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Abstract—Environment, sustainable development as well as
new transportation service emergence in urban areas are major
concerns. Consequently, studies are currently intended to auto-
mate electric vehicles designed for applications in free access. An
additional functionality that appears very attractive is vehicle
platooning. In order to avoid oscillations within the fleet when
completing this task, a global control strategy, supported by
inter-vehicle communications, is investigated. Vehicle absolute
localization is then needed and is here derived from monocular
vision. These data are however expressed in a virtual vision
world, slightly distorted with respect to the actual metric one. It
has previously been shown that such a distortion can accurately
be corrected on-line in different ways, considering telemetric or
odometric data. These strategies have here been refined in order
to provide optimal corrections. A comparative study, supported
by simulations and full-scale experiments, is reported to exhibit
benefits and performances of proposed approaches.

Index Terms—automatic guided vehicles, platooning, nonlinear
control, monocular vision, urban vehicles

I. INTRODUCTION

Nowadays the development of new transportation systems

is essential to fulfill the increasing requirements in terms of

service and ecology. These needs, which all the more manifest

themselves in urban environment, are concretized by the use

of electric vehicles in free access. In this context, autonomous

navigation constitutes a very attractive solution. More coherent

motion could furthermore be achieved by considering cooper-

ating vehicles, thus increasing safety and efficiency. Vehicle

platooning moreover allows to easily adapt the transport offer

(via platoon length) to the actual need, and can also ease

maintenance operations, since only one person can then move

several vehicles at a time (e.g. to bring them back to some

station). Platooning is therefore considered in this paper.

Different approaches can be proposed. They can be clas-

sified into two categories, according to the information used

for vehicle control. The most standard approaches rely on

local strategies, i.e. each vehicle is controlled exclusively

from data relative to the neighboring vehicles. The well-

known leader-follower approach considers only the immediate

front vehicle. For instance, visual tracking has been proposed

in [3] and generic control laws have been designed in [12]

and [6]. Alternatively, neighboring vehicles (and not only the

preceding one) are taken into account when using virtual

structure approaches: a structural analogy, characterized by a

serial chain of spring-damper, is for instance proposed in [13]

and a control law is then derived from the combined front and

rear virtual forces.

These strategies present however some drawbacks, the most

concerning one being error accumulation: the servoing errors,

induced by sensor noises and/or actuator delays, are inevitably

growing from the first vehicle to the last one, leading to

unacceptable oscillations. Such problems can be overcome

by considering global strategies, i.e. each vehicle is now

controlled from the data received from all vehicles. Most of

the virtual structure approaches belong to this category. In [5],

a mechanical analogy is used to design feedback controllers to

achieve straight line motion. A single virtual rigid structure is

also considered in [7], relying on graph theory. Nevertheless,

these techniques aim at imposing some pre-specified geometric

pattern, and not that each vehicle accurately reproduces the

trajectory of the first one. In contrast, in previous work [4],

a trajectory-based strategy has been proposed relying on non-

linear control techniques: lateral and longitudinal control are

exactly decoupled, so that lateral guidance of each vehicle

with respect to the same reference path can be achieved

independently from longitudinal control, designed to maintain

a pre-specified curvilinear vehicle inter-distance.

Fig. 1. Experimental vehicles: a RobuCab leading two Cycab

The potentialities of this last control approach have been

demonstrated with the experimental vehicles shown in Fig.1

relying, as a first step, on RTK-GPS receivers for vehicle

localization [4]. These sensors are however not reliable in

urban applications, since satellite signals can be masked by

tall buildings. Cameras appear as more appropriate, since the

buildings offer a rich environment from an image process-

ing point of view (in addition, they are definitely cheaper).

Accurate absolute localization can indeed be obtained from

monocular vision, relying on a structure from motion approach,

but it is then expressed in a virtual vision world, roughly

related to the actual metric one via a scale factor. Alas,
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this scale factor is not perfectly constant, so that the vision

world appears slightly distorted with respect to the metric one.

This alters noticeably the estimation of inter-vehicle distances,

and therefore impairs longitudinal control performances. In

previous work [1] and [2], it has been shown that such

a distortion can accurately be corrected on-line in different

ways, leading to satisfactory longitudinal performances. In the

first one, direct distance between two successive vehicles is

evaluated using telemetric information and makes it possible

to optimize iteratively the correction during the motion. In

the second approach same corrections are provided by a

nonlinear observer based on odometric data and running on

the lead vehicle. These approaches have here been refined and

a comparative study is carried out to exhibit the advantages of

each ones.

