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Abstract:Autonomous navigation using a single camera is a challenging and active field of

research. Among the different approaches, visual memory-based navigation strategies

have gained increasing interests in the last few years. They consist of representing

the mobile robot environment with visual features topologically organized gathered

in a database (visual memory). Basically, the navigation process from a visual memory

can be split in three stages: (1) visual memory acquisition, (2) initial localization,

and (3) path planning and following (refer to > Fig. 53.1). Importantly, this frame work

allows accurate autonomous navigation without using explicitly a loop closure strategy.

The goal of this chapter is to provide to the reader an illustrative example of such

a strategy.
1 Overview

Visual memory-based topological navigation refers to the use of prerecorded and

topologically organized 2D image data to drive a robot along a learned trajectory. It relies

on techniques inspired from visual servo controls. A major advantage of visual servo

control is that absolute geometrical localization of the robot is not required to achieve

positioning tasks and thus that drift errors are not propagated along the robot trajectory.

However, the use of visual servo control in the field of autonomous navigation faces two

major problems: (1) the robot is prone to large displacements which implies that current

visual data cannot necessarily be matched with the reference data; (2) conventional visual

servo controls make the assumption that a diffeomorphism between the image space and

the robot’s configuration space exists. Due to the nonholomic constraints of most of

wheeled mobile robots, under the condition of rolling without slipping, such a

diffeomorphism does not exist if the camera is rigidly fixed to the robot. A potential

solution to the first of these two problems is to exploit a suitable environment represen-

tation (called visual memory in the sequel) allowing a description of the navigation task

as a set of subgoals specified in the observation space. The second problem is often

circumvented by providing extra degrees of freedom to the visual sensor. The goal

of this chapter is to provide a complete and illustrative framework allowing visual

memory-based navigation of non-holonomic wheeled mobile robots without adding

extra DoFs to the camera.

The authors of (DeSouza and Kak 2002) account for 20 years of work at the intersec-

tion between the robotics and computer vision communities. In many works, as in

(Hayet et al. 2002), computer vision techniques are used in a landmark-based framework.

Identifying extracted landmarks with known reference points allows to update the results

of the localization algorithm. These methods are based on some knowledge about the

environment, such as a given 3D model or a map built online. They generally rely on

a complete or partial 3D reconstruction of the observed environment through the analysis

of data collected from disparate sensors. The vehicle can thus be localized in an absolute

reference frame. Both motion planning and vehicle control can then be designed in this

space. The results obtained by the authors of (Royer et al. 2007) leave to be forecasted that
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such a framework will be reachable using a single camera. However, although an accurate

global localization is unquestionably useful, the aim of this chapter is to present an

alternative to build a complete vision-based framework without recovering the position

of the vehicle with respect to a reference frame.

Visual memory-based navigation approaches have gained increasing interest in the last

few years. They consist of representing the mobile robot environment with visual features

gathered in a database (visual memory). Basically, the navigation process from a visual

memory can be split in three stages: (1) visual memory acquisition, (2) initial localization,

and (3) path following (refer to > Fig. 53.1). In the first stage, a sequence of images is

acquired, generally during a supervised step, and the robot’s internal representation of

the environment is built. Basically, three classes of internal representation can be

distinguished (DeSouza and Kak 2002): map-less representation, topological and metrical

maps. In (Matsumoto et al. 1996), a sequence of images, called view-sequenced route

reference, is stored in the robot’s brain for future navigation tasks. Such an approach is

ranked among map-less as any notion of map or topology of the environment appears,

neither to build the reference set of images, nor for the automatic guidance of the mobile

robot. More classically, the visual memory is represented by a topological or a metrical
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map. In the first case, the nodes of the topological graph represent generally distinctive

places while the edges denote connectivity between the places. In metrical maps, the visual

memory consists more often of an accurate and consistent 3D representation of the

environment. Structure-from-Motion (SfM; Nistér 2004; Royer et al. 2007) and Visual

Simultaneous Localization and Mapping (V-SLAM; Lemaire et al. 2007) techniques can

be used to build this representation. The SfM problem consists of retrieving the structure

of the scene and the motion of the camera using the relation between the views and

the correspondences between the features. The number of images of the video sequence

initially acquired may be very large and the camera displacement between two views

(baseline) is however often limited which makes the computation of matching tensors

(such as the fundamental matrix) ill conditioned. A solution to decrease this problem is

to select a subset of images (key frames). Many ways to choose those key images have been

proposed (Torr 2002; Pollefeys et al. 2004; Thormählen et al. 2004), balancing the baseline

and the number of matched points. Once the key images are chosen, these views, image

points, and matched keypoints between successive images can be added to the visual

memory. The whole structure of the environment may be built afterward using sequential

