
Chapter 16
Points-Based Visual Servoing with Central
Cameras

Hicham Hadj-Abdelkader, Youcef Mezouar, and Philippe Martinet

Abstract This chapter concerns hybrid visual servoing schemes from a set of points
viewed by central camera. The main purpose is to decouple the velocity commands
in order to obtain an adequate camera trajectory. The proposed schemes are model-
free since they are based on the homography matrix between two views. The ro-
tational motions are controlled using the estimated orientation between the current
and the desired positions of the robot, while the translational motions are controlled
using the combination between image points (onto the sphere or into the normalized
plane) and 3D information extracted from the homography matrix. Real-time exper-
imental results with a cartesian manipulator robot are presented and show clearly
the decoupling properties of the proposed approaches.

16.1 Introduction

In vision-based control, the choice of the set of visual features to be used in the
control scheme is still an open question, despite of the large quantity of results ob-
tained in the last few years. The visual servoing schemes can be classified in three
groups: position-based visual servoing (PBVS) [27], image-based visual servoing
(IBVS) [7] and hybrid visual servoing [15]. In PBVS, the used information is de-
fined in the 3D space which allow the control scheme to ensure nice decoupling
properties between the degrees of freedom (DOF) (refer to [26]). Adequate 3D tra-
jectories can thus be obtained such as a geodesic for the rotational motion and a
straight line for the translational motion. However, this kind of control scheme is
sensitive to measurement noises and the control may thus suffer from potential in-
stabilities [3]. In IBVS the control is performed in the image space. Whatever the
nature of the possible measures extracted from the image, the main question is how
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to combine them to obtain an adequate behavior of the system. In most works, the
combination of different features is nothing but a simple stacking. If the error be-
tween the initial value of the features and the desired one is small, and if the task
to realize constrains all the available DOF, that may be a good choice. However, as
soon as the error is large, problems may appear such as reaching local minimum or
task singularities [3]. Hybrid visual servoing is an alternative to the two previous
control schemes. In this case, the visual features gather 2D and 3D information.

The way to design adequate visual features is directly linked to the modeling
of their interaction with the robot motion, from which all control properties can be
analyzed theoretically. If the interaction is too complex (i.e. highly nonlinear and
coupled), the analysis becomes impossible and the behavior of the system is gener-
ally not satisfactory in difficult configurations where large displacements (especially
rotational ones) have to be realized. To overcome these problems, it is possible to
combine path-planning and visual servoing, since tracking planned trajectories al-
lows the error to always remain small [20]. A second approach is to use the measures
to build particular visual features that will ensure expected properties of the control
scheme (refer for instance to [21, 14, 5, 13, 12, 4, 24]).

This chapter is concerned with homography-based visual servo control tech-
niques with central catadioptric cameras. This framework, also called 2-1/2D vi-
sual servoing [15] in the case where the image features are points, exploits a com-
bination of reconstructed Euclidean information and image features in the control
design. The 3D information is extracted from an homography matrix relating two
views of a reference plane. As a consequence, the 2-1/2D visual servoing scheme
does not require any 3D model of the target. Unfortunately, in such approach when
conventional cameras are used, the image of the target is not guaranteed to remain
in the camera field of view. To overcome this deficiency, 2-1/2D visual servoing
is first extended to the entire class of central cameras (including pinhole cameras,
central catadioptric cameras and some fisheye cameras [6]). It will be shown that as
when a conventional camera is employed, the resulting interaction matrix is block-
triangular with partial decoupling properties. Then two new control schemes will
be proposed. The basic idea of the first one is to control the translational motions
using a scaled 3D point directly obtained from the image points coordinates and
the homography matrix. Compared to the conventional 2-1/2D visual servoing, it
allows to obtain better camera trajectory since the translation is controlled in the 3D
space while the interaction matrix remains block-triangular. Then, a hybrid scheme
which allow us to fully decouple rotational motions from translational ones (i.e the
resulting interaction matrix is square block-diagonal) will be proposed. For the three
proposed control schemes, it will be also shown that the equilibrium point is glob-
ally stable even in the presence of errors in the norm of 3D points which appears in
the interaction matrices.
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16.2 Modeling

In this section, the unified cental projection model using the unitary sphere is
briefly recalled. Then, Euclidean reconstruction from the generic homography ma-
trix is addressed.

