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Abstract— Automated electric vehicles available in free access the preceding one) are taken into account when ugiirigal
constitute a promising very efficient and environment-friendly  structure approaches structural analogy, characterized by a

“urban transportation system”. An additional functionali ty that
could enhance this transportation service is vehicle plamn-
ing. In order to avoid oscillations within the platoon when
completing this task, a global control strategy, supportedby
inter-vehicle communications, is investigated. Vehicle lasolute
localization is then needed and is here derived from monocat
vision. These data are however expressed in a virtual vision
world, slightly distorted with respect to the actual metric one.
It is shown that such a distortion can accurately be correctd
by designing a nonlinear observer relying on odometric dataA
global decentralized control strategy, relying on exact heariza-
tion techniques, can then be designed to achieve accuratehiele

serial chain of spring-damper, is for instance proposedj [
and a control law is then derived from the combined front
and rear virtual forces.

These strategies present however some drawbacks, the
most concerning one being error accumulation: the servoing
errors, induced by sensor noises and/or actuator delags, ar
inevitably growing from the first vehicle to the last one,
leading to unacceptable oscillations. Such problems can be
overcome by consideringlobal strategies, i.e. each vehicle
is now controlled from the data received from all vehicles.

platooning. Simulations and full-scale experiments demastrate
the performance of the proposed approach.

Index Terms— automatic guided vehicles, platooning, nonlin-
ear control, observer, monocular vision, urban vehicles

Most of the virtual structure approachedelong to this
category. In [4], a mechanical analogy is used to design
feedback controllers to achieve straight line motion. Ag&n
virtual rigid structure is also considered in [6], relying o
graph theory. Nevertheless, these techniques aim at imgposi
some pre-specified geometric pattern, and not that each
Traffic congestion in urban areas, with correlated pollutiovehicle accurately reproduces the trajectory of the firg.on
and waste of time, is currently a serious concern. Automated contrast, in previous work [3], a trajectory-based sigat
electric vehicles, available in free access from distadut has been proposed relying on nonlinear control technigues:
stations within some given zone, appear as an attractilateral and longitudinal control are exactly decoupled, so
alternative solution. The large flexibility that can be obéal  that lateral guidance of each vehicle with respect to the
(commutation at any time and along any route) is definitelgame reference path can be achieved independently from
a decisive feature which should meet user expectationiengitudinal control, designed to maintain a pre-specified
An additional functionality of special interest is vehiclecurvilinear vehicle inter-distance.
platooning, i.e. several automated vehicles moving in glgin
line. Such a functionality allows to easily adapt the tramsp
offer (via platoon length) to the actual need, and can also
ease maintenance operations, since only one person can then
move several vehicles at a time (e.g. to bring them back to
some station). Moreover, an enhancement in safety and an
increase in traffic can be expected from such a cooperative
nal\sl_gatlon. Platooning is therefore considered in thisepap Fig. 1: Experimental vehicles: a Cycab leading two RobuCab
ifferent approaches can be proposed. They can be classi*
fied into two categories, according to the information used f  The potentialities of this last control approach have been
vehicle control. The most standard approaches relfooa  demonstrated with the experimental vehicles shown in Fig.1
strategies, i.e. each vehicle is controlled exclusively fromrelying, as a first step, on RTK-GPS receivers for vehicle
data relative to the neighboring vehicles. The well-knowiocalization [3]. These sensors are however not reliable in
leader-follower approacleonsiders only the immediate front urban applications, since satellite signals can be masked b
vehicle. For instance, visual tracking has been proposédll buildings. Cameras appear as more appropriate, sirece t
in [2] and generic control laws have been designed in [12juildings offer a rich environment from an image processing
and [5]. Alternatively, neighboring vehicles (and not onlypoint of view (in addition, they are definitely cheaper).

. INTRODUCTION




Accurate absolute localization can indeed be obtained frome 6, = 6; — Or(s;) is the angular deviation of the”
monocular vision, relying on a structure from motion ap-  vehicle w.r.t.T".

proach, but it is then expressed in a virtual vision world,  ; is the lateral deviation of thé”" vehicle w.r.t.T.
roughly related to the actual metric one via a scale factor. « §; is thei*” vehicle front wheel steering angle.