SfM. Two or three views are usually used to retrieve a first seed 3D structure (Pollefeys

et al. 2004; Nistér 2004). Key frames are then sequentially added, computing the pose of

each new camera using the previously estimated 3D points (resection step). Subsequently,

the 3D structure is updated by triangulating the 3D points conveyed by the new view. Both

structure and motion are optimized using global (as in Triggs et al. 2000) or local (as in

Mouragnon et al. 2009) bundle adjustment. The output of this learning process is a

3D reconstruction of the scene which contains the pose of the camera for each key image

and a set of 3D points associated with interest points. The SLAM problem consists of the

estimation of the observed environment feature location (mapping) and of the robot’s

pose (localization), two problems intimately tied together. Stochastic approaches have

proved to solve the SLAM problem in a consistent way because they explicitly deal

with sensor noise. A feature-based SLAM approach generally encompasses four basic

functionalities: feature selection, relative measures estimation, data association, and

estimation. In V-SLAM, the observed features can be for instance interest points detected

in the images and data association performed by a feature matching process. Filters

like the Extended Kalman Filter are then used to estimate both the localization of the

robot and the 3D position of features on the environment. The second stage of

the navigation process (initial localization) consists of finding the position of the robot

in its internal representation of the environment using the current image acquired by the

embedded camera. It can rely on image matching and/or on the matching of features

extracted from the current image and images stored in the visual memory. Once the robot

is localized and a target is specified in its internal representation of the environment, the

next stage (navigation) consists first in planning the robot’s mission and second to

perform it autonomously. In the sequel, this chapter will focus on navigation strategies

where key images are stored in the visual memory and are used as references during the

online steps.
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2 Environment Representation

In (DeSouza and Kak 2002), approaches using a ‘‘memorization’’ of images of the

environment acquired with an embedded camera are ranked among map-less navigation

systems. As proposed in (Matsumoto et al. 1996) or (Jones et al. 1997), neither notion of

mapping nor topology of the environment appears, in building the reference set of images,

nor for the automatic guidance of the vehicle. The first step in vision-based topological

navigation strategies consists of a learning stage to build the visual memory.
2.1 Visual Memory Structure

The environment is supposed to contain a set of 3D features {Ql | l = 1, 2,. . .n}.

The observation (or projection) of a 3D feature Ql in an image I ia is a visual feature

noted P�
l (refer to > Fig. 53.2). It is assumed that visual features can be located/detected

from images and that they are described by feature vectors. Two features Pi1
l1
and Pi2

l2
from

two images Ii1 and Ii2 are said to bematched or in correspondence if they are supposed to be

the projections of a same 3D feature (i.e., l1 = l2).
2.1.1 Visual Memory

The visual memory of the robot can store different features. In this chapter, the concept of

visual memory is illustrated assuming that the following 2D features are stored:

(a) nVM key images {Ii | i = {1, 2,. . ., nVM}} extracted from a video sequence

(b) For each key image Ii, a set Pi of ni descriptive image features

Pi ¼ Pi
lj
jj ¼ f1; 2; . . . ; nig; lj 2 f1; 2; . . . ng

n o
(c) A set of links between adjacent places I ia ; I ib

� �
; ðia; ibÞ 2 f1; 2; . . . ; nVMg2; ia 6¼ ib

� �
2.1.2 Visual Paths

A visual path Cp is a weighted directed graph composed of n successive key images

(vertices):

Cp ¼ I p
i ji 2 f1; 2; . . . ; ng� �

For control purpose (refer to > Sect. 4), the authorized motions during the learning
stage are assumed to be limited to those of a car-like vehicle, which only goes forward. The

following Hypothesis 1 formalizes these constraints.

Hypothesis 1: Given two frames RF i and
RF iþ1, respectively associated to the vehicle

when two successive key images Ii and Ii+1 of a visual pathCwere acquired, there exists an
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admissible path c from RF i to
RF iþ1 for a car-like vehicle whose turn radius is bounded,

and which only moves forward.

Moreover, because the controller is assumed vision based, the vehicle is controllable

from Ii to Ii+1 only if the hereunder Hypothesis 2 is respected.

Hypothesis 2: Two successive key images Ii and Ii+1 contain a set Pi of matched visual

features, which can be observed along a path performed between RF i and
RF iþ1 and

which allows the computation of the control law.

In the sequel, this chapter is illustrated using interest points as visual features. During

the acquisition of a visual path, the Hypothesis 2 constrains the choice of the key images.

