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Abstract— Topological maps are vital for fast and accurate
localization in large environments. Sparse topological maps can
be constructed by partitioning a sequence of images acquired by
a robot, according to their appearance. All images in a partition
have similar appearance and are represented by a node in a
topological map. In this paper, we present a topological mapping
framework which makes use of image sequence partitioning (ISP)
to produce sparse maps. The framework facilitates coarse loop
closure at node level and a finer loop closure at image level.
Hierarchical inverted files (HIF) are proposed which are naturally
adaptable to our sparse topological mapping framework and
enable efficient loop closure. Computational gain attainedin loop
closure with HIF over sparse topological maps is demonstrated.
Experiments are performed on outdoor environments using an
omnidirectional camera.

Index Terms— Topological Mapping, Omnidirectional Vision,
Loop Closure

I. INTRODUCTION

Mapping is one of the fundamental problems of Au-
tonomous Mobile robotics. Mapping problem can be widely
categorized as Topological and Metrical [16]. Metrical map-
ping involves accurate position estimates of robots and land-
marks of the environment. Topological mapping on the other
hand represents an environment as a graph in which nodes cor-
respond to places and the edges between them indicate some
sort of connectivity. Recently, a third category called Topo-
Metric Mapping [17], [9] is gaining popularity. Topo-Metric
mapping is a hybrid approach which uses both metrical and
topological information in map building. Building an accurate
map either metrical or topological depends on loop closure
accuracy. Such maps are difficult to build using metrical in-
formation which is prone to gross errors in position estimation
of robot and landmarks. Topological maps facilitate accurate
loop closure as they depend on appearance information rather
than on exact metrical information of the environment.

Many powerful loop closing techniques for topological
maps have been introduced recently [2, 3, 5, 7]. Most of
them produce dense topological maps, in which every acquired
image stands as a node in the topological graph. Sparser topo-
logical maps can be built by representing sets of contiguous
images with similar appearance features as places. Each place
is represented by a node in the topological graph. We refer
to this kind of partitioning of image sequences into places
as Image Sequence Partitioning (ISP). In a sparse topological
map, since each node represents multiple images, fewer nodes
would be sufficient for the map representation. Maps with
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Fig. 1: A global view of our topological mapping framework.

fewer nodes reduce computational complexity involved in loop
closure and map merging. An example map merging problem
can be to localize a topological map of a tiny environment in
a larger map (ex:- google maps).

We use a topological mapping framework which facilitates
coarse loop closure to the node level and a finer loop closure to
the image level. The topological map is represented as a graph
T = (N,E), whereN and E are sets of nodes and edges
respectively. The map is updated with each newly acquired
image. Every new image (query image) is verified if it is
similar to a previously visited node (place) or the current place
node and if so, the corresponding node is augmented with the
image. If the query image is not similar to any of the existing
nodes, then a new place node is created and augmented with
the image. This process of map update is nothing but Image
Sequence Partitioning (ISP). Each node contains a set of
representative features representing all the member images
of the node (place). The representative features are used in
evaluating node-image similarity during ISP.

Another contribution of this paper is the proposal of Hier-
archical inverted files (HIF) for efficient loop closure at both
node and image levels. Similar to traditional inverted files
used for object recognition [11] and loop closure problems
[2], HIFs are also associated to the visual words in the
vocabulary. HIFs combine the power of regular inverted files
with our sparse topological map structure and help in fast
loop closure. Considering the fact that in a sparse topological
map, images are again grouped into nodes, HIFs organize
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the previous occurrence information of visual words in a
hierarchical fashion which enables fast loop closure. We use
an inverse similarity score evaluation methodology in order to
take advantage of HIFs for loop closure.

Experiments were performed on omnidirectional image data
acquired in outdoor urban environments. Omnidirectional im-
ages offer a 360 degree field of view which helps in building
topological maps, invariant of robot’s heading. As a resultloop
closure can be performed even if the robot is not headed in the
same direction as of the previous visit to the same location.
Map building in outdoor environments is challenging due to
illumination variation and possible occlusions [15]. Sparsity
and accuracy of topological maps constructed using ISP are
evaluated. The computational savings achieved in HIF-based
loop closure is analysed.

