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This paper presents a vision-based navigation strategy for a vertical take-off and landing (VTOL)

unmanned aerial vehicle (UAV) using a single embedded camera observing natural landmarks. In the

proposed approach, images of the environment are first sampled, stored and organized as a set of

ordered key images (visual path) which provides a visual memory of the environment. The robot

navigation task is then defined as a concatenation of visual path subsets (called visual route) linking the

current observed image and a target image belonging to the visual memory. The UAV is controlled to

reach each image of the visual route using a vision-based control law adapted to its dynamic model and

without explicitly planning any trajectory. This framework is largely substantiated by experiments with

an X4-flyer equipped with a fisheye camera.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Sarris (2001) establishes a list of civilian applications for UAVs
including border interdiction, search and rescue, wild fire
suppression, communications relay, law enforcement, disaster
and emergency management, research, industrial and agricultural
applications. 3D archaeological map reconstruction and image
mosaicing may be added to this list. In order to develop such
applications automatic navigation of those vehicles has to be
addressed. While most of the current researches deal with the
attitude estimation (Hamel & Mahony, 2006) or with the control
of UAVs (Guénard, Hamel, & Eck, 2006), few works propose
navigation strategies. In this area, the most popular sensor is the
GPS receiver. In this case, the navigation task consists generally in
reaching a series of GPS waypoints or on following a 3D trajectory.
In Nikolos, Tsourveloudis, and Valavanis (2002), this trajectory is
extracted from an elevation map with a genetic algorithm.
Unfortunately, GPS data are not always available (for instance in
indoor environment) or can be inaccurate (for instance in dense
urban area where buildings can mask some satellites or when
light GPS receiver are used). For those reasons, it is necessary to
use other sensors. Employing a camera is very attractive to solve
those problems because in places where the GPS is difficult to use
such as city centers or even indoors, there are usually a lot of
visual features. A navigation system based on vision could thus be
a good alternative to GPS. Some techniques originally developed
for ground vehicles have been transposed to the context of UAV
ll rights reserved.
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navigation. For instance in Angeli, Filliat, Doncieux, and Meyer
(2006), a 2D simultaneous localization and mapping (SLAM)
technique is used. In Frew, Langelaan, and Stachura (2007), a
bearing-only SLAM is proposed. Note that SLAM techniques only
focus on the mapping and localization parts whereas the aim of
the authors is here to build a complete navigation framework
which includes mapping, localization and also control. Vision-
based strategies have also been proposed to control the motions
of UAVs. For instance, an homography-based control scheme is
proposed in Hu, Dixon, Gupta, and Fitz-Coy (2006). However,
this approach requires the camera to point to the ground which is
supposed to be planar. In Guénard, Hamel, and Mahony (2007), an
image-based control strategy using centroid of artificial
landmarks (white blobs) with known positions is used for a
positioning task. In Bourquardez and Chaumette (2007), a visual
servoing scheme is proposed to align an airplane with respect to a
runway in a simulated environment. In Chitrakaran, Dawson,
Kannan, and Feemster (2006), leader–follower and visual trajec-
tory following strategies based on homography decomposition
are proposed and simulated. Note that in this approach, planar
surfaces have to be observed by a pan-tilt camera. In the approach
proposed in this paper, the camera is not restricted to observe
planar surfaces and experiments have been conducted in real
contexts without prior knowledge of the environment.

Many visual-memory based navigation strategies have been
proposed for ground vehicles (for instance refer to Courbon,
Mezouar, & Martinet, 2009; Goedemé, Tuytelaars, & Gool, 2004;
Matsumoto, Ikeda, Inaba, & Inoue, 1999). Specific additional
challenges are involved to apply those strategies for UAVs. First,
aerial vehicles are underactuated rigid body objects moving in 3D
while ground mobile robots are generally vehicle with
non-holonomic kinematics moving on a locally plane world.
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Second, dynamic effects and external perturbations are important
for small aerial vehicles while they can be generally neglected
when dealing with ground vehicles. Finally, due to data
transmission and shaky movements the video sequences sends
from the UAV to the ground station is of bad quality which can
impact the navigation strategy.

1.1. Method overview and paper structure

An overview of the proposed navigation framework is
presented in Fig. 1. The method can be divided into three steps
(1) visual memory building, (2) localization, (3) autonomous
navigation.

In the first off-line step (visual memory building), a sequence
of images is acquired during a human-guided navigation. It allows
to derive paths driving the UAV from its initial to its goal
locations. In order to reduce the complexity of the image
sequences, only key views are stored and indexed on a visual
path. The set of visual paths can be interpreted as a visual
memory of the environment. Section 2 details more precisely this
point.

