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Abstract— In mobile robot path tracking applica-
tions, an autonomous vehicle is steered to stay as close
as possible to a desired path. If lateral wheel slip is
an important variable, as it is the case at high speed
and due to low tire-ground friction in off-road applica-
tions, limits of the steering actuators, the major input
constraints of the system, have a major influence on
the tracking control performance. This paper presents
an algorithm to control the longitudinal velocity, a
secondary control variable, of a mobile robot in order
to respect the boundedness of the steering angle, and
thus to improve the vehicle safety. The applicability of
the algorithm has been verified through experiments
with an off-road mobile robot.

I. Introduction

Path tracking for wheeled mobile robots under off-road
conditions is a complex problem, especially at high speed.
Low and variable grip consitions causes non-negligible
wheel slip, possibly leading to a loss of the vehicle con-
trollability or integrity, when it spins or leaves the desired
path. To overcome the problems of entirely kinematic [1,
e.g.] or dynamic approaches [2, e.g.], a mixed kinematic-
dynamic control technique has been proposed for off-
road path tracking at high speed (see [3], [4]). It uses
a kinematic control law in combination with dynamic
observation strategies and achieves highly accurate path
following. However, depending on tire-ground friction,
the reference path’s shape and the targeted vehicle speed,
the existing control strategy can not always maintain
the vehicle’s integrity nor guarantee accurate tracking.
A major cause of this shortcoming is the mechanical
steering angle limit of the high speed off-road mobile
robot platform (Fig. 1), i.e. the boundedness of the
system input. While a trajectory can be be attainable
at low speed, it might become unachievable at higher
speed, because lateral slip of the vehicle leads to different
turning radii at the same steering angle δ, depending on
the platform speed and the actual friction conditions.

The problem of input constraints of mobile robots
has been addressed on the motion planning level and in
terms of control by various approaches. In [5] kinematic
vehicle and input constraints are treated via predictive
potential fields. A path planning strategy that respects
kinematic and dynamic constraints of a mobile robot was

shown in [6]. Wheeled mobile robots were used in [7] to
study trajectory following of Unmanned Aerial Vehicles,
that are subject to important motion constraints, where
constraint Lyapunov functions are employed to create
saturation controllers to respect velocity constraints.
In [8] chained form controllers for wheeled mobile robots
have been proposed that account for input saturation.
However, these approaches either do not respect dynamic
constraints or they suffer from the possibility to adapt
to varying operating conditions, that are inevitable pre-
requisites in off-road applications.

The algorithm presented in this paper aims on the
complement of the existing control system, shortly sum-
marized in section II, by a limitation of the steering an-
gle, accomplished via a modulation of the linear velocity.
For this purpose, the speed dependent cornering behavior
of the robot is used to generate a desired profile of the
robot’s velocity, taking into account the current tire-
ground friction conditions. Predictive Functional Control
(PFC) is employed to control the vehicle speed with
respect to this profile (section III). Section IV shows
experimental results obtained on the robot platform
depicted in Fig. 1.

Fig. 1. Experimental off-road robot platform

II. Existing hybrid path tracking control

This section recapitulates the existing hybrid path
tracking control law, that is complemented by the ve-
locity limitation algorithm. It is specifically designed for
off-road applications of car-like mobile robots.

A. Extended kinematic model

Because dynamic model based control laws have cer-
tain drawbacks in off-road path tracking - first of all
the high variability of the system parameters that often
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TABLE I

Principal symbols

β, βF , βR vehicle side-slip angles (global, front, rear)
θ vehicle yaw angle
m, Iz Robot mass and vertical inertia
CF,R cornering stiffnesses
v, vt, vd robot velocity, target velocity, desired limit
LF + LR = L wheelbase and longitudinal position of CoG
δ front steering angle
Γ reference path
a curvilinear abscissa, length of the path
c(a) curvature of the path at a

leads to oscillating behavior - the current control scheme
is based on a kinematic formulation of the control sys-
tem. The kinematic vehicle model [1, e.g.] is therefore
extended by integrating the side-slip of the vehicle. With
the controlled variables y (the distance of the robot
from the path) and θ̃ (the difference between the robot’s
orientation and the path’s tangent, see Fig. 2), the side-
slip angles βR,F , the linear velocity v, the curvature of
the reference path c(a) and the front steering angle δ, the
system can be modeled with respect to the curvilinear
abscissa a (as detailed in [9]) as:















