of RTK-GPS measurements.

Inter-distance errors shown in Fig. 14 demonstrate that

longitudinal control is also as accurate as previously in [6]

or [9]. The local scale factors have been properly integrated

into the on-line trajectory creation, so that the longitudinal

error satisfactorily remains within ±10cm. In contrast, the

inter-distance error computed from raw vision data, shown

in green in Fig. 14, is largely erroneous: it exceeds 50cm.

This demonstrates clearly the relevance of the local scale

factors, even during the avoidance maneuver when vehicles

are off-centered of 1.50m from the original trajectory Γ⋆.

VI. CONCLUSION AND FUTURE WORK

In this paper, manual convoying of urban vehicles has been

investigated, when vehicle absolute localization is derived

solely from monocular vision. The localization thus obtained

is expressed in a virtual vision world slightly distorted with

respect to the actual metric one. However, some properties

of the distortions have been pointed out, and it has then

been shown that accurate platooning can nevertheless be

achieved if local scale factors are supplied. These corrections

are obtained using a nonlinear observer relying only on

odometric data, and can be properly integrated within the

on-line extension of the reference trajectory, described as

B-Spline curves. A certain freedom within the navigation

space is then available, in the sense that it is possible to

manually drive the platoon without being closely fastened

to the trajectory used in the preliminary reconstruction

step. Full scale experiments, carried out with two vehicles,

have finally demonstrated the efficiency of the proposed

approach. Current work is interested in on-line 3D vision

world reconstruction, relying on a local bundle adjustment

as proposed in [10]. It would then permit to manually convoy

a platoon along any route, without requiring a preliminary

reconstructed step.
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