This paper is organized as follows: the platooning con-

trol strategy is first sketched in Section II. Then, absolute

localization from monocular vision is discussed in Section III

and a reference method to off-line optimize correction of the

visual world is emphasized. Next, in Section IV, robustness

and noise sensitivity of both on-line strategies is quantified

during simulation test beds. Finally, experiments reported in

Section V describe their behaviour in real conditions.

II. GLOBAL DECENTRALIZED CONTROL STRATEGY

A. Modeling assumptions

Urban vehicles involved in platooning applications are

supposed to move at quite low speed (less than 5m.s−1) on

asphalted roads. Dynamic effects can therefore be neglected

and a kinematic model can satisfactorily describe their be-

havior, as corroborated by extensive tests performed with our

experimental vehicles shown in Fig. 1. In this paper, the

kinematic tricycle model is considered: the two actual front

wheels are replaced by a unique virtual wheel located at

the mid-distance between the actual wheels. The notation is

illustrated in Fig. 2.

Fig. 2. Tricycle model description

• Γ is the common reference path for any vehicle, defined

in an absolute frame [A,XA, YA].
• Oi is the center of the ith vehicle rear axle.

• Mi is the closest point to Oi on Γ.
• si is the arc-length coordinate of Mi along Γ.
• c(si) is the curvature of path Γ at Mi, and θΓ(si) is the

orientation of the tangent to Γ at Mi w.r.t. [A,XA, YA].
• θi is the heading of ith vehicle w.r.t. [A,XA, YA].
• θ̃i = θi−θΓ(si) is the angular deviation of the ith vehicle

w.r.t. Γ.

• yi is the lateral deviation of the ith vehicle w.r.t. Γ.
• δi is the ith vehicle front wheel steering angle.

• L is the vehicle wheelbase.

• vi is the ith vehicle linear velocity at point Oi.

B. Vehicle state space model

The configuration of the ith vehicle can be described

without ambiguity by the state vector (si, yi, θ̃i). The current

values of these variables can be inferred on-line by comparing

vehicle absolute localization to the reference path. It can then

be shown (see [10]) that tricycle state space model is:















ṡi = vi
cos θ̃i

1− yi c(si)

ẏi = vi sin θ̃i

˙̃
θi = vi

(

tan δi

L
−

c(si) cos θ̃i

1− yi c(si)

)

(1)

Platooning objectives can then be described as ensuring

the convergence of yi and θ̃i to zero, by means of δi, and

maintaining the gap between two successive vehicles to a fixed

value d⋆, by means of vi. It is considered that yi 6=
1

c(si)
(i.e.

vehicles are never on the reference path curvature center). In

practical situations, if the l vehicles are well initialized, this

singularity is never encountered.

C. Control law design

In previous work [4], it has been shown that exact lin-

earization techniques offer a relevant framework to address

platoon control: equations (1), as most of kinematic models

of mobile robots, can be converted in an exact way into a so-

called chained form, see [10]. Such a conversion is attractive,

since the structure of chained form equations allows to address

independently lateral and longitudinal control.

Steering control laws δi can first be designed to achieve the

lateral guidance of each vehicle within the platoon w.r.t. the

common reference path Γ. In these control laws, vi just appears

as a free parameter. Since conversion of equations (1) into

chained form is exact, all nonlinearities are explicitly taken into

account. High tracking performances (accurate to within ±5cm
when relying on an RTK GPS sensor) can then be ensured,

whatever initial errors or reference path curvature are. Details

can be found in [11].

Control variables vi can then be designed to achieve

longitudinal control. In nominal situation, the objective for

the ith vehicle is to regulate e1
i = s1 − si − (i − 1) d⋆,

i.e. the arc-length longitudinal error w.r.t. the leader. This

control objective is attractive, since the location s1 of the

leader represents a common index for all the vehicles into the

platoon, so that error accumulation and inherent oscillations

can be avoided. In addition, since it is an arc-length error,

this control objective remains consistent whatever the reference

path curvature is (in contrast with euclidian inter-distances).

Nevertheless, for obvious safety reasons, the location of the

preceding vehicle cannot be ignored. Therefore, in previous

work [4], the longitudinal control law has been designed to

control a composite error: a smooth commutation function

gives the predominance either to the global error e1
i or to
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the local one ei−1
i = si−1 − si − d⋆ according to some

security distance. Once more, exact linearization techniques

have been used, so that nonlinearities in equations (1) are

still explicitly accounted, ensuring high accurate regulation.