ȧ = v cos(θ̃+βR)
1−c(a) y

ẏ = v sin(θ̃ + βR)

˙̃θ = v [cos(βR)λ1 − λ2]

(1)

where

λ1 =
tan(δ + βF ) − tan(βR)

L
, λ2 =

c(a) cos θ̃ + βR

1 − c(a)y

Fig. 2. Path tracking parameters

B. Observation of grip conditions

As model (1) reveals, the knowledge of the side-slip
angles βF and βR is of crucial importance. These angles
are hardly measurable directly, thus a mixed mode ob-
servation scheme has been proposed in [9] and recently
improved in [4]. It consists of a three step process,
involving kinematic and dynamic models.

1) A kinematic observation, based on model (1), esti-
mates the side-slip angles βF and βR precisely, yet
rather slow, because dynamic variables are deduced
from kinematic models and measurements.

2) This estimate of the side-slip allows the adaptation
of the cornering stiffnesses CF and CR, repre-
senting the current grip conditions via the linear
tire model (2), that relates the lateral tire forces

FF,R to βF,R. Since CF and CR are adapted on-
line, changing grip conditions and nonlinear friction
effects are reflected by the model. This method
has been chosen because of the different physi-
cal effects involved. Precise off-road tire modelling
leads inevitably to complex formulae with many
parameters, making them unsuitable for on-line
estimation algorithms.

3) Using these estimates of the cornering stiffness and
an additional measurement of the vehicle yaw rate,
a dynamic side-slip observer is set up. It allows for
faster convergence than the kinematic observation.

{

FF = CF (.) βF

FR = CR(.) βR
(2)

This mixed-model observation approach, combining a di-
rect kinematic observation in step 1) and the reactivity of
dynamic models in the steps 2) and 3), provides estimates
of the important vehicle parameters: the side-slip angles
βF,R, and the cornering stiffnesses CF,R. Thanks to this
observer, the cornering stiffnesses are on-line adapted,
accounting for both the contact nonlinearity and the
variation of grip conditions.
C. Adaptive and predictive control law

Now the estimated parameters permit the construction
of a control law, based on the extended kinematic model
(1). Via exact linearization, (3) can be set up with
the positive gains Kp and Kd. The geometric approach
yields a kinematic, time (and thus speed) independent
controller with exponential convergence of the vehicle to
the desired path by tuning the law’s gains to attain a
desired settling distance.

δ = arctan
(

tan(βR) + L
cos(βR)

(

c(a) cos θ̃1

α
+ A cos3 θ̃1

α2

))

− βF

(3)
with







θ̃1 = θ̃ + βR

α = 1 − c(a)y

A = −Kp y − Kd α tanθ̃1 + c(a)α tan2θ̃1

In order to compensate for delays in the low level control
of the robot, control law (3) is split into two parts: a
reactive part, mainly depending on the robot’s deviation
from the reference path, and a predictive part, mainly
depending on its curvature c(a) (that is known in ad-
vance). Their sum δ = δT raj + δDev is then applied as
target value in a model predictive controller (see [9] for
details), whose horizon (the amount of prediction time
used) is adjusted to the low level control’s properties.
Thus, steering commands are sent in advance and the
vehicle’s yaw corresponds to the curvature of the path.

D. Performance and limitations

The adaptive and predictive control law obtains pre-
cise path tracking under different and varying grip condi-
tions. Maximum lateral errors between 0.1 m (at 3 m s−1)
and 0.5 m (at 6 m s−1) can be achieved.

Nonetheless there are two major limitations:
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1) Due to unmodeled process dynamics, the tracking
controller gains and the horizon of the predictive
steering control need to be adjusted with respect to
the target longitudinal vehicle speed vt to achieve
optimal results.

2) The reference path Γ is generated by manually
steering the robot at low speed. Kinematically it
can thus be followed without doubt. However, dy-
namically the path can be unachievable, depending
on the current friction conditions and the targeted
vehicle speed vt, because the physically limited an-
gle of the steering actuator constraints the robot’s
motion.