Alas, this scale factor is not perfectly constant, so that th « L is the vehicle wheelbase.

vision world appears slightly distorted with respect to the « v; is thei'” vehicle linear velocity at poin®;.

metric one. This alters noticeably the estimation of inter- )

vehicle distances, and therefore impairs longitudinatiasn B- Vehicle state space model

performances. In previous work [1], the local distortions a  The configuration of thei’” vehicle can be described
estimated from the actual distance between two vehiclegjthout ambiguity by the state vect¢s;, v;, 6;). The current
measured with a laser rangefinder. This information is thevalues of these variables can be inferred on-line by compar-
shared with the whole platoon and longitudinal controing vehicle absolute localization to the reference pathatt
performances can actually be improved. However, on ortben be shown (see [10]) that tricycle state space model is:

hand the combined use of telemetric and visual data is quite & =y —costs

intricate, and on the other hand the corrections are not as T Imwie(si)

accurate as possible, since they are only averaged camscti Yi = v; sinb; (1)
(related to the inter-vehicle distance). In this paper, a-no 9*1, _— (tarit?i _ i(izjcco(ie))

linear observer, relying solely on standard odometric data
designed to correct in an easier way, and more accurately,Platooning objectives can then be described as ensuring
the distortions of the virtual vision world. the convergence of); and 6; to zero, by means of;,

This paper is organized as follows: the platooning contr@nd maintaining the gap between two successive vehicles
strategy is first sketched in Section II. Then, absolutelfocato a fixed valued*, by means ofv;. It is considered that
ization from monocular vision is discussed in Section Illy; # ﬁ (i.e. vehicles are never on the reference path
Next, the local correction to the visual world is presentedurvature center). In practical situations, if the versctre
in Section IV. Finally, experiments reported in Section Mwvell initialized, this singularity is never encountered.
demonstrate the capabilities of the proposed approach. )

C. Control law design

In previous work [3], it has been shown that exact lin-

A. Modeling assumptions earization techniques offer a relevant framework to addres

Urban vehicles involved in platooning applications ardlatoon control: equations (1), as most of kinematic models
supposed to move at quite low speed (less thars5!) on of mobile r_obots, can be converted in an exact way into a so-
asphalted roads. Dynamic effects can therefore be neglecfelled chained form, see [10]. Such a conversion is attracti
and a kinematic model can satisfactorily describe their b&ince the structure of chained form equations allows to
havior, as corroborated by extensive tests performed wigfldress independently lateral and longitudinal control.
our experimental vehicles shown in Fig. 1. In this paper, Stéering control laws; can first be designed to achieve
the kinematic tricycle model is considered: the two actudfe lateral guidance of each vehicle within the platoontw.r.
front wheels are replaced by a unique virtual wheel locatef® common reference path In these control lawsy; just

at the mid-distance between the actual wheels. The notati@RPears as a free parameter. Since conversion of equatjons (
is illustrated in Fig. 2. 3, into chained form is exact, all nonlinearities are explcit

taken into account. High tracking performances (accuiate t
within £5cmwhen relying on an RTK GPS sensor) can then
be ensured, whatever initial errors or reference path turea
are. Details can be found in [11].

Control variablesv; can then be designed to achieve
longitudinal control. In nominal situation, the objectif@r
the i* vehicle is to regulatee} = s; — s; — (i — 1) d*,

i.e. the arc-length longitudinal error w.r.t. the leadehisT
control objective is attractive, since the locatien of the

Il. GLOBAL DECENTRALIZED CONTROL STRATEGY

s=0

Fig. 2: Tricycle model description leader represents a common index for all the vehicles irgo th
« I'is the common reference path for any vehicle, defineglatoon, so that error accumulation and inherent os@ltesti
in an absolute fram@A, X 4, Y4]. can be avoided. In addition, since it is an arc-length ethis,

« O; is the center of the!” vehicle rear axle. control objective remains consistent whatever the refaren
o M, is the closest point t@); onT. path curvature is (in contrast with euclidian inter-distas).