More details, as well as experiment results carried out with

Cycab and RobuCab vehicles (see Fig. 1), relying on RTK

GPS sensors for vehicle localization and WiFi technology for

inter-vehicle communications, can be found in [4].

III. LOCALIZATION WITH MONOCULAR VISION

The implementation of the platooning control laws pre-

sented in previous section requires that some sensors can pro-

vide each vehicle with its absolute localization, in a common

reference frame (in order that the composite errors could be

evaluated). RTK GPS receivers can supply such a localization,

with a very high accuracy (±2cm). They have successively

been used in [4]. However, they are quite expensive sensors,

and above all they are not appropriate to urban environments,

since satellite signals are likely to be frequently masked by

tall buildings. In previous work [8], absolute localization

from monocular vision has been alternatively proposed, and

satisfactory accurate lateral guidance of a sole vehicle along

a given reference path has been demonstrated. An overview

of the localization approach is sketched in Section III-A,

and its limitations with respect to platooning applications are

discussed in Section III-B.

A. Localization overview

The localization algorithm relies on two steps.

First, the vehicle is driven manually along the desired

trajectory and a monocular video sequence is recorded with

the on-board camera. From this sequence, a 3D reconstruction

of the environment in the vicinity of the trajectory is computed.

Because only one camera is used, this is a structure from

motion problem well-known in the computer vision commu-

nity. The computation of the reconstruction is done off-line

with a method relying on bundle adjustment. The trajectory is

thus referred in a non-metric virtual vision world. However,

the total covered distance supplied by on-board odometers,

when compared to the same quantity evaluated from vision

algorithms, enables to propose a global scale factor such that

this virtual vision world is nevertheless close to the actual

metric world.

The second step is the real time localization process. Interest

points are detected in the current image. These features are

matched with the features stored in the visual memory as part

of the 3D reconstruction. From the correspondences between

2D points in the current frame and 3D points in the visual

memory, the complete pose (6 degrees of freedom) of the

camera is computed. Then, the pose of the vehicle on the

ground plane is deduced, and finally the vehicle state vector

(si, yi, θ̃i) and the curvature c(si) required in control laws can

all be inferred. More details and localization performances can

be found in [9].

B. Distortion in the virtual vision world

Platoon control in urban environment requires vehicle lo-

calization to be accurate to within some centimeters. The

global scale factor computed from odometric data cannot

guarantee such an accuracy: first, odometers cannot supply a

covered distance accurate to within some centimeters when the

reference trajectory length comes up to few hundred meters.

Secondly, the distortion between the two worlds is alas varying

along the trajectory. These limitations are illustrated in Fig.3:

when the vehicle was moving, its trajectory has been recorded

from monocular vision and from an RTK-GPS sensor. The

distortion between the virtual vision world and the actual

metric one appears clearly in the inserted plot in Fig.3 since

the two trajectories do not properly fit, despite the global scale

factor correction. In order to investigate further the discrepancy

between the two worlds, the error between the covered arc-

length distances computed from monocular vision and from

RTK-GPS data is reported as the main plot in Fig.3. It can be

noticed that, on one hand the drift in odometric measurement

does not allow a proper evaluation of the global scale factor,

so that the total arc-length distance is erroneous in the vision

world (the error is 1.72m, although the trajectory is only

115m-long), and on the other hand the distortion between the

two worlds is largely varying, since the error comes up to

7.48m in the mid-part of the trajectory.
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Fig. 3. Error in arc-length distance estimation with vision

These distorsions in the virtual vision world are not a

concern as long as only lateral guidance is considered: since

the sign of the lateral and angular deviations yi and θ̃i supplied

by vision algorithms is always correct, these distorsions act

only as control gain modifications. Asymptotic convergence

of yi and θ̃i to 0 is therefore always guaranteed, and very

satisfactory path following results can be obtained, as reported

in [8].