The rest of the paper is organized as follows: Section II
details the related work done in this area. Section III describes
the steps involved in ISP in detail and provides algorithmic
illustrations. Section IV introduces HIFs and discusses how
node and image level loop closures are performed using
HIFs. Section V evaluates sparsity of maps produced by
ISP, accuracy and computational cost of loop closure on the
generated topological maps.

II. RELATED WORK

Scene Change Detection and Key Frame Selection for video
segmentation and abstraction [19], [13] have similar goalsas
that of ISP. They try to represent a video with fewer images
called key frames whenever there is a sufficient change in
the scene and most of them focussed on video compression
domain. The major difference between these video abstraction
problems and topological mapping is that topological mapping
demands localization of a query image which is obtained at a
previously visited place, but with variation in illumination and
viewpoint, and a possible occlusion. Hence, video segmenta-
tion techniques using pixel-wise intensity measures and global
image features like histograms, motion based segmentation
cannot be applied to our problem.

Loop closure in topological maps has gained popularity
among mobile robotic researchers during the recent times.
Many loop closure algorithms for topological mapping have
been proposed and tested in both indoor [7], [2], [3], [21], [8]
and outdoor environments [5], [6], [1], [12].

In [21], [22] topological maps are built for indoor environ-
ments. They segment the topological graph of the environment
using normalized graph-cuts algorithm resulting in subgraphs
corresponding to convex areas in the environment. In [8] SIFT
features were used to perform matching over a sequence of
images. They detected transitions between individual indoor
locations depending on the number of SIFT features which
can be successfully matched between the successive frames.In
[14] fingerprint of an acquired image is generated using omni-
directional image and laser readings, and these fingerprints are
compared to those of the previous images. If the similarity is
above a threshold the image is added to the existing node and
if not a new node is formed. All of these works were focused
on indoor environments. Indoor environments contain convex

spaces (rooms) which are relatively simpler to be partitioned
as compared to outdoor environments.

A topological mapping framework using incremental spec-
tral clustering has been presented in [20]. Nodes containing
similar images are constructed using incremental spectral
clustering over the affinity matrix of the images, thereby
producing a topological graph. An optical flow based ISP
technique was presented in [12] for topological mapping in
outdoor environments using a quad rotor robot. Optical flow
is used to discover change in environmental appearance. In
[1], gist features [18] were used to cluster images with similar
appearance for topological map construction.

III. IMAGE SEQUENCE PARTITIONING

Figure 1 depicts a global view of our framework, in which
we can see a modular view of ISP enclosed by a red dashed
line. As can be seen from Figure 1, ISP consists of three main
modules: node level loop closure, evaluation of similarityto
current place and new node formation. Given a query image,
initially SURF [4] features are extracted from the image. Using
the SURF features, we evaluate the node-image similarity of
the query image with all the nodes in the graph except the
current place node and pick out the topk similar nodes. The
top k similar nodes are assigned to the set of winning nodes
Nw. This process is called node level loop closure as it finds
the previously visited places (nodes) most similar to the query
image. Only the representative feature sets of the nodes are
used to compute the node-image similarities during node level
loop closure. In our framework, the representative features of
a node are the SURF features of the first image augmented to
the node.

An emptyNw indicates loop closure failure ; that is, query
image is not similar to any of the previously visited places.
In that case, query image similarity to the current node is
evaluated. If the similarity of query image with current place
node is above a certain threshold, current node is augmented
with the query image. If the query image is not similar to
current node also, a new node is created with the query image.
But if Nw is not empty indicating a loop closure, then the set
of winning nodes can be considered for a thorough image level
loop closure.

Algorithm 1 shows the steps involved in ISP.
The ’nodelevel loop closure’ function in lines 4
is discussed in detail in sections IV. The function
’current nodeimagesimilarity’ evaluates the similarity
of the current node with that of the query image. This is done
by matching the SURF features of the query image to that
of the features of the current place node. Feature matching is
performed as proposed in [10]. Two features are considered
to be matched if the ratio of the best match and the second
best match is greater than0.6.

IV. LOOP CLOSURE & HIERARCHICAL INVERTED
FILES

Node and Image level loop closures are performed at image
level using visual words corresponding to the SURF features
of the image. Given a query image, to find the most similar
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Algorithm 1 Image Sequence Partitioning Algorithm

1: procedure PROCESS QUERY IMAGE(T, Iq , nc) ⊲ T, Iq , nc, T.N are the

Topological graph, query image, current node in topological graph & node-set of

topological graph respectively.