16.2.1 Generic Projection Model

Central imaging systems can be modeled using two consecutive projections:
spherical projection succeeded by a perspective one. This geometric formulation
called unified model has been proposed by Geyer and Daniilidis in [9] and has been
intensively used by the vision and robotics community (structure from motion, cal-
ibration, visual servoing, etc).

Fig. 16.1 Unified central projection and two views geometry.

Consider the virtual unitary sphere centered in the origin of the mirror frame Fm

as shown in Fig.16.1 and the perspective camera centered in the origin of the camera
frame Fc. Without lost of generality, a simple translation of −ξ, along the Z axis of
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the mirror frame, between Fm and Fc is considered. Let X be a 3D point with coor-
dinates X = [X Y Z]� in Fm. The world point X is projected in the image plane into
the point of homogeneous coordinates xi = [xi yi 1]�. The image formation process
can be split in three steps given in the following:

• first, the 3D world point X is mapped onto the unit sphere surface:

Xs =
1
ρ

[

X Y Z
]�
, (16.1)

where ρ = ‖X‖ = √
X2+Y2 +Z2.

• then, the point Xs lying on the unitary sphere is perspectively projected on the
normalized image plane Z = 1− ξ into a point of homogeneous coordinates:

x = f(X) =

[

X
Z+ ξρ

Y
Z+ ξρ

1
]�

(16.2)

(as it can be seen, the perspective projection model is obtained by setting ξ = 0);
• finally, the 2D projective point x is mapped into the pixel image point with ho-

mogeneous coordinates xi using the collineation matrix K:

xi =Kx

where the matrix K contains the conventional camera intrinsic parameters cou-
pled with mirror intrinsic parameters, and can be written as:

K =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

fu αuv u0

0 fv v0

0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The matrix K and the parameter ξ can be obtained after calibration using for
instance the method proposed in [1]. The inverse projection from the image plane
onto the unit sphere can be obtained by inverting the second and last steps. As
a matter of fact, the point x in the normalized image plane is obtained using the
inverse mapping K−1:

x =
[

x y 1
]�
=K−1xi. (16.3)

The point onto the unit sphere is then obtained by inverting the nonlinear projection
(16.2):

Xs = f−1(x) = η

[

x y 1− ξ
η

]�
, (16.4)

where

η =
ξ+
√

1+ (1− ξ2)(x2+ y2)

x2 + y2+1
.
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16.2.2 Scaled Euclidean Reconstruction

Several methods were proposed to obtain the Euclidean reconstruction from two
views [8]. They are generally based on the estimation of the essential or homog-
raphy matrices. The epipolar geometry of cameras obeying the unified model has
been recently investigated [10, 23, 11]. For control purposes, the methods based
on the essential matrix are not well suited since degenerate configurations such as
pure rotation motion can induce unstable behavior of the control scheme. It is thus
preferable to use methods based on the homography matrix.

It will be shown now how one can compute the Homographic relationship be-
tween two central views of points. Consider two positions Fm and F �

m of the cen-
tral camera (see Fig.16.1). Those frames are related by the rotation matrix R and
the translation vector t. Let (π) a 3D reference plane given in F �

m by the vector
π�� = [n�� −d�], where n� is its unitary normal in F �

m and d� is the distance from
(π) to the origin of F �

m .
Let X be a 3D point with coordinates X = [X Y Z]� with respect to Fm and

with coordinates X� = [X� Y� Z�]� with respect to F �
m . Its projection in the unit

sphere for the two camera positions is given by the coordinates Xs = ρ
−1X and

X�
s = ρ

�−1X�. The distance d(X,π) from the world point X to the plane (π) is given
by the scalar product [X�� 1] ·π�:

d(X,π) = ρ�n��X�
s −d�. (16.5)

The relationship between the coordinates of X with respect to Fm and F �
m can be

written as a function of their spherical coordinates:

ρXs = ρ
�RX�

s + t. (16.6)

By multiplying and dividing the translation vector by the distance d� and accord-
ing to (16.5), the expression (16.6) can be rewritten as:

ρXs = ρ
�HX�

s +αt, (16.7)

with H = R+
t

d�
n�� and α = −d(X,π)

d�
. H is the Euclidean homography matrix

written as a function of the camera displacement and of the plane coordinates with
respect to F �

m . It has the same form as in the conventional perspective case (it can
be decomposed into a rotation matrix and a rank 1 matrix). If the world point X
belongs to the reference plane (π) (i.e. α = 0) then (16.7) becomes:

Xs ∝ HX�
s .