The situation is different when longitudinal control is ad-

dressed: the distortions in the virtual vision world lead to

inaccurate inter-vehicle distance evaluation, and therefore poor

longitudinal control performances with respect to the metric

world. In order to analyse the repeatability of such distorsions,

lateral guidance along the 230m-long trajectory shown in Fig.3

has been carried out with several vehicles and with different

cameras. For each trial, local scale factors ensuring consistency

between vision and actual distance along the trajectory have

been optimized off-line according the following process:
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The vision trajectory Γv is first divided into small parts

Γv
λj

(of size ∆sv
λj

=
∫

Γv
λj

dsv). A set of actual arc-length

measurements ∆sk, supplied by an RTK-GPS sensor, and

the corresponding ones ∆sv
k, obtained by monocular vision,

defined as:

∆sv
k =

∑

j∈Jk

∆sv
λj

(2)

are then introduced, where the index set Jk targets trajectory

parts covered by the kth measurements ∆sv
k and ∆sk. Local

scale factors λj , active on Γv
λj
, are finally obtained using

standard least square method by minimizing criterion (3) :

∑

k



∆sk −
∑

j∈Jk

λj .∆sv
λj





2

(3)

Two correction sets are reported in Fig.4. It can be observed

that they present a very similar profile, and so do the other sets.

As a conclusion, since distortions between the virtual vision

world and the actual metric one are clearly repeatable, accurate

longitudinal control relying solely on monocular vision appears

attainable, provided that the set of local scale factor could be

precisely estimated.
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Fig. 4. Off-line local scale factor computation

IV. CURVILINEAR DISTANCE ESTIMATION

In the perspective of an on-line 3D reconstruction of the

environment, simultaneously coupled with the localization, on-

line correction strategies have been designed. Although RTK-

GPS receivers prove to be efficient to scale vision data, they

cannot be considered. On one hand they are not reliable in

urban environments due to canyon effects, and on the other

hand they are quite expensive when a large fleet of urban

vehicles has to be equipped. Two alternative sensors have here

been used: a laser rangefinder and odometers.

A. Local optimization from telemetric data

Local scale factors are here derived from the telemetric data

supplied by a unique laser rangefinder. Some notations from

the off-line strategy are here re-used:

(i) Vision and actual measurements ∆sv
k and ∆sk are here

euclidian distances. Measurements ∆sk are supplied by the

laser rangefinder of the 2nd vehicle tracking the leader one.

(ii) To simplify notations, it is assumed that the correction

set λj , computed along parts Γλj
of the vision trajectory, also

satisfies relation (2).

In contrast, the optimization is done according to a local

criterion. When the j − 1th part Γλj−1
has just been passed

by the second vehicle, jth correction λj is computed from the

recorded sets of actual and vision measurements intersecting

Γλj
. The correction is first viewed as a polynomial λ(sv) of

degree 2, obtained minimizing criterion (4).

∑

k

(

∆sk −

∫

Γv
k

λ(sv)dsv

)2

, where Γv
k =

⋃

j∈Jk

Γλv
j

(4)

The local correction λj is then computed as the average of the

polynomial λ(sv) along part Γλv
j
:

λj = (∆sv
λj

)−1

∫

Γλv
j

λ(sv)dsv (5)

B. Observer design from odometric data

In this approach, the reference measurement in the metric

world to be used to infer local scale factors is the vehicle linear

velocity vi supplied by the odometers. In the sequel, let us

denote (sv
i , yv

i , θ̃v
i ) and cv(sv

i ) the ith vehicle state vector and

reference path curvature at sv
i expressed in the virtual vision

world. In view of the reference measurement to be used, a

relevant way to describe the local scale factor at curvilinear

abscissa sv
i is the function:

λ(sv
i ) = ṡi / ṡv

i (6)

It has been shown in [2] that the vehicle motion can be

described from the variables actually available, i.e. the vehicle

localization in the vision world and its linear velocity in the

metric world. The arc-length evolution, expressed in the virtual

vision world, thus follows :

ṡv
i =

vi. cos θ̃v
i

λ(sv
i ).(1 − yv

i cv(sv
i ))

(7)

An observation model has then been designed in [2], relying

on the duality between control and observation, from (7) :

˙̂sv
i =

vi. cos θ̃v
i

ui.(1 − yv
i cv(sv

i ))
(8)

with ŝv
i the observed curvilinear abscissa in the virtual vision

world and ui the control variable. In order to be representative

of the local scale factor λ(sv
i ), the control variable ui is

designed such that the observed state ŝv
i converges with the

measured one sv
i as follows :

ui =
vi. cos θ̃v

i

(ṡv
i − K.ǫ)(1 − yv

i .cv(sv
i ))

, with

{

ǫ = (ŝv
i − sv

i )
K > 0

(9)

Injecting (9) into (8) indeed leads to : ǫ̇ = −K · ǫ. Variable
ui can then be regarded as an accurate estimation of the local

scale factor at the curvilinear abscissa sv
i . Providing that it is

properly initialized, it also proposes no singularity (see [2]).