III. Velocity limitation

The existing control law acts on the robot’s primary
control variable: the steering angle. As the limitation
algorithm is designed to complement the steering control,
it has to act on the secondary control variable, the vehicle
speed. In this section an expression is derived that relates
vehicle speed, steering angle and turning radius during
cornering. Due to lateral wheel slip, the same steering
angle results in different radii when the vehicle velocity
is different.

A. Relation of steering angle, speed and turning radius

in a steady-state curve

To obtain this expression, the linear lateral dynamic
bicycle model (4) is employed, that is frequently used to
represent the lateral vehicle behavior (assuming that the
angles δ and β are small). Likewise, it is the base for the
the dynamic observation outlined in section II-B:

ẋ = Ax + Bδ (4)

with

A =





−
CF +CR

m v −
m v2+CF LF −CRLR

m v2

−
CF LF −CRLR

Iz

−
CF L2

F
+CRL2

R

Izv





B =
(

CF

m v
CF LF

Iz

)T

and the state vector

x =
(

β θ̇
)T

In the static equilibrium (ẋ = 0) system (4) becomes:

−
CF + CR

m v
β −

m v2 + CF LF − CRLR

m v2
θ̇ +

CF

m v
δ = 0

(5)

−
CF LF − CRLR

Iz
β −

CF L2
F + CRL2

R

Izv
θ̇ +

CF LF

Iz
δ = 0

(6)

Solving (5) for β and inserting the result in (6) yields:

θ̇

δ
=

v CF CR (LF + LR)

CF CR (LF + LR)2 − m v2(CF LF − CRLR)
(7)

On the supposition that the path is well tracked, its
curvature c(a) can be assumed to be identical to the

inverse of the turning radius: c(a) = θ̇
v . By solving (7) for

v, the desired relation (8) between vehicle velocity and
steering angle is achieved for constant grip conditions.

v(a) =

(

CF CR L (L c(a) − δ)

c(a) m (CF LF − CRLR)

)1/2

(8)

The singularities of (8) will be addressed in section III-B.
As an illustration, for the parameters of the experimental
platform (LR = 0.65 m, LF = 0.55 m, m = 400 kg),
considering an identical cornering stiffness for front and
rear axle and a constant steering angle, the vehicle needs
to be slower at lower grip to attain the same curvature.
For instance, the robot would have to travel at 3.43 m s−1

to attain a curvature of 0.15 m−1 at δ = 12◦ if CF,R =
2000 N rad−1, it would have to travel at 7.67 m s−1 if
CF,R = 10 000 N rad−1.

Relation (8) exhibits interesting properties, related to
the vehicle’s steering behavior, that are further discussed
in the sequel.

B. Velocity limitation via equilibrium speed

Equation (8) becomes singular in the following cases:

1) c(a) = 0
2) ds = CF LF − CRLR = 0
3) the square root radical is negative

Case 1) of zero curvature is a conceptual singularity,
there is no speed associated to a straight line motion
and there is no need for its limitation. The singularities
of the cases 2) and 3) are directly related to the vehicle’s
current steering behavior.

In the kinematic case the linear model defines a rela-
tion of curvature and steering angle:

c = δ/L (9)

The expression is a linearized version of the geometric
relation c = tan(δ)/L of the vehicle kinematics. In the
linear kinematic case, a path is then “kinematically
admissible” if:

cmax < δmax/L (10)

In order to incorporate the side-slip of a vehicle, (7)
is reorganized (again assuming c = θ̇/v) to define the
dynamic equivalent to (9):

c =
CF CRL

CF CRL2 − mv2(CF LF − CRLR)
δ

=
δ

L −
mv2ds

CF CRL

(11)

Now two different cases have to be distinguished:

• understeer, ds < 0: the effective steady-state turning
radius of the vehicle is lower than kinematically
defined by δ/L, as yielding from (11)
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• oversteer, ds > 0: the effective steady-state turning
radius of the vehicle is higher than kinematically
defined by δ/L, as (11) reveals

This difference is important for the applicability of the
equilibrium speed to velocity limiting. Likewise impor-
tant is the fact that the steering behavior is not an in-
herent property of a vehicle. It is significantly depending
on the present grip conditions.