« s; is the arc-length coordinate @ff; alongT. Nevertheless, for obvious safety reasons, the locatiohef t

« c(s;) is the curvature of path' at M;, andfr(s;) is the preceding vehicle cannot be ignored. Therefore, in previou
orientation of the tangent 10 at M; w.r.t. [A, X 4,Y4]. work [3], the longitudinal control law has been designed to
« 0, is the heading of*" vehicle w.r.t.[A, X 4, Ya]. control a composite error: a smooth commutation function



gives the predominance either to the global empror to  on-board odometers, when compared to the same quantity
the local onee!™' = 5,1 — s, — d* according to some evaluated from vision algorithms, enables to propose aajlob
security distance. Once more, exact linearization tealesq scale factor such that this virtual vision world is neveltiss
have been used, so that nonlinearities in equations (1) asl®se to the actual metric world.
still explicitly accounted, ensuring high accurate regola The second step is the real time localization process.
More details, as well as experiment results carried out witinterest points are detected in the current image. These
Cycab and RobuCab vehicles (see Fig. 1), relying on RTkeatures are matched with the features stored in the visual
GPS sensors for vehicle localization and WiFi technologynemory as part of the 3D reconstruction. From the corre-
for inter-vehicle communications, can be found in [3]. spondences between 2D points in the current frame and 3D
points in the visual memory, the complete pose (6 degrees
of freedom) of the camera is computed. Then, the pose
The implementation of the platooning control laws preof the vehicle on the ground plane is deduced, and finally
sented in previous section requires that some sensors GaB vehicle state vecto(rsi,yi,éi) and the curvature(s;)
provide each vehicle with its absolute localization, in gequired in control laws can all be inferred. More details
common reference frame (in order that the composite errogsd localization performances can be found in [9].
could be evaluated). RTK GPS receivers can supply such
a localization, with a very high accuracytcm). They B, Distortion in the virtual vision world
have successively been used in [3]. However, they are quite

expensive sensors, and above all they are not appropriate t I?togn ctongol in urtt)ar: enxlr:.onment reql:!rest vehl_(r:Le
urban environments, since satellite signals are likely go gocalization to be accurate to within some centimeters. The

frequently masked by tall buildings. In previous work [8]’global scale factor computed.from odometric data cannot
absolute localization from monocular vision has been alteguarantee_such an accuracy: f'r$t' _odometers ce_mnot supply a
natively proposed, and satisfactory accurate lateralande covered distance accurate to within some centimeters when
of a sole vehicle along a given reference path has bedie reference trajectory length comes up to few hundred

demonstrated. An overview of the localization approach ig'€ters. Secondly, the distortion between the two worlds
sketched in Section IlI-A, and its limitations with respeat 'S &las varying along the trajectory. These limitations are

platooning applications are discussed in Section I1I-B. illustrated in Fig.4: the top graphs show the same vehicle
trajectory recorded from monocular vision (Fig.4-a) aradrir

IIl. L OCALIZATION WITH MONOCULAR VISION

A. Localization overview an RTK-GPS sensor (Fig.4-b). The error between the arc-
The localization algorithm relies on two steps, as showlgngth distances computed from monocular vision and from
in Figure 3. RTK-GPS data is reported in Fig.4-c: it can be noticed
/@ Manual control that, on one hand the drift in odometric measurement does
0%

not allow a proper evaluation of the global scale factor, so
that the total arc-length distance is erroneous in the misio
world (the error is 1.7&:, although the trajectory is only
115n-long), and on the other hand the distortion between
e the two worlds is largely varying, since the error comes up
y | 3Dmawp to 7.48n in the mid-part of the trajectory. The presence of

5 local distortions between the two worlds can also be obskrve
in Fig.4-d, since no global rotation and/or dilatation pism
to superpose the two trajectories shown in Fig.4-a/b.
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Fig. 3: Localization with monocular vision