2: N
′

= T.N − {nc} ⊲ Reference node set excluding current node.

3: Nw = {} ⊲ Set of winning nodes.
4: Nw=Nodelevel Loop Closure(N

′

, Iq , Ths)
5: if is empty(Nw ) then
6: if currentnodeimagesimilarity(nc ,Iq) > Tht then
7: nc.addimage(Iq )
8: else
9: n=new node()

10: n.addimage(Iq )
11: updatemap(T, n)
12: end if
13: else
14: Nw=get top k similar nodes(Nw)
15: Iw =get imagesof nodes(Nw)
16: n∗=ImageLevel Loop Closure(Iw ,Nw ,Iq)
17: add imageto node(Iq , n∗)
18: updatemap(T, n∗)
19: end if
20: end procedure

reference image in the database, [11, 7] uses a Tf-Idf based
similarity score for all the reference images in the database and
the query image and select the reference images corresponding
to the topn similarity scores. We use an inverse methodology
to compute image similarities for loop closure. The steps
involved are enumerated as follows:

1) Let the set of reference images beI = {I1, I2, · · · , IM}.
We consider a histogramH with the number of bins
corresponding to the number of reference images,M .

2) Extract the set of visual wordsW = {w1, w2, · · · , wp}
from the query image,Iq.

3) For each visual wordwi, using the inverted fileIF i

of the word, we extract the reference image indexes
I
wi = {Iwi

1 , Iwi

2 , · · ·} in which the word has been
previously seen. The histogram bins corresponding to
these extracted reference images are incremented by a
factor of Tf-Idf of the corresponding word.

H [Iwi

j ] = H [Iwi

j ] + Tf − Idf(Iwi

j , wi) (1)

The resulting histogram can be interpreted to contain the
degrees of similarity of the query image with respect to the
reference images. As we can see, the loop closure computation
time only depends on number of words in the query image and
the average inverted file length at that instant. As a result loop
closure time does not increase so steeply as is the case with
forward method. A closely related work can be found in [6, 2,
3]. But this method is suitable only for loop closure over dense
topological maps but not for sparse topological maps in which
each node represents multiple images. With a change in the
inverted file structure, we can adapt this similarity evaluation
method to sparse topological maps.

A regular inverted file corresponding to a visual word
simply contains a list of all previous images which contained
the word. We associate Hierarchical inverted files (HIF) to
each visual word. As the name suggests, HIF contain two
levels. The first level consists of the ids of the nodes in
which the visual word occurred previously. The second level
consists of small child inverted files attached to each of the
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Fig. 2: (a) represents a traditional inverted file. (b) represents a hierarchical inverted
file. VW1, VW2,... represent visual words. N1, N2,... represent node ids in the first
level of HIF and I1, I2, I3, ... represent the image ids in the inverted file.

node id. These image ids indicate the images belonging to
the parent node in which the visual word has occurred. Each
child inverted file corresponding attached to a node of the
topological graph, contains the list of all previous images
belonging to the parent node in which the word has occurred.
The difference between traditional inverted files and HIFs is
illustrated in figure 2. To perform a node level loop closure
using HIF, we do not have to go through the entire HIF, but
its sufficient to go through first level (node ids) of the HIFs.
For an image level loop closure using HIF, we only have to
traverse through those child inverted files corresponding to
the winning nodes; which form only a fraction of the total
HIF. Thus, HIFs offer computational gain in loop closure
when compared to regular inverted files which is demonstrated
in section V. Algorithms 2 and 3 give a clearer picture of
the node level and image level loop closures. There can be
multiple winning images given by the image level loop closure
and hence multiple corresponding nodes, but for the sake of
simplicity we do not represent that in the algorithm. In such
cases we use RANSAC based geometric verification to find
the right match.