In the second step, before the beginning of the motion, the
localization of the robotic system is performed on-line. During
this stage, no assumption about the UAV’s position is made. The
localization process consists in finding the image of the visual
memory which best fits the current image. In this step, only the
most similar view is sought and not the metric position of the
Visual route

Visu

Key image to

First current image

C
Current image

State estimation and 
control input computa

Sequence of images acqu

Key image

Fig. 1. Overview of the propose
robotic system. More details about the proposed hierarchical
localization process are given in Section 3.

In the last stage (refer to Section 4), given an image of one of
the visual paths as a target, the UAV navigation mission is defined
as a concatenation of visual path subsets, called visual route. A
navigation task then consists in autonomously executing a visual
route, on-line and in real-time. This control, taking into account
the model of the UAV, guides the vehicle along the reference
visual route without explicitly planning any trajectory.

Experiments have been carried out with an X4-flyer equipped
with a fisheye camera, navigating in an indoor environment.
Results are presented in Section 5.
2. Visual memory and route building

The first step of the proposed framework consists in a learning
stage to build the visual memory. The structure of the visual
memory initially developed in the context of wheeled mobile
robots (refer to Courbon et al., 2009 for more details) is recalled in
this section.

2.1. Visual memory

The visual memory is composed of a set of images
fI ijiAf1,2, . . . ,ngg connected to form a graph. Let RðOc ,xc ,yc ,zcÞ

be the body fixed frame attached to the center of mass of the
al memory
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robot (refer to Fig. 5). Without loss of generality, it is supposed
that the camera frame coincides with the robot frame. For control
purpose, the authorized motions between two connected images
are assumed to be limited to those of the considered UAV.
Hypothesis 2.1 formalizes these constraints.

Hypothesis 2.1. Given two frames Ri and Rj respectively
associated to the vehicle when two successive key images I i

and I j of the memory were acquired, there exists an admissible
path ðUÞ from Ri to Rj for the UAV.

Moreover, the vehicle is controllable from I i to I j only if the
hereunder Hypothesis 2.2 is respected.

Hypothesis 2.2. Two successive key images I i and I j contain a
set Pi of matched visual features, which can be observed along the
path ðUÞ performed between Ri and Rj and which allows the
computation of the control law.

If Hypotheses 2.1 and 2.2 are verified then an edge connects the
two configurations of the vehicle’s workspace related to the two
corresponding images of the visual memory. In case of an
omnidirectional vehicle like the X4-flyer, if the UAV is able to
be controlled from Ri to Rj, it is able to be controlled from Rj to
Ri. The visual memory is then structured as a graph with
undirected edges linking images.

2.2. Visual route

A visual route describes the vehicle’s mission in the sensor
space. Given two key images of the visual memory I�s and Ig ,
corresponding respectively to the starting and goal locations of
the vehicle in the memory, a visual route is a set of key images
which describes a path from I�s to I g . The starting image I�s is the
closest key image to the first image I s acquired on-line. I�s is
extracted from the visual memory during the localization step
detailed in Section 3.

2.3. Keyframes selection

The keyframes selection process can be splitted into three
stages:
1.
 Image pre-processing: Considered UAV sequences are affected
by noise due to the video transmission system. This noise is
usually characterized by white stripes or severe black and
white disturbances. These corrupted frames cause obvious
problems in features detection. A simple but effective
technique was developed to eliminate them. It is based on
two criteria:

� White stripes detection. Firstly, the left border is checked,
vertically, looking for a white pixel. If a white pixel is found,
then it is checked if the whole line is white as well. If at
least three white stripes are detected, the frame is deleted.
Fig. 2. Frames corrupted by noise: (a) white stripes, (b) black and wh
� Similarity of consecutive frames. The distance between two
consecutive frames is measured. If it is too high, it means
that the second frame is corrupted and thus the image is
eliminated. The Kullback–Leibler distance, or mutual
entropy, on the histograms of the two frames:

dðp,qÞ ¼
X

i

pðiÞlog
pðiÞ

qðiÞ

where p and q are the histograms of the frames is used. The
threshold is fixed on 0.2.
ite d
2.
 Key-image selection: The first image of the video sequence is
selected as the first key frame I1. A key frame I iþ1 is then
chosen so that there are as many video frames as possible
between I i and I iþ1 while there are at least M common
interest points matched between I i and I iþ1. The image
matching process will be detailed in Section 2.4.
3.
 Manual verification: Some remaining images with poor quality
(see Fig. 2 for example) are manually rejected.

Note that the first stage of this process is also employed during
the autonomous navigation to eliminate corrupted frames.