As a consequence of Hypothesis 1 and 2, each visual path Cp corresponds to an oriented

edge which connects two configurations of the vehicle’s workspace. The weight of a visual

path can be defined for instance as its cardinal.
2.1.3 Visual Memory Vertices

In order to connect two visual paths, the terminal extremity of one of them and the initial

extremity of the other one must be constrained as two consecutive key images of

a visual path. The paths are then connected by a vertex, and two adjacent vertices of the

visual memory are connected by a visual path.
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Proposition 1: Given two visual paths Cp1 ¼ I p1
i ji 2 f1; 2; . . . ; n1g

n o
and

Cp2 ¼ I p2
i ji 2 f1; 2; . . . ; n2g

n o
, if the two key images I p1

n1
and I p2

1 abide by both

Hypothesis 1 and 2, then a vertex connects Cp1 to Cp2 .
2.1.4 A Connected Multigraph of Weighted Directed Graphs

According to > Sects. 2.1.2 and > 2.1.3, the visual memory structure is a multigraph in

which vertices are key images linked by edges which are the visual paths (directed graphs).

Note that more than one visual path may be incident to a node. It is yet necessary that this

multigraph is strongly connected. This condition guarantees that any vertex of the visual

memory is attainable from every other, through a set of visual path.
2.2 Visual Route

Avisual route describes the vehicle’s mission in the sensor space. Given two key images of

the visual memory I�
s and Ig, corresponding respectively to the starting and goal locations

of the vehicle in the memory, a visual route is a set of key images which describes a path

from I�
s to Ig, as presented in > Fig. 53.3. I�

s is the closest key image to the current

image Is. The image I�
s is extracted from the visual memory during a localization step.

The visual route can be chosen for instance as the minimum length path of the visual

memory connecting two vertices associated to I�
s and Ig. According to the definition of the
Starting image

X

psi1

psi2psi3

psi1p

Ending image

. Fig. 53.3

The tasks consists of navigating from the starting to the ending images. With this aim,

a visual route X ¼ C10 �C2 �C30 connecting these two images is defined
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value of a visual path, the length of a path is the sum of the values of its arcs. Consequently,

the visual route results from the concatenation of indexed visual paths. Given two visual

paths Cp1 and Cp2 , respectively containing n1 and n2 indexed key images, the concatena-

tion operation of Cp1 and Cp2 is defined as follows:

Cp1 �Cp2 ¼ I p1;2
j jj ¼ f1; . . . ; n1; n1 þ 1; . . . ; n1 þ n2g

n o

I p1;2
j ¼

I p1
j if j � n1

I p2
j�n1

if n1 < j � n1 þ n2

8<
:

2.3 Key Images Selection

A central clue for implementation of this framework relies on efficient point matching.

It allows key image selection during the learning stage, of course it is also useful during

autonomous navigation in order to provide the necessary input for state estimation.

A simple but efficient solution to this issue is given in (Royer et al. 2007) and was

successfully applied for the metric localization of autonomous vehicles in outdoor

environment. Interest points are detected in each image with Harris corner detector

(Harris and Stephens 1988). For an interest point P1 at coordinates (x y) in image Ii,

a search region in image Ii+1 is defined. For each interest point P2 inside the search region

in image Ii+1, a similarity score is computed between the neighborhoods of P1 and P2

using a zero-normalized cross correlation. The point with the best score is kept as a good

match and the unicity constraint is used to reject matches which have become impossible.

This method is illumination invariant and its computational cost is small. The first image

of the video sequence is selected as the first key frame I1. A key frame Ii+1 is then chosen so

that there are as many video frames as possible between Ii and Ii+1 while there are at least

M common interest points tracked between Ii and Ii+1.
2.4 Visual Memory Update

The internal representation of the environment is generally built once and never changed.

Most navigation strategies proposed in the literature assume that the environment

where the robot works is static. However, this assumption does not hold for many real

environments. Following the taxonomy proposed in (Yamauchi and Langley 1997),

changes in the environment may be transient or lasting. Transient changes are brief

enough and can be handled reactively. In general, it does not require any long-standing

modification of the robot’s internal memory (for instance, moving objects or

walking pedestrians). Lasting changes persist over longer periods of time and have to be

memorized by the robot. They may be topological (changes in the topology) and/or

perceptual (changes in the appearance of the environment).
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As noted previously, perceptual lasting changes will deteriorate the feature-matching

process and then the performance of vision-based navigation strategies. To improve the

navigation performances, new lasting features have to be incorporated in the map of the

environment. Further, obsolete elements have to be eliminated to limit the required

resources in terms of memory and processing power over time.

As mentioned previously, a large part of the literature deals with transient changes.