The homography matrix H related to the plane (π) can be estimated up to a scale
factor by solving the linear equation Xs ⊗HX�

s = 0 (where ⊗ denotes the cross-
product) using, at least, four couples of coordinates (Xsk; X�

s k) (where k = 1 · · ·n
with n ≥ 4), corresponding to the spherical projection of world points Xk belonging
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to (π). If only three points belonging to (π) are available then at least five supplemen-
tary points are necessary to estimate the homography matrix by using for example
the linear algorithm proposed in [15].

From the estimated homography matrix, the camera motion parameters (that is
the rotation R and the scaled translation td� =

1
d� t) and the structure of the observed

scene (for example the vector n�) can thus be determined (refer to [8, 28]). It can

also be shown that the ratio σ =
ρ

ρ�
can be computed as:

σ =
ρ

ρ�
= det(H)

n��X�
s

n��R�Xs
. (16.8)

In the sequel, the rotation parameters and the ratio σ, extracted from the esti-
mated homography are used to define the task function for the proposed hybrid
visual servoing schemes.

16.3 Visual Servoing

16.3.1 Task Function and Interaction Matrices

As usual when designing a visual servoing scheme, the visual feature vector s is
often expressed as function of the 3D representation of the observed object such as
a set of 3D points. In order to control the movements of the robotic system from
visual features, one defines a task function to be regulated to 0 as [22] :

e = L+(s− s�),

where .+ denote the pseudo-inverse and L is the interaction matrix which links the
variation of s to the camera velocities. If the observed object is motionless, one gets:

ṡ = Lτ,

where τ is a 6D vector denoting the velocity screw of the central camera. The vector
τ contains the instantaneous linear velocity v and the instantaneous angular velocity
ω of the sensor frame expressed in the same frame. In the sequel, the sensor frame
is chosen as the mirror frame Fm.

A simple control law can be designed by imposing an exponential decay of the
task function e toward 0:

ė = −λe,

where λ is a proportional gain. The corresponding control law is:

τ = −λL+(s− s�). (16.9)
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In order to compute the control law (16.9), the interaction matrix L or its pseudo-
inverse (its inverse if L is square) should be provided. In practice, an approximation
̂L of the interaction matrix is used. If the task function e is correctly computed,
the global asymptotic stability of the system can be obtained if the necessary and
sufficient condition L̂L

+
> 0 is satisfied.

When the visual features are related to the projection of 3D points, the vector s
is function of the 3D coordinates X = [X Y Z]� of the 3D point X. In that case, the
interaction matrix related to s can be written as:

L =
∂s
∂X

LX,

Js =
∂s
∂X

is the Jacobian matrix linking the variations of s and X, and LX is the

interaction matrix related to the 3D point X:

Ẋ = LXτ =
(

−I3 [X]×
)

τ, (16.10)

where [a]× is the anti-symmetric matrix of the vector a.
If one considers n visual features related to the same 3D point X, the global

interaction matrix L for the features vector s = [s1 s2 · · · sn]� can be written:

L =
(

Js1
� Js2

� · · · Jsn
� )� LX.

16.3.2 Interaction Matrix for 2D Point

Consider a 3D point X with coordinates X = [X Y Z]� with respect to the mirror
frame Fm. Its central projection on the normalized image plane is obtained using
(16.1) and it is given by the point of homogeneous coordinates x =

[

x y 1
]�. If the

visual feature is chosen as s = [x y]�, the interaction matrix L is:

L = Js LX,

where

Js =
1

ρ(Z+ ξρ)2

(

ρZ+ ξ(Y2 +Z2) −ξXY −X(ρ+ ξZ)
−ξXY ρZ+ ξ(X2+Z2) −Y(ρ+ ξZ)

)

.

After few developments, the analytical expression of the interaction matrix L can
be written as:

L =
(

A B
)

, (16.11)

where

A = ρ−1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− γ+ξ
(

x2+y2
)

1+ξγ + ξx2 ξxy γx

ξxy − γ+ξ
(

x2+y2
)

1+ξγ + ξy2 γy

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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and

B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

xy −γγ+ξ
(

x2+y2
)

1+ξγ + y2 y

γ
γ+ξ
(

x2+y2
)

1+ξγ − x2 −xy −x

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

with γ =
√

1+ (1− ξ2)(x2+ y2).

16.3.3 Decoupled Visual Servoing

In visual servoing scheme, the control properties are directly linked to the in-
teraction between the designed features and the camera (or the robot) motion. The
behavior of the camera depends on the coupling between the features and the camera
velocities. For example, the interaction matrix in (16.11) related to the image coor-
dinates of 2D points is highly nonlinear and coupled. Thereof, large displacements
of the camera became difficult to realize.