Algorithm 2 Node Level Loop Closure Algorithm

1: procedure NODE LEVEL LOOP CLOSURE(N
′

, Iq , Ths)

2: N
′

= T.N − {nc}

3: H=Histogram(sizeof(N
′

))
4: W=extractandquantizeFeatures(Iq )
5: for each wordwi in W do
6: HIF i=get hierarchicalinvertedfile(wi)
7: for each nodenj in HIF i do
8: H[nj ] = H[nj ] + 1
9: end for

10: end for
11: N

∗=get winnersfrom histogram(H, Ths)
12: return N

∗

13: end procedure
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Algorithm 3 Image Level Loop Closure Algorithm

1: procedure IMAGE LEVEL LOOP CLOSURE(Iw ,Nw, Iq)
2: H=Histogram(M)
3: W=extractandquantizeFeatures(Iq )
4: for each wordwi in W do
5: HIF i=get hierarchicalinvertedfile(wi)
6: for each nodenj in Nw do
7: IF

nj

i
=get invertedfile of node(HIF i, nj )

8: for each entryfi in IF
nj

i
do

9: H[fi] = H[fi] + Tf − Idf(fi, wi)
10: end for
11: end for
12: end for
13: I

∗=get winner from histogram(H)
14: n∗=get correspondingnode(I∗)
15: return n∗

16: end procedure

V. EXPERIMENTS

Our experimental setup consists of a Pioneer P3DX robot
equipped with an omnidirectional camera. A laptop equipped
with an Intel Centrino 2 processor running ubuntu 9.04 is
used for data processing. The experiments were carried out
in our artificial urban environment - PAVIN. The environment
contains roads, artificial buildings, and a variety of real-world
road settings like junctions, traffic lights, round-abouts, curved
roads and dead ends.

Omnidirectional images were acquired at a frame rate of 2
fps, as the robot moves along a manually controlled trajectory.
Image data was acquired in four installments(A, B, C and
D) at very different times of two days and hence contained
significant illumination variation. Figure 3 shows the parts
of the environment through which the robot traversed during
each installment. We took care that data from all the four
installments contained overlaps so as to put our loop closure
algorithm to test.

We constructed two data-sets by combining data from all the
four installments. Dataset-6560 was obtained by combining
data of installments A, C and D. It contains 6560 images
with 52 possible loop closures. Another data-set Dataset-11200
was obtained by a combination of all the four installments.
It contains 11200 images and 71 possible loop closures.
The number of loop closures were determined by manually
examining the data-sets.

A. ISP - Sparsity

The number of nodes in a topological map indicate its
sparsity. An ideal topological map is one in which each
distinct place in the environment is represented by a node
in the topological graph. The sparsity of these ideal maps
represents the optimal sparsity of the actual environment.But
practically, an ideal topological map is far from being attained.
Different features produce different topological representations
of the environment. We have experimented using SURF128,
U-SURF128, and SIFT features, out of which we found out
that U-SURF128 features lead to topological structure closest
to the ground truth.

Another important factor that effects stability of appearance
is the image distortion. The features directly extracted from
warped omnidirectional images are unstable as the appearance
of keypoint patch changes very much even with a small

(a) Installment A (b) Installment B

(c) Installment C (d) Installment D

Fig. 3: Shows paths traversed by the robot during each image acquisition
installment.

TABLE I: SPARSITY

(a) Sparsity - Warped

SURF128 U-SURF128 SIFT
DATASET-6560 539 502 1582
DATASET-11200 756 742 2795

(b) Sparsity - Unwarped

SURF128 U-SURF128 SIFT
DATASET-6560 504 473 1037
DATASET-11200 737 723 1257

displacement of the camera. Hence it is likely that the maps
produced using warped images contain greater number of
place nodes. This happens because due to the feature in-
stability, each place can be understood as multiple adjacent
places and hence multiple nodes in the topological graph.
The undistorted (unwarped) images produce relatively sparser
maps. Tables I(a) and I(b) show the sparsity of maps produced
by ISP using different features on warped and unwarped
images. We can see that U-SURF128 is the best performing
feature producing the most sparse maps.

B. Accuracy

In this subsection, we discuss the accuracy of the maps
produced by ISP, based on the number of accurate loop
closures and the obtained false positives. The most sparse
map may not guarantee an accurate map. Only those maps
with accurate place partitioning are accurate and can lead to
accurate loop closures. Thus a good mapping technique is
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TABLE II: NODE LEVEL LOOP CLOSURE ACCURACY

#(LC) #(FP)
Dataset-6560 49 4

Dataset-11200 68 6

one which provides an optimal combination of sparsity and
accuracy.