The robot’s environment is generally decomposed into a static part and a dynamic part

encapsulating ephemeral (potentially moving) objects. Two solutions can be used to deal

with this situation. The first solution consists of identifying the parts of the environment

which are not consistent with a predefined static model. This is usually bypassed with

geometric consistency of view matching. The second solution consists of tracking moving

objects as proposed in the context of V-SLAM in (Bibby and Reid 2007;Wangsiripitak and

Murray 2009). These objects can then be integrated to the map building process as in

(Bibby and Reid 2007) or rejected as in (Wangsiripitak and Murray 2009). However, these

solutions may improve the current localization but cannot handle long-term changes on

the structure of the environment.

Only few works have been devoted to lasting changes. In feature-based visual SLAM

approaches, features accumulate over time (which can be seen as amap update) but obsolete

features are not discarded. It results a growing of the required memory and processing

power over time and an efficiency loss. In (Hochdorfer and Schlegel 2009), the evaluation of

the quality of the localization allows to rank landmarks and to eliminate less useful ones.

In (Andreasson et al. 2007), the initial map is supposed to be partially correct and a robust

method for global place recognition in scenes subject to changes over long periods of time is

proposed. As the reference view is never modified, this approach may be inefficient after

some times. It seems more promising to modify the reference views as proposed in (Dayoub

andDuckett 2008; Dayoub et al. G 2010; Bacca et al. 2010) for localization. The information

model used in those works is based on the human memory model proposed in (Atkinson

and Shiffrin 1968) and the concepts of short-term and long-term memories. Basically,

reference views are stored in a long-term memory (LTM). When features have been seen

inmany views during the localization step, they are transferred from the short-termmemory

(STM) to the long-term memory (if they do not belong yet to it) and missing features are

forgotten (and are deleted after sometime). The updates of the memories are based on

a finite state machine in (Dayoub and Duckett 2008; Dayoub et al. 2010) and on feature

stability histograms built using a voting scheme in (Bacca et al. 2010). Those approaches

are tested with images acquired by omnidirectional cameras in indoor environments. It is

reported that localization performances are improved with respect to a static map.
3 Localization in a Visual Memory

The output of the learning process is a data set of images (visual memory). The first step in

the autonomous navigation process is the self-localization of the vehicle in the visual

memory. In a visual memory, the localization consists of finding the image of the memory
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which best fits the current image by comparing preprocessed and online acquired images.

Two main strategies exist to match images: The image can be represented by a single

descriptor (global approaches) (Matsumoto et al. 1999; Linåker Fand and Ishikawa 2004)

or alternatively by a set of descriptors defined around visual features (landmark-based or

local approaches) (Goedemé et al. 2005; Tamimi et al. 2005; Murillo et al. 2007). Some

hybrid approaches based on a global description of a subset of the image have also been

proposed to increase the robustness of global methods (Gonzalez-Barbosa and Lacroix

2002). On the one hand, local approaches are generally more accurate but have a high

computational cost (Murillo et al. 2007). On the other hand, global descriptors speed up

the matching process at the price of affecting the robustness to occlusions. One solution

consists in using a hierarchical approach which combines the advantages of both methods

(Menegatti et al. 2003). In a first step, global descriptors allow to select only some possible

images and then, if necessary, local descriptors are used to keep the best image. This

section briefly reviews global and local descriptors for localization in a visual memory

with a particular focus onwide field-of-view images since they are of particular interests in

the context of autonomous navigation.
3.1 Global Descriptors

A first solution is to globally describe the image. In that aim, images are mapped onto

cylindrical images of size 128 � 32 in (Matsumoto et al. 1999). The image is directly

described by the gray-level values. In (Pajdla Tand and Hlaváč 1999), a shift invariant

representation is computed by rotating the cylindrical image in a reference direction.

Unfortunately, this direction is not absolute as soon as occlusions appear. In order to

decrease the size of the memorized data, images can be represented by their eigenvectors

using principal component analysis as proposed in (Gaspar et al. 2000). Unfortunately,

when a new image is integrated in the memory, all eigenvectors have to be recomputed.

This process is very complex and it has a very high computational cost. Moreover, those

methods are not robust to changes of the environment. The histogram of the gray-level

values is largely employed as global signature. Its computation is efficient and it is

rotation-invariant. However, histogram methods are sensitive to change of light

conditions. Blaer and Allen (2002) propose color histograms for outdoor scene localiza-

tion. A normalization process is applied before computing the histograms in order to

reduce the illumination variations. In (Linåker Fand and Ishikawa 2004), a global descrip-

tor based on a polar version of high order local autocorrelation functions (PHLAC) is

proposed. It is based on a set of 35 local masks applied to the image by convolution.

Similar to histogram, this descriptor is rotation-invariant.
3.2 Local Descriptors

Global descriptor-based methods are generally less robust to occlusion compared to

landmark-based methods. In those last methods, some relevant visual features are



Vision-Based Topological Navigation: An Implicit Solution to Loop Closure 53 1365
extracted from the images. A descriptor is then associated to each feature neighborhood.