First, the vehicle is driven manually along the desired ;
trajectory and a monocular video sequence is recorded with - i
the on-board camera. From this sequence, a 3D reconstruc-
tion of the environment in the vicinity of the trajectory
is computed. Because only one camera is used, this is a
structure from motion problem well-known in the computer
vision community. The computation of the reconstruction is
done off-line with a method relying on bundle adjustmentFig. 4: a), b) resp. vision and RTK-GPS based trajectories
The trajectory is thus referred in a non-metric virtual ersi c) error in arc-length distance estimation with vision
world. However, the total covered distance supplied by d) vision and RTK-GPS based trajectories matching




These distorsions in the virtual vision world are not aworld: the distance between the leader and the first follower
concern as long as only lateral guidance is considerede sineehicles supplied by this sensor is compared with the same
the sign of the lateral and angular deviatiops and §;  inter-distance derived from monocular vision. The locallsc
supplied by vision algorithms is always correct, these didactors can then be inferred and propagated to the rest of
torsions act only as control gain modifications. Asymptotithe fleet. This approach presents however some drawbacks:
convergence of; andd; to 0 is therefore always guaranteedfirst, from a practical point of view, combining telemetricch
and very satisfactory path following results can be ob@inevisual data is quite intricate. But, the major limitationtligt
as reported in [8]. distortion corrections thus obtained are necessarilyamext

The situation is different when longitudinal control is ad-corrections, computed along segments whose lengths are the
dressed: the distortions in the virtual vision world leadrto  distance between the two first vehicles, that is to say skvera
accurate inter-vehicle distance evaluation, and theegfoor meters. The local distortions between the virtual visiomldo
longitudinal control performances with respect to the metr and the metric one might then not be accurately represented,
world. However, the analysis of experimental results reveaespecially in the curved parts of the trajectory, where the
that the distorsions are definitely repeatable: lateral@uie local scale factors are supposed to change abruptly, see Fig
along the 11b:-long trajectory shown in the upper-left part To relax these limitations, an alternative approach, based
in Fig.5 has been carried out with several vehicles and witbbserver theory, and relying solely on standard odometric
different cameras. For each trial, the set of local scaltofac data, is proposed below.
ensuring consistency, on successive-lbng segments, be- .
tween the arc-length distance obtained by monocular visid%r Observer design
and the actual one supplied by an RTK-GPS sensor, has beern the proposed approach, the reference measurement in
computed off-line. Two of these sets are reported in Fig.5. the metric world to be used to infer local scale factors is
can be observed that they present a very similar profile, ati@e vehicle linear velocity; supplied by the odometers. In
so do the other sets. More precisely, it can be noticed thtte sequel, let us deno(ei,yi,éi), (éi,yi,éi) andc(s;) the
the local scale factors are roughly constant in the straighit® vehicle state vector, state vector derivative and referenc
line parts of the trajectory (in magenta), and fast varyingath curvature ak; expressed in the actual metric world,
in the curved parts (at the beginning and at the end of ﬂ)ﬁ‘ld(sé’,yf,é}’), (s‘f,y’f,éf) andc’(s?) the same quantities
cyan segment). As a conclusion, since distortions betwe@Rpressed in the virtual vision world. Then, in view of the
the virtual vision world and the actual metric one are clearlreference measurement to be used, a relevant way to describe

repeatable, accurate longitudinal control relying solety the local scale factor at curvilinear abscisgas the function:
monocular vision appears attainable, provided that thefset . o
local scale factor could be precisely estimated. A(sy) = $i/ 8 ()

1251 The distortions in the virtual vision world can realistigabe

j assumed to be locally homogeneous, i.e. the two dimensions
in the plane of motion are similarly distorted. Therefores t
following relations can also be written:

1.2f

1.15F

11

AsP) = 9y 3)
T 0 = 6 )
N v (s) = wic(s) 5)
085 Then, injecting relations (2) to (5) into model (1), the \c@i
o8 : ‘ ‘ : : state space model expressed in the virtual vision world can
° RTZPQ—GPS based(;) curvilinear?bscissas(ir?ometers) " be written as:
" vi.cosélj
Fig. 5: Off-line local scale factor computation 5 = A(7)-(T =y ev(s]))
1]?1 _ v;.sin 07 (6)
IV. CURVILINEAR DISTANCE ESTIMATION gz éA(S?)
7 K3