Several approaches have been proposed to overcome these problems. Most of
them ensure a good decoupling properties by combining 2D and 3D information
when defining the input of the control law. The related control schemes are called
hybrid visual servoing. In this work, three model free decoupled control schemes
are proposed. Let us first define the observation vector as:

s =
[

s̃� θu�
]�
.

The vector s̃ is chosen to be variant to the translational motions of the camera and
can be variant or invariant to the rotational motions, whereas the vector θu, rep-
resenting the rotational information between the current and the desired positions
of the camera, is invariant to the translational motions. Consequently, the global
interaction matrix L related to the features vector s is a block-triangular matrix:

L =
(

Ls̃v Ls̃ω
03 Lω

)

.

Note that when s̃ is invariant to rotational motions, L becomes a block-diagonal
matrix.

16.3.3.1 Interaction Matrix Lω

The rotation matrix between the current and the desired positions of the central
camera, can be obtained from the estimated homography matrix H. Several repre-
sentations of the rotation are possible. The representation θu (where θ is the rotation
angle and u is a unit vector along the rotation axis) is chosen since it provides the
largest possible domain for the rotation angle. The corresponding interaction matrix
can be obtained from the time derivative of θu since it can be expressed with respect
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to the central camera velocity screw τ:

d(θu)
dt
=
(

03 Lω
)

τ,

where Lω is given by [17]:

Lω = I3− θ2[u]×+
⎛

⎜

⎜

⎜

⎜

⎜

⎝

1− sinc(θ)

sinc2( θ2 )

⎞

⎟

⎟

⎟

⎟

⎟

⎠

[u]2×.

Note also that theoretically in this case L−1
ω θu = θu. This nice property can advan-

tageously be exploited to compute the control vector.
In practice, estimated camera parameters are used. The estimated rotation pa-

rameter ̂θu can be written as a nonlinear function of the real ones ψ(θu). Since
̂L−1
ω
̂θu = ̂θu, the closed-loop equation of the rotation control is:

θu
dt
= −λLωψ(θu).

The asymptotic stability of this system has been studied for conventional camera
(ξ = 0) since in this case the function ψ has a simple analytical form [16]. How-
ever, the stability analysis remains an open problem when ξ � 0 since the nonlinear
function ψ is much more complex in this case.

16.3.3.2 2-1/2D Visual Servoing

2-1/2D visual servoing has been first proposed by Malis and Chaumette in case
of conventional camera (ξ = 0). In this section, the original scheme is extended to
the entire class of central cameras. In order to control the translational motion, let
us define s̃ as:

s̃ =
[

s̃1
� s̃2

]�
,

where s̃1 =
[

x y
]� and s̃2 = log(ρ) are respectively the coordinates of an image point

and the logarithm of the norm of its corresponding 3D point. The error between
the current value log(ρ) and the desired value log(ρ�) can be estimated using (16.8)
since s̃2 − s̃2

� = log(σ).
The corresponding interaction matrix Ls̃ can be written as:

Ls̃ =
(

Js̃1
� Js̃2

)�
LX,

where the Jacobian matrix Js̃1 is given by (16.11), and Js̃2 can be easily computed:

Js̃2 = ρ
−2 X�.

Ls̃ =
(

Ls̃v Ls̃ω

)

can be obtained by stacking the interaction matrix in (16.11) and:
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Ls̃2 = Js̃2LX =
1
σρ�

(

−Φx −Φy Φ
ξ2(x2+y2)−1

1+γξ 0 0 0
)

, (16.12)

with Φ = Z+ξρ
ρ =

1+γξ
γ+ξ(x2+y2)

. Note that the parameter ρ� can be estimated only once
during an off-line learning stage. If the system is supposed correctly calibrated and
that measurements are noiseless, then the control law is asymptotically stable for
any positive valuêρ�. However, the robustness with respect to calibration and mea-
surement errors still remains an open problem.

16.3.3.3 Norm-ratio-based Visual Servoing

As it can be seen in (16.12), the ratio between ρ and ρ� is invariant to rotational
motion. In the sequel, this property will be exploited in a new control scheme allow-
ing us to decouple translational motions from the rotational ones. At this end, let us
now define s̃ as:

s̃ =
[

log(ρ1) log(ρ2) log(ρ3)
]�
.