The robustness of the extraction and the invariance of the descriptor are one main issue to

improve the matching process. Two main approaches can be distinguished. In the first

category, the feature detection and description designed for images acquired by perspec-

tive cameras are directly employed with omnidirectional images. The second category

takes the geometry of the sensor into account and thus uses operators designed for

omnidirectional images. The most popular visual features used in the context of locali-

zation in an image database are projected points. However, projected lines can also be

exploited as proposed in (Murillo et al. 2007).

1. Perspective-based local descriptor : The Scale Invariant Feature Transform (SIFT,

(Lowe 2004)) has been shown to give the best results in the case of images acquired

with perspective cameras. The SIFT descriptor is a set of histograms of gradient

orientations of the normalized (with respect to orientation and scale) difference of

Gaussian images. In view of the effectiveness of this descriptor, several extensions have

been proposed. It has been used with omnidirectional images in (Goedemé et al.

2005). Given that many points are detected in an omnidirectional image, Tamimi et al.

(2005) proposed an iterative SIFT with a lower computational cost. In (Andreasson

et al. 2005), points are detected with a Sobel filter and described by a Modified Scale

Invariant Feature Transform (M-SIFT) signature. This signature slightly takes into

account the sensor geometry by rotating the patch around an interest point.

In (Murillo et al. 2007), the Speeded-Up Robust Features (SURF) are employed as

descriptors. SURF points are detected using the Hessianmatrix of the image convolved

with box filters and the descriptor is computed thanks to Haar wavelet extraction. The

computational cost of this descriptor is much lower than the one obtained for SIFT.

Unfortunately, those signatures describe a local neighborhood around interest points

and do not take into account the high distortions caused by the sensor geometry.

2. Descriptors adapted to wide-angle images : In the second category, detection and

description processes are specially designed to take into account high distortions.

In (Svoboda and Pajdla 2001; Ieng et al. 2003), a classical Harris corner detector is

proposed but the shape and the size of a patch around a feature is modified according

to the position of the point and to the geometry of the catadioptric sensor. Finally,

a standard 2D correlation (respectively a centered and normalized cross correlation)

is applied to the patches in (Svoboda and Pajdla 2001) (respectively in Ieng et al. 2003).

After computing the descriptors of the current and memorized images, those

descriptors have to be matched. For local approaches, this step is generally based on

pyramidal matching as in (Murillo et al. 2007) or on nearest neighbor matching as in

(Lowe 2004). This last algorithm considers that a matching is correct if the ratio

between the distances of the first and second nearest neighbors is below a threshold.

It is possible to eliminate wrong matching through the recovery of the epipolar

geometry between two views (Zhang et al. 1995) at the price of higher computational

cost. A full reconstruction can also be obtained with three views and the 1D trifocal

tensor as proposed in (Murillo et al. 2007).
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3.3 Hybrid Descriptors

Some hybrid descriptors have been designed to combine the advantages of the two

previously cited categories (local and global approaches) by globally describing subsets

of the image. In (Gonzalez-Barbosa and Lacroix 2002), five histograms of the first- and

second-order derivatives of the gray-level image are considered. Instead of the whole

image, the image is decomposed into rings. On the one hand, a decomposition into

few rings decreases the accuracy. On the other hand, increasing the number of rings

increases the computational cost and decreases the robustness to occlusions. In (Gaspar

et al. 2000), the image is first projected onto an englobing cylinder and a grid decompo-

sition is then proposed. This projection step is time consuming and it implies

the modification of the quality of the image which can lead to less accurate localization

results. In (Courbon et al. 2008), a hierarchical process combining global descriptors

computed onto cubic interpolation of triangular mesh and patches correlation around

Harris corners has been proposed. In the context of visual memory-based navigation, this

method has shown the best compromise in terms of accuracy, amount of memorized

data required per image, and computational cost (refer to (Courbon et al. 2008) for

detailed results).
4 Route Following

Given an image of one of the visual paths as a target, the navigation task in

a visual memory-based framework can formally be defined as the regulation of successive

error functions allowing the guidance of the robot along the reference visual route.

The visual route describes then a set of consecutive states that the image has to reach in

order that the robot joins the goal configuration from the initial one. Control schemes

suitable in this context can be designed by exploiting visual-servoing concepts. Visual

servoing is often considered as a way to achieve positioning tasks. Classical methods,

based on the task function formalism, make the assumption that a diffeomorphism

between the sensor space and the robot’s configuration space exists. Due to the

nonholomic constraints of most of wheeled mobile robots, under the condition of rolling

without slipping, such a diffeomorphism does not exist if the camera is rigidly fixed to the

robot. In (Tsakiris et al. 1998), the authors add extra degrees of freedom to the camera.