2.4. Feature matching

A central clue for implementation of the proposed framework
relies on efficient point matching. This process takes place in all
steps of the proposed navigation framework. It allows key image
selection during the learning stage (in step 2) and it is also used
during the localization step and during the autonomous naviga-
tion. A similar process to the one proposed in Royer, Lhuillier,
Dhome, and Lavest (2007) and successfully applied for the metric
localization of autonomous vehicles in outdoor environment is
used. Interest points are detected in each image with Harris
corner detector (Harris & Stephens, 1988). For an interest point Pi

at coordinates ½x y�> in image I i, a region of interest (ROI) is
defined in image I iþ1. This ROI is a rectangle of center of the point
of coordinates ½x y�>. For each interest point Pi + 1 inside the ROI in
image I iþ1, a score between the neighborhoods of Pi and Pi +1 is
computed using a zero normalized cross correlation. The point
with the best score that is greater than a certain threshold is kept
as a good match and the unicity constraint is used to reject
matches which have become impossible. This method is illumina-
tion invariant and its computational cost is small.
3. Localization in a memory of wide field of view images

The output of the learning process is a data set of images
(visual memory). The first step of the autonomous navigation
process is the self-localization of the vehicle in the visual memory.
In this step, the robot is assumed to be situated nearby the
situation where a key image was acquired. The localization
consists in finding the image of the memory which best fits the
current image by comparing pre-processed and on-line acquired
isturbances, (c) remaining image (manually rejected).
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images. In this paper, the authors particularly focus on a method
suitable when the data set consists in omnidirectional images.
Omnidirectional cameras are usually intended as a vision system
providing a huge field-of-view. Such an enhanced field of view can
be achieved by either using catadioptric systems, obtained by
opportunely combining mirrors and conventional cameras, or
employing purely dioptric fisheye lenses (Baker & Nayar, 1999).
As first demonstrated in Barreto (2006) and exploited in robotic
applications in Courbon, Mezouar, Eck, and Martinet (2007),
images acquired by those sensors have a similar behaviour. In the
experiments detailed in Section 5, a fisheye camera is employed.

The efficiency of a visual localization method can be measured by
means of: (1) accuracy of the results, (2) memory needed to store data
and (3) computational cost. The main objective is to optimize the
localization process under those criteria. Two main strategies exist to
match images: the image can be represented by a single descriptor
(global approaches) (Gaspar, Winters, & Santos-Victor, 2000;
Matsumoto et al., 1999) or alternatively by a set of descriptors
defined around visual features (landmarks-based or local approaches)
(Goedemé et al., 2005; Murillo, Guerrero, & Sagüés, 2007). In those
last methods, some relevant visual features are extracted from the
images. A descriptor is then associated to each feature neighbour-
hood. The robustness of the extraction and the invariance of the
descriptor are one main issue to improve the matching process. In one
hand, local approaches are generally more accurate but have a high
computational cost (Murillo et al., 2007). On the other hand, global
descriptors speed up the matching process at the price of affecting the
robustness to occlusions. A hierarchical approach is proposed in
Murillo et al. (2007): a first selection is done using a global descriptor
while the final localization results from local descriptors.

In this paper, a hierarchical approach for localization in a
database of omnidirectional images is proposed. The computa-
tional efficiency is ensured in a first step by defining a well suited
global descriptor which allows to select a set of candidate images.
Local descriptors are then exploited to select only the best image
and thus to ensure accuracy.
3.1. Global descriptor

The first step is based on a geometrical image representation
derived from surface interpolation. Images have first their
histogram equalized in order to be more robust to illumination
changes. Pixels are seen as a discrete 3D surface S with the grey
level as the third coordinate (refer to Fig. 3):

S :
½0,1, . . . ,N� � ½0,1, . . . ,M�/½0,255�

ðu,vÞ-Sðu,vÞ

(

The interpolation consists in locally approximating this surface
Sðu,vÞ by a surface f(s,t), sA ½0;1�,tA ½0;1�. Note that it is necessary to
Fig. 3. Given the control point positions in the plane (a), t
have control points at the same positions in order to compare
descriptors of different images. Moreover, regular positions ensure a
better interpolation. In that aim, the use of the triangular mesh
vertices represented in Fig. 3(a) as control points and the altitude z
of the control points of the approximated surface as descriptors
are proposed. This triangular mesh is generated as proposed in
Persson and Strang (2004). Node locations are computed by solving
for equilibrium in a truss structure using piecewise linear
force–displacement relations. The proposed global descriptor is
thus the interpolation by a cubic function of the image surface at the
node locations defined previously. The required computational cost
is low and interpolation errors are small.

3.2. First selection and local descriptor

Descriptor zc (respectively zi) is computed for the current
image I c (respectively for the memorized image I i). The global
distance di

global between those two images is the L1 distance
between zc and zi. Kept candidate images are such that
dglobal

i =minid
global
i rt where the threshold tZ1 allows to not

reject the images which have a distance similar to the minimal
distance. The output of this first stage is a small amount of
candidate images.