C. Simulations

In this section, simulation results are presented to compare

on-line correction methods and investigate the sensitivity to

their main parameters. In order to be representative of actual
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conditions, simulation test beds have been run with the follow-

ing parameters, tuned in order to be representative of actual

conditions:

• Scale factors and reference trajectory shown on Fig. 4

have been selected.

• Visual data are provided with a 15Hz sampling frequency

and two standard deviations σv = 0m and σv = 0.02m
have been considered.

• Two standard deviations σt = 0m and σt = 0.01m of

telemetric data have also been considered.

• Standard deviation of odometry is σo = 0.015m.s−1.

Local optimization from telemetric data: the most significant

results are recorded in Fig. 5 according to influential param-

eters, namely the platoon velocity v1 (= the leader velocity),

the desired inter-vehicle gap d⋆, and the approximative arc-

length of corrected parts ∆sλ. The error between estimated

and simulated arc-length distances has been quantified along

trajectory parts of different sizes: 5m, 10m and 40m. As the

observed results are within the same range and reflect the same

trends, averaged error on only the 5m-length parts has been

recorded in Fig. 5.

average error (10−3m)

v1 (m.s−1) d⋆ (m) ∆sλ (m) σv = 0m = 0.02m
σt = 0m = 0.01m

0.5 2 0.1 0.0769 4.0296
1 2 0.1 0.0767 5.4979
3 2 0.1 0.0847 8.1975
1 5 0.1 1.0057 3.0993
1 7 0.1 2.0748 2.8135
1 5 2 1.4577 2.4323

Fig. 5. Influence of parameters on local optimization performances

First, since vehicle velocity has to be bounded in urban

areas, tests have been limited to v1 < 3m.s−1. Values show

clearly that this parameter do not impact approximation results

if perfect data (without noise) are supplied. In contrast, when

noise is added, a low speed is preferable since the number of

measurements considered in criterion (4) is more important

thus decreasing noise disturbances. Next, in order for the

second vehicle to properly track its preceding one in safe

conditions, d⋆ is chosen in interval [2; 7]. Low values ensure

that polynomial λ(sv) is estimated on a short distance, reflect-

ing properly the actual scale factor in case of perfect data.

Since higher values minimize in criterion (4) the magnitude

of noise related to telemetric measurements, trend is reversed

with noisy data. Finally, last parameter is logically chosen such

that ∆sλ < d⋆. It represents the interval on which polynomial

λ(sv) is averaged, and consequently small values are more

beneficial without noise. If we consider noise, smoother results

are obtained with higher values, but improvement is very slight,

especially for high d⋆ values.

Observer design from odometric data: for comparison pur-

poses, results recorded in Fig. 6 are evaluated just as for

previous simulation test beds and first influential parameter

v1 is investigated in the same range. Values of gain K are

investigated in interval [0.5; 5].

average error (10−3m)

v1 (m.s−1) K σv = 0m = 0.02m
σo = 0m.s−1 = 0.015m.s−1

0.5 0.5 0.1974 8.4819
1 0.5 0.4176 8.7286
3 0.5 1.4615 12.4672
1 2 0.3905 11.6021
1 5 0.3892 13.0619
3 2 1.2271 12.2550

Fig. 6. Influence of parameters on observer performances

It can be noticed that performances are impaired when

velocity v1 is high. In that case the length of corrected

parts, that linearly depends on v1, reaches larger values and

the observer delay damages scale factor estimation. Next,

focusing on performances with perfect data, faster convergence

is achieved with higher gain values K. It unfortunately leads

to oscillations when noise is considered and preceding remark

is no more correct.

To conclude these test beds, it is to notice that both strate-

gies present very satisfactory results. With respect to accuracy,

the telemetric based approach is more efficient, see Fig. 5

and 6. The observer based strategy however presents attractive

aspects. Associated algorithm runs whatever v1 value, while a

large d⋆ value is necessary for the telemetric based approach

to achieve the numerical approximation when v1 value is high.

From a practical point of view, the observer strategy is also

more convenient. First, combining telemetric and visual data is

quite intricate, and secondly a tracking algorithm is required.

The platoon communication scheme is finally complicated

since the second vehicle has to broadcast corrections to the

whole platoon.