Given a query image, first we perform loop closure at node
level and then at image level if more accuracy is required.
Table II shows the number of loop closures detected and
the number of false positives obtained on Dataset-6560 and
Dataset-11200 respectively by node level loop closure. We
can see that a few loop closures are missed out, and some
false positives are observed. The inaccuracy can be attributed
to the imperfections in ISP. There is a direct relation between
accuracy of the maps and ISP. The way in which we perform
topological mapping does not induce any information loss. In
other words we do perform any kind of sampling or selection
of reduced number of features. Instead, we consider each
and every feature extracted from the images and store it in
HIFs. This process guarantees that there is no information
lost during the mapping process. But inaccurate loop closure
detection might occur due to inaccurate partitioning of places.
For example a place can be represented by two nodes by
partitioning it inaccurately during ISP due to appearance
feature instability. As a result, during node level loop closure
using a query image, both of the nodes representing that place
may not get high similarity scores and hence the loop closure
becomes inaccurate. A good ISP algorithm produces maps
with minimum number of these situations.

Image level loop closure accuracy depends on the accuracy
of node level loop closure. If node level loop closure selects
an inaccurate set of winning nodes, then as a result, image
level loop closure also becomes inaccurate. However in case
of an accurate node level loop closure, we have observed
that 99% accuracy was possible in image level loop closure
irrespective of the ISP technique. Figure 4 shows two loop
closure scenarios that occurred in our mapping.

C. Computational Time

Table III shows average computational time (in millisec-
onds) taken by each stage of our topological mapping frame-
work in processing each query frame on both Dataset-6560 and
Dataset-11200. The abbreviations NLLC, LFE+QUANT, ILLC
stand for Node Level Loop Closure, Local Feature Extraction
& Quantization and Image Level Loop Closure respectively.
NLLC is the node level loop closure which involves extracting
the most similar nodes using HIFs as mentioned in Algorithm
2. This takes10ms as shown in table III, and requires
additional50ms in order to compare with the current place
node whenever needed. Obviously, local feature extraction
(LFE) (200ms) and quantization (QUANT) (70ms) time is
constant for every acquired frame. Actually, time requiredfor
both of these tasks increases with the number of features in
an image.

Computation time of image level loop closure (ILLC) is
too low. This low computation time is the result of using

(a) (b)

(c) (d)

Fig. 4: Example loop closures.

TABLE III: AVERAGE COMPUTATION TIMES (in ms)

NLLC LFE+QUANT ILLC
10 + 50 200 + 70 21

hierarchical inverted files(HIF). As we mentioned before, HIFs
make the loop closure computation almost independent of the
number of reference images and also in our case, nodes of the
topological graph.

Figures 5(a) and 5(b) show graphs comparing the loop
closure times of our HIF-based method and without using
HIF (non-HIF based). Red curves in the graphs indicate the
time taken for feature quantization, node level loop closure
and image level loop closure, for each image frame in a
sequence. The blue curves represent the time taken by feature
quantization and similarity score generation using inverted
files by using inverse similarity evaluation methodology. We
can see that the loop closure time of non-HIF based method
increases relatively more with the increase in the number of
images in the map, while our method using our method, loop
closure time increases more slowly. Also, the performance
gain becomes more prominent in case of huge datasets (huge
number of images) as can be seen in the figure 5(b) corre-
sponding to Dataset-11200, which contains 11200 images. The
non-HIF based loop closure time for Dataset-11200 increases
less steeply than that of Dataset-6560. This happened because
the average number of features of Dataset-11200 is lesser
than that of Dataset-6560 and as a result it takes lesser
time to process each reference frame. This efficiency of our
HIF-based method can be attributed to the combination of
sparse topological mapping and HIFs for efficient map storage.
The representational power of HIFs saved lot of computation
involved in loop closure.
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Fig. 5: Loop closure computation times of non-HIF based loopclosure and HIF
based loop closure on maps generated on our datasets.

VI. CONCLUSION

We proposed a sparse topological mapping framework
involving two levels of loop closure. Hierarchical Inverted
Files(HIF) were naturally adaptable for loop closure in our
sparse topological mapping framework and made fast loop
closure possible. Image Sequence Partitioning(ISP) played a
key role in producing sparse topological maps. Sparsity of
the maps produced by different features are analyzed and the
accuracy is evaluated. Finally, our framework is evaluatedon
computational time required for loop closure. The experiments
prove our argument that HIFs are suitable for sparse topolog-
ical maps as they take advantage of the sparsity of the map
in performing loop closure efficiently without discarding any
information.
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