Local scale factor estimation requires that some distances
in the virtual vision world could also be accurately evafitht  Model (6) describes the vehicle motion from the variables
in the actual metric world. Very precise measurements iactually available, i.e. the vehicle localization in theign
the metric world can be obtained from RTK-GPS receiversvorld and its linear velocity in the metric world. The
However, these sensors cannot be considered, since on amgective now is to design an observer to estimate;)
hand they are not reliable in urban environments due twom model (6). Since distortions are the result of a complex
canyon effects, and on the other hand they are quite expeamd unpredictible optimization process, the time deneati
sive when a large fleet of urban vehicles has to be equippeaf.the variable)(s?) to be observed is completely unknown.
In previous work [1], it is proposed to rely on a laserConsequently\(sy) cannot be incorporated into the state
rangefinder to obtain a reference measurement in the metviector with the aim to design a standard Luenberger observer



It is here proposed, just as in [7], to rely on the duality The top graph in Fig. 6 shows that observer convergence is
between control and observation to design the observere Maachieved withiBm (dotted black line). Without any noise on
precisely, mimicking the first equation in (6), let us inttm@& visual data (i.eo, = Om), the convergence is very smooth

the following observation model: and the average value of the erroiis less than2.4mm,
o excepted when the local scale factor changes abruptly (cyan
§Y = vi- 08 0] (7) area): then, a very limitedcm overshoot can be noticed.
Cu(l =P ev(sy) When visual data are corrupted by noise (izg.= 0.02m),

with 3¢ the observed curvilinear abscissa in the virtual visiothe observer error remains inferior thasm, with an average
world, y?, é;’ and ¢ (s¥) measured quantities in the vision value less than7.6mm. Finally, it can noticed in the bottom
world, v; a measured quantity in the metric world, anda graph in Fig. 6 that the observed local scale factor acclyrate
control variable to be designed. Then, the observer priacipreproduces the simulated one, as desired.
can be described as follows: if the control variahlge of oosf | “ | ‘ il m r |
the observation model (7) could be designed such that the o L L) e (T e o v e
observed staté? converges with the measured osfe then f-o‘f '
the control variable:; would be representative of the local .
scale factorA(s?) (in view of equations (6) and (7)). -02
Such a convergence can easily be imposed, by designing®
u; straightforwardly as: °

observation error: 7
vision based - estimated curvilinear abscissas (in meters) N

L L L vis

20 40 60 80 100

T T T
—@—simulated scale factors \ . V‘ TN

|
V;. COS 0;0 (8) 11 : observed scale factors: 6, =0.02m
U = = '\
Gi— Ko — yi-c'(s)) i
with e = (5V — s¥) and K a positive gain to be tuned, since  *% brunt variai
.. . . f abrupt variation |
injecting (8) into (7) leads to : ‘”‘Ti
. 7 20 40 60 80 100
é=—K-¢€ (9) actual curvilinear abscissa s (in meters)

Equation (8) can then be regarded as an accurate estimatigr?g_ 6: Simulated scale factor estimation (on-line proress
of the local scale factor at the curvilinear abscisgalf the

observer staté! is properly initialized, thenk -¢| is largely V. EXPERIMENTAL RESULTS
inferior than|s?| (directly related to the vehicle velocity), and
observer equation (8) proposes no singularity.

Finally, if T'(t) = (Ty(r),y(r)) denotes the 2D-
parametric equations of the reference trajectbryn the
absolute vision frame, then the corrected curvilinear isbac

at sy can be computed according to:
(s7) or
8 = / A(T) HE(T) ‘ dr (10)  passengers can travel aboard the Cycabp. the RobuCab)

0 Their small dimensions (length 1.90m, width 1.20m) and
where 7(s}) is the parameter value of the 2D-curV€r)  their maximum speed (5nT.$) are appropriate to urban
(here, a B-Spline) associated with the curvilinear abagiss  environments. Vehicle localization algorithms and platoo
control laws are implemented in C++ language on Pentium
based computers using RTAI-Linux OS. The cameras supply