V. EXPERIMENTAL RESULTS

In order to investigate the capabilities of the proposed

approach, several experiments have been carried out with three

vehicles at Campus des Cézeaux, in Clermont-Ferrand.

1) Experimental set-up: The experimental vehicles are

shown in Fig. 1. They are electric vehicles, powered by lead-

acid batteries providing 2 hours autonomy. Two (resp. four)

passengers can travel aboard the Cycab (resp. the RobuCab).

Their small dimensions (length 1.90m, width 1.20m) and their

maximum speed (5m.s−1) are appropriate to urban environ-

ments. Vehicle localization algorithms and platoon control laws

are implemented in C++ language on Pentium based computers

using RTAI-Linux OS. Laser rangefinders provide telemetric

data at a 60Hz sampling frequency, with a standard deviation

within 2cm. The cameras supply visual data at a sampling fre-

quency between 8 and 15Hz, according to the luminosity. The

inter-vehicle communication is ensured via WiFi technology.

Since the data of each vehicle are transmitted as soon as the

localization step is completed, the communication frequency

is similar to the camera one. Finally, each vehicle is also

equipped with an RTK-GPS receiver, devoted exclusively to

performance analysis: its information are not used to control

the vehicles.
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2) Experimental results: The experiment reported below

consists in platoon control, with three vehicles, along the

230m-long reference trajectory shown in Fig. 3. The local

scale factors computed on-line from odometric data by the

leader vehicle (with K = 0.5 and v1 = 1m.s−1) are shown

in green in Fig. 7. The ones obtained off-line as well as

those computed on-line from telemetric data (with d⋆ = 5m
and ∆sλ = 0.1) and retransmitted by the second vehicle

are respectively reported in red and blue in Fig. 7. It can

be noticed that both scale factors sets computed on-line are

very close to the actual ones evaluated off-line from RTK-GPS

measurements.
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Fig. 7. On-line scale factor estimation

Finally, platoon control performances are evaluated in

Fig. 8, according the correction applied on the trajectory. At

the top are presented the second vehicle results and the third

ones figure at the bottom. When inter-distance error is directly

deduced from raw localization vision data, longitudinal control

is largely erroneous, as shows the black curve in Fig. 8. These

large errors, namely 40cm for the second vehicle and 70cm for

the third one, show clearly the significance and the relevance

of local corrections. As expected, best corrections are provided

off-line: the longitudinal errors are as accurate as previously

when RTK-GPS data were used (see [4]) to control the vehi-

cles. Whatever the vehicle, they indeed satisfactorily remain

within 10cm. When on-line corrections are provided, same

control performances are maintained for the second vehicle

while those of the third one are slightly depreciated during the

abrupt scale factor variation (s1 ∈ [60, 80]m). Nevertheless,

the inter-distance errors do not exceed 16cm and 21cm,

respectively with observer (9) and local optimization (4).

40 60 80 100 120 140 160 180 200 220

−0.4

−0.3

−0.2

−0.1

0

0.1

   
   

   
   

  l
o

n
g

it
u

d
in

al
 e

rr
o

rs
 (

in
 m

et
er

s)
 

 v
eh

ic
le

1 
/ v

eh
ic

le
3 

   
   

   
   

   
ve

h
ic

le
1 

/ v
eh

ic
le

2

 

 

raw vision data

odometric based corrections

40 60 80 100 120 140 160 180 200 220
−0.8

−0.6

−0.4

−0.2

0

0.2

RTK−GPS based curvilinear abscissa of the leader vehicle (in meters)

 

 

telemetric based corrections

off−line corrections

Fig. 8. Vehicle inter-distance errors

VI. CONCLUSION

In this paper, vehicle platooning in urban environments has

been addressed. First, a global decentralized control strategy,

taking advantage of inter-vehicle communications, has been

proposed, in order to avoid error accumulation inherent to local

control approaches.

Vehicle absolute localization has been derived from an on-

board camera and two approaches have been proposed to on-

line estimate local distortion between actual and virtual vision

worlds: first, a local optimization technique, relying on vehicle

inter-distances measured with a laser rangefinder, and secondly

a nonlinear observer supported by odometric data.

The capabilities of the two approaches have been inves-

tigated and compared, via exhaustive numerical simulations.

Then full-experiments, carried out with three vehicles have

finally demonstrated the efficiency of the proposed approaches.

Further experiments, involving vehicles led by a manually

guided vehicle have to be conducted to emphasize the benefits

of on-line corrections when the reference trajectory is being

created.
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