The interaction matrix Js̃ corresponding to s̃ is obtained by stacking the interaction
matrices given by (16.12) for each point. In this case, the global interaction matrix
L is a block-diagonal matrix:

L =
(

Ls̃v 03
03 Lω

)

.

As above-mentioned, the translational and rotational controls are fully decoupled.
If the system is correctly calibrated and the measurements are noiseless, the system

is stable since
̂ρ� i
ρ�i

is positive.

16.3.3.4 Scaled 3D Point-based Visual Servoing

Visual servoing scheme based on 3D points benefits of nice decoupling properties
[19] [2]. Recently, Tatsambon et al. show in [25] that similar decoupling properties
than the ones obtained with 3D points can be obtained using visual features related
to the spherical projection of a sphere: the 3D coordinates of the center of the sphere
computed up to a scale (the inverse of the sphere radius). However, even if such an
approach is theoretically attractive, it is limited by a major practical issue since
spherical object has to be observed.

Consider a 3D point X with coordinates X = [X Y Z]� with respect to the frame
Fm. The corresponding point onto the unit sphere is Xs and X = ρXs.

Let us now choose s̃ as:

s̃ = σ Xs =
1
ρ�

X, (16.13)
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where ρ� is the 2-norm of X with respect to the desired position F � of the camera.
The feature vector s̃ is thus defined as a vector containing the 3D point coordinates
up to a constant scale factor. Its corresponding interaction matrix can be obtained
directly from (16.10):

Ls̃ =
1
ρ�

LX =

(

− 1
ρ�

I3 [s̃]×
)

.

As it is shown in the expression of Ls̃, the only unknown parameter is ρ� which
appears as a gain on the translational velocities. A nonzero positive value attributed
to ρ� will thus ensure the global asymptotic stability of the control law. The ratio
between the real value of ρ� and the estimated onêρ� will act as an over-gain in the
translational velocities.

Note that a similar approach using conventional camera has been proposed by
Malis and Chaumette in [16] in order to enhance the stability domain. However, an
adaptive control law has to be used in order that the reference point remains in the
camera field of view during the servoing task. This is not a crucial issue in our case
since our approach can be used with a large field of view.

16.4 Results

The proposed hybrid visual servoing schemes have been validated with a series
of experiments. They were carried out on a 6 DOF manipulator robot in eye-in-hand
configuration. A fisheye camera is mounted on the end-effector of the robot (see
Fig. 16.2). The estimated camera calibration parameters are ξ = 1.634, fu = 695,
fv = 694.9, αuv = 0, u0 = 400.4 and v0 = 304.4. In order to simplify the features
extraction and tracking, the target is composed of a set of white marks printed into a
black background. These marks are tracked and their centers of gravity are extracted
using the VISP library [18]. The experiments are detailed in the sequel by denoting
with:

• A the 2D point-based control law,
• B the hybrid scheme presented in Section 16.3.3.2,
• C the hybrid scheme presented in Section 16.3.3.3,
• D the hybrid scheme presented in Section 16.3.3.4.

Experiment 1. A large generic displacement is considered. It is composed of a
translation t= [80 80 −40] cm and of a rotation θu= [0 50 140] deg. The behaviors
of the proposed control schemes are compared with conventional IBVS. Since a
very large rotation about the Z-axis (around 140 deg) is considered, the control A
fails, the robot reaching quickly its joint limits. The rotation about the Z-axis is thus
reduced to 40 deg for the control A.

Fig. 16.3 shows the results obtained using the control A. The interaction matrix
depends on 3D parameters, points coordinates and calibration parameters. If one
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Fig. 16.2 Experimental setup: Eye-in-Hand configuration.

supposes that the camera-robot system is correctly calibrated and that the measure-
ments are noiseless, the 3D parameters should be accurately estimated to guarantee
a quasi-exponential decreasing of the task function e (leading to straight line tra-
jectories of the points in the image plane). In this experiment, the 3D parameters
ρi (which appears in the interaction matrix (16.11)) are set to a constant values
ρ̂i =̂ρ�i (where ρ̂�i denotes the estimated value of ρi at the desired configuration).
Consequently, the points trajectories are no more straight lines until around the 300th

iteration (where ρi became very close to ρ�i ). After the 300th iteration, one can ob-
serve that the errors are decreasing exponentially and the image trajectories became
roughly straight.

The results obtained with the hybrid control B, C and D are shown in Fig. 16.4,
Fig. 16.5 and Fig. 16.6 respectively. The parameter ρ� is set to ̂ρ� = 2ρ� in those
cases.