The camera pose can then be regulated in a closed loop. In the case of an embedded and

fixed camera, the control of the camera is generally based on wheeled mobile robots

control theory (Samson 1995). In (Ma et al. 1999), a car-like robot is controlled

with respect to the projection of a ground curve in the image plane. The control

law is formalized as a path-following problem. More recently, in (Fang et al. 2002) and

(Chen et al. 2003), a partial estimation of the camera displacement between the current

and desired views has been exploited to design vision-based control laws. The camera

displacement is estimated by uncoupling translation and rotation components of an

homography matrix. In (Fang et al. 2002), a time-varying control allows an asymptotical
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stabilization on a desired image. In (Chen et al. 2003), a trajectory-following task is

achieved. The trajectory to follow is defined by a prerecorded video and the control law

is proved stable using Lyapunov-based analysis. In (Goedemé et al. 2005), homing strategy

is used to control a wheelchair from a memory of omnidirectional images. A memory of

omnidirectional images is also used in (Gaspar et al. 2000) where localization and

navigation are realized in the bird’s-eye (orthographic) views obtained by radial distortion

correction of the omnidirectional images. The control of the robot is formulated in the

bird’s-eye view of the ground plane which is similar to a navigation in a metric map. The

view-sequenced route presented in (Matsumoto et al. 1996) has been applied to omnidi-

rectional images in (Matsumoto et al. 1999). The control scheme exploits the inputs

extracted from unwarped images. For completeness, the control strategy proposed in

(Courbon et al. 2009) to follow a visual route with a non-holonomic vehicle is briefly

presented more in details.

The localization step provides the closest image I�
s to the current initial image Ic. A

visual route C connecting I�
s to the goal image can then be extracted from the visual

memory. The principle of the vision-based control scheme is presented in > Fig. 53.4.
4.1 Model and Assumptions

1. Control objective : Let Ii and Ii+1 be two consecutive key images of a given visual route

to follow and Ic be the current image.F i = (Oi, Xi, Yi, Zi) and F iþ1 = (Oi+1, Xi+1, Yi+1,

Zi+1) are the frames attached to the vehicle when Ii and Ii+1 were stored and F c = (Oc,

Xc, Yc, Zc) is a frame attached to the vehicle in its current location. > Figure 53.5

illustrates this setup. The origin Oc of F c is on the center rear axle of a car-like vehicle,

which moves on a perfect ground plane. The hand–eye parameters (i.e., the rigid

transformation between F c and the frame attached to the camera) are supposed to be

known. According to Hypothesis 2, the state of a set of visual features Pi is known in

the images Ii and Ii+1. The state of Pi is also assumed available in Ic (i.e., Pi is in the

camera field of view). The task to achieve is to drive the state of Pi from its current

value to its value in Ii+1. In the following, G represents a path from F i to F iþ1. The

control strategy consists in guiding Ic to Ii+1 by regulating asymptotically the axle Yc on

G. The control objective is achieved if Yc is regulated to G before the origin of F c

reaches the origin of F iþ1.

2. Vehicle modeling : The vehicle is supposed to move on asphalt at rather slow speed. In

this context, it appears quite natural to rely on a kinematic model, and to assume pure

rolling and nonslipping at wheel–ground contact. In such cases, the vehicle modeling

is commonly achieved for instance relying on the Ackermann’s model, also named the

bicycle model: the two front wheels located at the mid-distance between actual front

wheels and actual rear wheels. In the sequel, the robot configuration is described with

respect to the pathG, rather thanwith respect to an absolute frame. As seen previously,

the objective is that the vehicle follows a reference path G. To meet this objective, the

following notations are introduced (see > Fig. 53.5).
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● OC is the center of the vehicle rear axle.

● M is the point of G which is the closest to OC. This point is assumed to be unique

which is realistic when the vehicle remains close from G.
● s is the curvilinear coordinate of point M along G and c(s) denotes the curvature of

G at that point.
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Images I i and I iþ1 are two consecutive key images of the visual route C. I c is the current

image. G is the path to follow

Vision-Based Topological Navigation: An Implicit Solution to Loop Closure 53 1369
● y and y are respectively the lateral and angular deviation of the vehicle with respect

to reference path G.
● d is the virtual front wheel steering angle.

● V is the linear velocity along the axle Yc of F c .

● l is the vehicle wheelbase.
Vehicle configuration can be described without ambiguity by the state vector (s, y, y):
The two first variables provide point OC location and the last one the vehicle heading.