To investigate the performances of observer (8), a singlgsual data at a sampling frequency between 8 anidzl5
vehicle has been simulated. The simulation parameters haé{@cording to the luminosity. The inter-vehicle communica-
been tuned in order to be representative of actual conditiontjgn is ensured via WiFi technology. Since the data of each

« The vehicle velocity in the metric world is= 1m.s~!,  vehicle are transmitted as soon as the localization step is

and the standard deviation of the odometric data isompleted, the communication frequency is similar to the
Oodo = 0.015m.s7 L. camera one. Finally, each vehicle is also equipped with

« Local scale factors similar to those obtained in Fig. mn RTK-GPS receiver, devoted exclusively to performance

have been generated, thanks to piecewise continuoasalysis: its information are not used to control the vedscl

In order to investigate the capabilities of the proposed
approach, several experiments have been carried out in
Clermont-Ferrand on “PAVIN Site”, an open platform de-
voted to urban transportation system evaluation.

1) Experimental set-up:The experimental vehicles are
shown in Fig. 1. They are electric vehicles, powered by lead-
acid batteries providing 2 hours autonomy. T{vesp. four)

B. Simulations

line segments, see Fig. 6. 2) Experimental resultsThe experiment reported below

« Visual data are provided with a5H > sampling fre- consists in platoon control, with three vehicles, along the
guency and two standard deviations = Om and 115mn-long reference trajectory shown in Fig. 5. The local
o, = 0.02m have been considered. scale factors computed on-line by the leader vehicle (whose

« Observer gain isk = 2, to achieve a compromise speed is in.s~') are shown in green in Fig. 7. In order to
between a fast convergence and small oscillations. Tlease the comparison with the local scale factors computed
observed local scale factor is logically initialized at 1. off-line in Section 11I-B (and reported in blue in Fig. 7),&h



ones obtained on-line have also been averagef@inetiong

to local control approaches. Moreover, nonlinear control

segments and then shown in red in Fig. 7. It can be noticadchniques have been considered, in order to take explicitl
that local scale factors computed on-line with observer (8ipto account the nonlinearities in vehicle models, so that t

are as satisfactory as those computed off-line and vergclosame high accuracy can be expected in any situation (for
to the actual ones evaluated from RTK-GPS measuremenigstance, whatever the reference trajectory curvature).
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Vehicle absolute localization has been derived from an
on-board camera, since it is a very appropriate sensor in
urban environments. However, it has been pointed out that
\ the localization thus obtained is expressed in a virtuabwis
world slightly distorted with respect to the actual metric
one, and relying on raw vision data would impair platooning
performances. A nonlinear observer, only supported by odo-
metric data, has then been designed to estimate on-line loca

scale factors, and enable accurate platooning relyindysole

Fig. 7: On-line scale factor estimation

on monocular vision.

Full scale experiments, carried out with three vehicles,

Finally, platoon control performances with corrected vihave finally demonstrated the efficiency of the proposed
sion data are evaluated in Fig. 8. The vehicle inter-disian(approach_ Further experiments, involving vehicles led by a
errors (investigated from RTK-GPS measurements) wheafianually guided vehicle have to be conducted to empha-

longitudinal control relies solely on monocular vision @l

size the benefits of on-line corrections when the reference

as accurate as previously when RTK-GPS data were usedtigjectory is being created.

control the vehicles (see [3]): the longitudinal errors aém
within £10cm. Performances are just slightly depreciated
during the abrupt scale factor variation, whane [70, 80]m.
Nevertheless, the inter-distance errors do not excesg.
14cm and 1#&m. If the distortion corrections proposed by
observer (8) were not applied to raw localization visioradat [2]
then vehicle inter-distance errors would be those displaye
Fig. 9. These large errorsep.1m and1.7m) show clearly
the significance and the relevance of observer (8).
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Fig. 9: Vehicle inter-distance errors with raw vision data

VI. CONCLUSION (12]

In this paper, vehicle platooning in urban environments has
been addressed. First, a global decentralized controégira [13]
taking advantage of inter-vehicle communications, hasibee
proposed, in order to avoid error accumulation inherent
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