The singular cases 2) and 3) of (8) are interpreted
under distinction of the steering behavior:

• understeer: The square root radical is positive if
c < δ/L, which is always the case for understeer.
Equation (11) reveals that the robot’s velocity has
to be reduced in the presence of slip, in order to
achieve curves close to the kinematic case. A curve
thus is dynamically admissible, if it is kinematically
admissible (although v = 0). For v > 0 the “dynamic
admissibility” can be be defined in analogy to (10)
as:

cmax <
CF CRL

CF CRL2 − mv2(CF LF − CRLR)
δmax

(12)
• oversteer: The square root radical is positive if

c > δ/L, which is always ensured for oversteer. Any
curvature can be achieved, since for smaller values
of c the steering angle δ can be adapted.

• neutral: At the margin between understeer and over-
steer (ds = 0), (8) becomes singular, because the
velocity has no influence on the cornering behavior.
(12) becomes identical to (10), a curve is dynami-
cally admissible, if it is kinematically admissible.

Our experimental robot platform normally understeers.
In order to assure the dynamic admissibility of the ref-
erence path, a velocity limit profile vd can be calculated
according to (8) with respect to a desired steering angle
limit δmax. The evaluation is based on the observed
front and rear cornering stiffnesses CF,R (wich are on-line
adapted thanks to the observer introduced in section II-
B) and future curvature values of the learned reference
path.

According to experience, at high speed the probability
of oversteer increases due to more important wheel slip
and important steering angles. The robot then risks to
spin, whereby the vehicle’s integrity is lost. For vehicles
exposing this behavior, a velocity limitation helps to
avoid the transition to oversteer.

This property might seem to be a contradiction to
the discussion above, where oversteer appears to have
advantages to understeer, because the turning radius of
the robot is not limited. The transition from understeer
to oversteer occurs at low grip due to different friction
conditions on the front and rear axle of the robot. Even
if the side-slip angles become important in this situation
and the linear bicycle model is not longer a precise
system description, (8) provides an idea of the associated
risk. Fig. 3 shows the the equilibrium speed for differing

CF and CR (δ = 10◦, CF = 2000 N rad−1, LF = 0.55 m,
LR = 0.65 m). It is clearly visible that small variations
in speed can cause high variations in curvature, when
the steering behavior passes from understeering (CR =
2000 N rad−1 and CR = 1800 N rad−1) to oversteering
(CR = 1600 N rad−1 and CR = 1400 N rad−1). In this
context, it is important to note that the cornering stiff-
nesses are not a static property of the tire-soil interac-
tion. Due to nonlinear friction effects, these parameters
are highly variable.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

curvature [m
−1

]

v
 [

m
/s

]

C
R
=2000 N/rad

C
R
=1800 N/rad

C
R
=1600 N/rad

C
R
=1400 N/rad

Fig. 3. Example of possible transition from understeer to oversteer

C. Model predictive longitudinal control

In order to command the longitudinal speed of the
robot, a Predictive Functional Controller (PFC, [10]) is
employed, fed by the previously generated velocity limit
profile as reference. The PFC approach thus respects the
longitudinal dynamics of the vehicle and calculates the
optimum correcting variable to attain the desired speed
profile. The internal model of the longitudinal dynamics
has been obtained via identification because the actual
behavior is rather complex (closed loop control on the
vehicle low level + vehicle dynamics). For reasons of
simplicity a representation with m equal time constants
T has been chosen: Glon(s) = K

(1+T s)m . Gain K and an
inflection time ti have been determined from a corre-
sponding step of desired velocity response. For m = 3,
ti = (m − 1) T yields:

Glon(s) =
1

(1 + 0.8 s)3
(13)

PFC is a receding horizon approach, taking into account
h future points in time (coincidence points in sampled
time, interval Ts). At instance n the controller will use
the sequence vd(n + i), 0 ≤ i ≤ h of the desired speed
profile as reference. It calculates an optimal sequence
vs(n + i) for the control variable, the speed set point
sent to the robot’s low level control. The optimization is
based on a set of nB base functions, each of them defined
for the h coincidence points:

uB =









uB1(0) uB1(1) . . . uB1(h − 1)
uB2(0) uB2(2) . . . uB2(h − 1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
uBnB