Since V is considered as a parameter, the only control variable available to achieve path

following is d. The vehicle kinematic model can then be derived by writing that velocity

vectors at point OC and at center of the front wheel are directed along wheel planes and

that the vehicle motion is, at each instant, a rotation around an instantaneous rotation

center. Such calculations lead to (refer to Zodiac 1995):

_s ¼ V
cos y

1� cðsÞy
_y ¼ V sin y

_y ¼ V
tan d
l

� cðsÞ cos y
1� cðsÞy

� �

8>>>>><
>>>>>:

(53.1)

Model (> 53.1) is clearly singular when y ¼ 1
cðsÞ , i.e., when point OC is superposed
with the path G curvature center at abscissa s. However, this configuration is never

encountered in practical situations: On the one hand, the path curvature is small and

on the other, the vehicle is expected to remain close to G.
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4.2 Control Design

The control objective is to ensure the convergence of y and y toward 0 before the origin of

F c reaches the origin ofF iþ1. The vehicle model (> 53.1) is clearly nonlinear. However, it

has been established in (Samson 1995) that mobile robot models can generally be

converted in an exact way into almost linear models, named chained forms. This property

offers two very attractive features: On the one hand, path following control law can be

designed and tuned according to Linear System Theory, while controlling nevertheless the

actual nonlinear vehicle model. Control law convergence and performances are then

guaranteed whatever the vehicle initial configuration is. On the other hand, chained

form enables to specify, in a very natural way, control law in terms of distance covered

by the vehicle, rather than in terms of time. Vehicle spacial trajectories can then easily be

controlled, whatever the vehicle velocity is (Thuilot et al. 2004). Conversion of the vehicle

model (> 53.1) into chained form can be achieved thanks to state and control trans-

formations as detailed in (Thuilot et al. 2004) leading to the following expression of the

control law:

dðy; yÞ ¼ arctan �l
cos3y

ð1� cðsÞyÞ2
"

dcðsÞ
ds

y tan y
� 

� Kdð1� cðsÞyÞ tan y

� Kpy þ cðsÞð1� cðsÞyÞtan2y
�
þ cðsÞ cos y
1� cðsÞy

�! (53.2)

The evolution of the error dynamics is driven by the distance covered by the vehicle
along the reference path G). The gains (Kd, Kp) impose a settling distance instead of

a settling time as it is usual. Consequently, for a given initial error, the vehicle trajectory

will be identical, whatever the value of V is, and even if V is time varying (V 6¼ 0).

Control law performances are therefore velocity independent. The gains (Kd, Kp) can

be fixed for desired control performances with respect to a second-order differential

equation. The path to follow can simply be defined as the straight line G0 = (Oi+1, Yi+1)

(refer to > Fig. 53.5). In this case c(s) = 0 and the control law (> 53.2) can be simplified

as follows:

dðy; yÞ ¼ arctan �l cos3y �Kd tan y� Kpy
� �	 
� �

(53.3)

The implementation of control law (> 53.3) requires the online estimation of the
lateral deviation y and the angular deviation y of F c with respect to G. In (Courbon et al.

2009) geometrical relationships between two views are exploited to enable a partial

Euclidean reconstruction from which (y, y) are derived.
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5 Example of Results

5.1 Experimental Setup

The experimental vehicle is depicted in > Fig. 53.6. It is an urban electric vehicle, named

RobuCab, manufactured by the Robosoft Company. Currently, RobuCab serves as exper-

imental testbed in several French laboratories. The 4 DC motors are powered by lead-acid

batteries, providing 2 h autonomy. Vision and guidance algorithms are implemented

in C++ language on a laptop using RTAI-Linux OS with a 2 GHz Centrino processor. The

Fujinon fisheye lens, mounted onto a Marlin F131B camera, has a field of view of 185�.
The image resolution in the experiments was 800 � 600 pixels. The camera, looking

forward, is situated at approximately 80 cm from the ground. The parameters of the rigid

transformation between the camera and the robot control frames are roughly estimated.

Gray-level images are acquired at a rate of 15 fps. Two illustrative experiments are

presented. The first one shows the loop closure performance while the second one

shows that it is possible to achieve visual memory-based navigation in large environment.
Fisheye Camera

. Fig. 53.6

RobuCab vehicle with the embedded camera
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5.2 Loop Closure

Autonomous navigation along a loop is interesting because it is a good way to visualize the

performances. Remarkably, the topological visual memory implicitly defines the loop

closure. It is an advantage of this approach with respect to methods based on a metric

representation of the environment which can be subject to significant drift if a loop closure

process is not implicitly incorporated to the navigation strategy. The path is defined from the

concatenation of the sequences G1, G2, and G3. It is a 270 m loop (refer to > Fig. 53.7).