It can be first observed that the three control laws allow to achieve the large
rotation about the Z-axis (i.e. 140 deg) and that, as expected, a rough estimation of
the parameter ρ� does not affect the system stability. It can be also observed that
the decoupling properties have been significantly improved with respect to the 2D
points visual servoing. Finally, let us note that, in Fig. 16.4(b) the trajectory of the
point used to define the 2-1/2D task function should be a straight line. This is clearly
not observed since once again ρ is not correctly estimated.

The control C allows to fully decouple translational and rotational motions. How-
ever, the computation of the 3D features ρi

ρ�i
increase the sensitivity of the control

scheme to measurement noise as it can be observed in Fig. 16.5 (see between 200th

and 300th iterations). The control law D provides very nice decoupling properties
(refer to Fig. 16.6). In this case, translational velocities are directly related to the
visual features (used to control the translational DOF) through a constant diagonal
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Fig. 16.3 A, 2D points-based visual servoing: (a) initial image; (b) desired image and image-points
trajectories; (c) translational velocities in m/s; (d) rotational velocities in deg/s; and (e) error vector
components.

matrix. Furthermore, it can be observed that this control scheme is less sensitive to
noise measurement than the previous one.

Experiment 2. In this set of experiments, the three hybrid schemes are compared
when only a translational motion t = [80 80 −40] cm has to be realized. The results
are shown in Fig. 16.7. It can be observed that the behavior of the three control
schemes is similar. These results confirm also that the control scheme based on the
features ρi

ρ�i
seems to be the most sensitive to measurement noises. One can also
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Fig. 16.4 B, 2-1/2D visual servoing: (a) initial image; (b) desired image and image-points tra-
jectories; (c) translational velocities in m/s; (d) rotational velocities in deg/s; and (e) error vector
components.

observe a nonzero rotational velocities at the beginning due to the measurement
noises and calibration errors.

Experiment 3. In this set of experiments, only a rotational motion about the Z-
axis is considered. The control laws B, C and D are first tested with a huge rotation
of 140 deg. In this case, only the control law C allows to reach the desired config-
uration. When using the control laws B and D the robot reached its joint limits due
to the coupling between rotational and translational motions. In the results shown
in Fig. 16.8, the rotation about the Z-axis is reduced to 90 deg for the control laws
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Fig. 16.5 C, norm-ratio-based visual servoing: (a) initial image; (b) desired image and image-
points trajectories; (c) translational velocities in m/s; (d) rotational velocities in deg/s; and (e)
error vector components.

B and D. Finally, the full decoupling between translational and rotational motions
provided by the control scheme C can be clearly observed.

16.5 Conclusion

In this chapter, it has been shown how a generic projection model can be ex-
ploited to design vision-based control laws valid for all cameras obeying the unique
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Fig. 16.6 D, scaled 3D point-based visual servoing: (a) initial image; (b) desired image and image-
points trajectories; (c) translational velocities in m/s; (d) rotational velocities in deg/s; and (e) error
vector components.

viewpoint constraint. First, the problem of estimating Homographic relationship be-
tween two spherical views related to a reference plane has been addressed. Then,
three homography-based control schemes have been presented. The task functions
are defined to allow as much as possible nice decoupling properties of the control
laws. In all cases, the rotational control is achieved using the orientation error ex-
tracted from the estimated homography matrix. In the first control scheme, the visual
features used to control the translational motions are chosen as the combination of
the 2D coordinates of an image point and the ratio of the norms of the corresponding
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Fig. 16.7 A comparison between the hybrid visual servoing schemes under a pure translation dis-
placement: (a) control scheme in Section 16.3.3.2; (b) control scheme in Section 16.3.3.3; and (c)
control scheme in Section 16.3.3.4.

3D point at the current and desired configurations (which can be computed from the
homography matrix). In a second control scheme, a scaled 3D point, computed from
the corresponding image point and the homography matrix, is exploited to control
efficiently the translations. It allows to obtain properties similar to 3D point-based
visual servoing while being model free. The last control law allows to fully decou-
ple translational and rotational motions (the interaction matrix is block-diagonal)
by employing three ratios of the norms related to three 3D points. From a practical
point of view, large camera motions can be achieved since the developed control
laws are partially or fully decoupled and valid for a large class of wide field of view
cameras. Experimental results have confirmed this last point. The stability analy-
sis under modeling errors of the proposed control laws still remain an important
theoretical point to be addressed in future works.
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