(0) uBnB
(2) . . . uBnB

(h − 1)









The control sequence is determined via the nB-dimensio-
nal weighting vector µ, that is subject of the optimiza-
tion:

vs(n + i) =

nB
∑

k=1

µk(n)uBk(i)
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This optimal weighting vector needs to be computed at
each controller cycle n by minimizing the criterion:

D(n) =
h

∑

i=1

[v̂(n + i) − vd(n + i)]
2

,

where v̂ is the predicted linear velocity of the robot,
i.e. the output of the process model (13) to the control
sequence vs. At each cycle only the first element:

vs(n) =

nB
∑

k=1

µk(n)uBk(0)

is applied to the robot. The strategy is illustrated in
Fig. 4

Fig. 4. Illustration of PFC for longitudinal speed control

At every controller step n a new coincidence point
vd(n + h) is determined employing the current friction
conditions CF,R(n) and the future curvature c

(

a(n+h)
)

,
where a(n+h) is calculated by integration of the desired
speed vd(n + i), 0 ≤ i ≤ h. Since vd(n + h) depends on
a(n + h) in turn, the tuple is approximated iteratively.
It is not necessary to determine an exact value for
a(n), since c(a) develops smoothly (guaranteed by a
polynomial approximation of the path). At the same
time, values of vd that exceed the default velocity vt are
omitted.

IV. Experimental results

A. Steering angle limitation

10 m

start

0 50 100 150 200

−0.1

0

0.1

0.2

0.3

a [m]

c
u
rv

a
tu

re
 c

(a
) 

[m
−

1
] C1: concrete C2: grassland

Fig. 5. Reference trajectory and corresponding curvature

The algorithm has been tested in combination with
the kinematic path tracking control law and the mixed-
mode observation scheme described in section II. A
reference path has been chosen so that A) it contains high
curvature segments, B) these segments are positioned on
two different types of ground (grassland and concrete).

Fig. 5 illustrates the shape of the path and the different
ground types by an overlay of an aerial view and the
corresponding curvature along this path. It indicates the
two curved segments C1 and C2 on concrete and on
grassland, respectively. The reference path was generated
via a learning procedure at low robot speed, thus ensur-
ing its kinematic feasibility.

In order to verify the velocity limitation algorithm, the
robot was tracking the reference path at different speeds
(4 m s−1 and 5 m s−1), with a steering angle limit of 17◦)
and with different prediction horizons h (where only the
most favorable results of h = 3 s are shown here) in the
longitudinal speed control. As a reference, the robot was
also tracking the path at constant speed.

TABLE II

Value reached by δ for speeds vt = 4 m s−1 and vt = 5 m s−1

reference limit 17
◦

4 m s−1 5 m s−1 4 m s−1 5 m s−1

C1
max(δ) 18.9 19.6 16.9 17.0
mean(δ) 14.9 15.3 14.9 14.7

C2
max(δ) 20.0 20.3 17.6 17.7
mean(δ) 15.2 16.9 14.9 14.7

Figs. 6 and 8 show the resulting steering angle for
vt = 4 m s−1 and vt = 5 m s−1) with limitation enabled
and disabled. It can be observed, that the steering angle
reaches the physical limit of 20◦ during the reference runs
(although it was taught with a maximum steering angle
of 15◦). If the speed limitation is enabled, the steering
angle stays clearly below this bound. The steering action
is lower because of the limitation of the vehicle longi-
tudinal speed (Figs. 7 and 9) by the PFC algorithm,
the limitation algorithm works efficiently. The resulting
maximum and mean steering angles during the curves C1
(50 < a < 110) and C2 (140 < a < 175) are summarized
in table II.

It is interesting to note the differences between curves
C1 and C2: from different tire-ground friction conditions
(Fig. 10) different speed limits are arising. For instance
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δ
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g
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]

a [m]

Fig. 6. Measured steering angle in experiment at 4 m s−1
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Fig. 7. Measured linear speed in experiment at 4 m s−1
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Fig. 8. Measured steering angle in experiment at 5 m s−1

for vt = 4 m s−1 the speed is not limited during C1 but
during C2. As shown in Fig. 9, the speed is limited in
both curves at 5 m s−1. The adaptation of cornering stiff-
nesses, as described in section II is reported in Fig. 10.