A total of 1,100 images were acquired and the resulting visual memory contains three

sequences and 153 key frames. In this experiment, the navigation task consists in performing

five consecutive loops. The results are given in > Fig. 53.8. One can verify that the robot

reaches the position corresponding to the first image of G1 at the end of a ‘‘loop.’’
Γ2

Γ3

Γ1

. Fig. 53.7

The test Loop
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The test loop: Trajectory followed during the learning and the autonomous stages
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5.3 Large Displacement

This section presents a complete run from path learning to autonomous navigation.

1. Learning step: In a second learning phase, the RobuCab was manually driven along the

800-m-long path drawn in blue in > Fig. 53.11. This path contains important turns as

well as way down and up and a comeback. After the selection step, 800 key images are

kept and form the visual memory of the vehicle. Some of those images are represented

in > Fig. 53.9.



. Fig. 53.9

Some key images of the memory
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2. Initial localization: The navigation task has been started near the visual route to follow

(the corresponding image is shown in > Fig. 53.10a ). In this configuration, 15 images

of the visual memory have been used in the first stage of the localization process. The

distances between the global descriptor of the current image and the descriptor of the

memorized images (computed offline) are obtained using ZNCC (> Fig. 53.10b).

After the second step of the localization process, the image shown in > Fig. 53.10c is

chosen as the closest to the image ten (a). Given a goal image, a visual route starting

from I�
i and composed of 750 key images has been extracted from the visual memory.

3. Autonomous navigation: The control (> 53.3) is used to drive the vehicle along the

visual route. A key image is assumed to be reached if the ‘‘image error’’ is smaller than

a fixed threshold. In the experiments, the ‘‘image error’’ has been defined as the longest

distance (expressed in pixels) between an image point and its position in the desired

key image. The longitudinal velocityV is fixed between 1 and 0.4ms�1. Kp and Kd have

been set so that the error presents a double pole located at value 0.3. The vehicle

successfully follows the learnt path (refer to > Fig. 53.11). The experiment lasts 13 min

for a path of 754 m. A mean of 123 robust matches for each frame has been found.

The mean computational time during the online navigation was of 82 ms by image.

As can be observed in > Fig. 53.12, the errors in the images decrease to zero until

reaching a key image. Lateral and angular errors as well as control input are
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represented in > Fig. 53.13. As it can be noticed, those errors are well regulated to zero

for each key view. Discontinuities due to transitions between two successive key

images can also be observed in > Fig. 53.13.
Some reached images (with the corresponding images of the memory) are shown

in > Fig. 53.14. Note that illumination conditions have changed between the memo-

rization and the autonomous steps (refer to > Fig. 53.14a and > b for example) as well

as the contents (refer to > Fig. 53.14i and > j where a tram masks many visual features

during the autonomous navigation).
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4. Evaluation with a RTKGPS: The experimental vehicle has been equipped with a Real-

TimeKinematic Differential GPS (Thales Sagittamodel). It is accurate to 1 cm (standard

deviation) in a horizontal plane when enough satellites are available. The accuracy on a

vertical axis is only 20 cm on the hardware platform. The vertical readings are thus

discarded and the reported errors are measured in an horizontal plane.

DGPS data have been recorded during the learning and the autonomous

stages. The results are reported in > Fig. 53.15. The red and blue plain lines represent
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respectively the trajectories recorded during the learning and autonomous stages. It can be

observed that these trajectories are similar.

Distances (lateral error) between the vehicle positions during the learning and auton-

omous stages are reported on > Fig. 53.15. The mean of the lateral error is about 25 cm

with a standard deviation of 34 cm. The median error is less than 10 cm. The maximal

errors are observed along severe turns (see > Fig. 53.16 representing a U-turn nearby the

tramway station). Note that despite those errors, the visual path is still satisfactory

executed (after some images, the vehicle is still at a small distance to the learnt trajectory).
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6 Conclusion

This chapter has presented the essential of vision-based topological navigation through an

illustrative example. This framework enables a vehicle to follow a visual path obtained

during a learning stage using a single camera. The robot environment is modelized as

a graph of visual paths, called visual memory from which a visual route connecting the

initial and goal images can be extracted. The robotic vehicle can then be driven along

the visual route using vision-based control schemes. Importantly, this framework allows

loop closure without extra processing.
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Murillo A, Guerrero J, Sagüés C (2007) SURF features

for efficient robot localization with omnidirec-

tional images. In: IEEE international conference

on robotics and automation, ICRA’07, Rome,

Italie, Apr 2007, pp 3901–3907

Nistér D (2004) An efficient solution to the five-point

relative pose problem. Trans Pattern Anal Mach

Intell 26(6):756–770
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