B. Tracking accuracy

The mean tracking error stays quasi constant under
limited velocity. Indeed, one would expect a decreasing
error when the robot is decelerated, but the speed de-
pendency of the dynamic observers associated with the
tracking control causes significant deviations during the
transitions between straight and curved path segments.
In Fig. 11 the tracking error for 4 m s−1 is shown. The
re-acceleration of the robot after a = 170 m causes
oscillations around the path, but they do not exceed the
typical error range.

V. Conclusions and future work

The presented algorithm extends the existing off-road
mobile robot path tracking strategy to account for steer-
ing angle saturation. To this end, the vehicle’s longitu-
dinal speed is linked to the turning radius via a steady
state equation of the vehicle dynamic behavior. The grip
conditions are estimated by an on-line adaptation of the
cornering stiffnesses. In this manner, the path tracking
control law is preserved, while the constraintness of the
primary control variable is respected. The generated
velocity target profile is used as reference for a PFC, that
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Fig. 9. Measured linear speed in experiment at 5 m s−1
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Fig. 10. Cornering stiffnesses for vt = 5 m s−1 (front wheel)
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Fig. 11. Tracking error at 4 m s−1

takes into account the longitudinal dynamic behavior of
the robot.

The effectiveness of the approach was shown via ex-
periments, where the steering properties were compared
for different speeds. However, the approach currently
suffers from the speed dependency of the present control
architecture: predictive steering control and dynamic
observers are correlated with the vehicle longitudinal
velocity. Since this work is part of a bigger aggregation
of stability and safety related algorithms, this problem
will be subject of future work. Additionally, the steering
actuator is not only constrained in its maximum angle.
The steering speed is limited as well, influencing the
maneuverability in transient sections when the curvature
of the path is changing. To this end, the presented
predictive algorithm will be extended to cover these
additional constraints in the vehicle dynamics.

This work is related to the project FAST, funded by
the French National Research Agency (grant number
ANR-07-ROBO-0008, https://projetfast.cemagref.fr).

References

[1] C. Samson, “Control of chained systems: Application to
path following and time varying point stabilization of mobile
robots,” IEEE Trans. Automat. Contr., vol. 40, pp. 64–77,
1995.

[2] M. Ellouze and B. d. Andréa-Novel, “Control of unicycle-type
robots in the presence of sliding effects with only absolute lon-
gitudinal and yaw velocities measurement.” European Journal
of Control, vol. 6, pp. 567–584, 2000.

[3] R. Lenain, B. Thuilot, C. Cariou, and P. Martinet, “Mixed
kinematic and dynamic sideslip angle observer for accurate
control of fast off-road mobile robots,” Journal of Field
Robotics, vol. 27, pp. 181–196, 2010.

[4] R. Lenain, B. Thuilot, O. Hach, and P. Martinet, “High-
speed mobile robot control in off-road conditions: A multi-
model based adaptive approach,” accepted for publication at
ICRA2011.

[5] C. Connette, A. Pott, M. Hägele, and A. Verl, “Addressing
input saturation and kinematic constraints of overactuated
undercarriages by predictive potential fields,” in Proc. IROS,
2010, pp. 4775–4781.

[6] V. Munoz, A. Ollero, M. Prado, and A. Simon, “Mobile robot
trajectory planning with dynamic and kinematic constraints,”
in Proc. ICRA, 1994, pp. 2802–2807.

[7] W. Ren, J.-S. Sun, R. Beard, and T. McLain, “Nonlinear
tracking control for nonholonomic mobile robots with input
constraints: An experimental study,” in Proc. ACC, 2005, pp.
4923–4928.

[8] C. Wang, “Semiglobal practical stabilization of nonholonomic
wheeled mobile robots with saturated inputs,” Automatica,
vol. 44, pp. 816–822, 2008.

[9] R. Lenain, B. Thuilot, C. Cariou, and P. Martinet, “Adap-
tive and predictive path tracking control for off-road mobile
robots,” European Journal of Control, vol. 13, pp. 419–439,
2007.

[10] J. Richalet, “Industrial applications of model based predictive
control,” Automatica, vol. 29, pp. 1251–1274, 1993.

4077