A local approach is proposed to select the best candidate since
only few images are involved (i.e in this case the computational
cost is low). With this aim, a classical local approach based on the
zero normalized cross correlation (ZNCC) between patches around
Harris corners is employed since the computational cost is much
lower than SIFT or SURF based approaches whereas similar
accuracy is obtained with images corresponding to close view-
points (Courbon, Mezouar, Eck, & Martinet, 2008). In this stage, the
local distance between two images is simply chosen as di

local
¼1/n

where n is the number of matched features. The final result of the
localization is the image Ik such that dlocal

k ¼miniðd
local
i Þ.

This hierarchical method has been compared to state-of-the-
art techniques in Courbon et al. (2008). The obtained results
show that the proposed method is a good compromise
between accuracy, amount of memorized data and computational
cost.
4. Route following

When starting the autonomous navigation task, the output of
the localization step provides the closest image I�s to the current
image I s. A visual route C connecting I�s to the goal image Ig is
then extracted from the visual memory. As previously explained,
the visual route is composed of a set of key images:

C¼ fI1,I2, . . . ,In�1,Ing
he image (b) is seen as a surface and interpolated (c).
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where I1 ¼ I�s , In ¼ Ig and n is the number of images of the path.
The next step is to automatically follow this visual route using a
vision-based control scheme.

To design the controller, described in the sequel, the key
images of the reference visual route are considered as consecutive
waypoints to reach in the sensor space. The control problem is
thus formulated as a position control to guide the underactuated
robot along the visual route. The computation of the control input
requires the design of the control law and the estimation of the
state of the vehicle from the current image and the desired key
image (refer to Section 4.4) as presented in Fig. 4.
Fig. 5. The four rotors generating the collective thrust.
4.1. Vehicle modelling

In this section, the equations of motion for a UAV in quasi-
stationary flight conditions are briefly recalled following Hamel,
Mahony, Lozano, and Ostrowski (2002). Let RinðOin,e1,e2,e3Þ be
the inertial frame attached to the earth, relative to a fixed origin
assumed to be Galilean and RcðOc ,xc ,yc ,zcÞ be the frame attached
to the UAV (refer to Fig. 5) with Oc the gravity center.

The position of Oc with respect to the inertial frame Rin is
denoted p. The orientation of the airframe is given by a rotation
H : Rc-Rin. Let v (respectively X) be the linear (resp. angular)
velocity of the center of mass expressed in the inertial frame Rin

(resp. in Rc). The geometry of the robot is supposed to be perfect.
The control inputs to send to the vehicle are: T, a scalar input
termed thrust or heave, applied in direction zc and
C¼ ½G1 G2 G3�

> (the control torques relative to the Euler angles).
Let m denotes the mass of the airframe, g the gravity constant and
let I be the 3�3 constant inertia matrix around the centre of
mass, expressed in Rc . Newton’s equations of motion yield the
following dynamic model for the motion of a rigid object:

_p ¼ v

m _v ¼�THe3þmge3

_H ¼HskðXÞ

I _X ¼�X� IXþC

8>>><
>>>:

ð1Þ
Fig. 4. Visual route following process.
4.2. Control objective

Let I i and I iþ1 be two consecutive key images of a given visual
route to follow and I c be the current image.
Riþ1 ¼ ðOiþ1,xiþ1,yiþ1,ziþ1Þ is the frame attached to the vehicle
when I iþ1 was stored and Rc ¼ ðOc ,xc ,yc ,zcÞ is the frame attached
to the vehicle in its current location. The hand-eye parameters
(i.e. the rigid transformation between Rc and the frame attached
to the camera) are supposed to be known. According to
Hypothesis 2.2, the state of a set of visual features Pi is known
in the images I i and I iþ1. The state of Pi is also assumed available
in I c (i.e. Pi is in the camera field of view). The visual task to
achieve is to drive the state of Pi from its current value to its value
in I iþ1 which is equivalent to drive Rc to Riþ1. In the case of a
quadrotor, rotational dynamic and translational dynamic are
coupled (refer to (1)) and a translation is obtained by inclining the
UAV. During autonomous navigation, it is not required to have the
same pitch and roll angles (i.e. the same translational velocity)
than in the learning step. The task to achieve is thus defined as the
regulation to zero of the position error ~p (i.e. the position of Oiþ1

in Rc) and the yaw error ~y of Riþ1 with respect to Rc . The control
scheme designed to realize this objective is presented in Section
4.3. Geometrical relationships between two views acquired with a
camera under the generic projection model (which includes
conventional, catadioptric and some fisheye cameras) are
exploited to enable a partial Euclidean reconstruction from which
~p and ~y are derived (Section 4.4).

4.3. Control design

The positioning task described in the previous section is
realized using a control scheme composed of three loops (refer to
Fig. 6). The outer loop consists in assigning the desired
translational velocity and to assure that the system remains in
quasi-stationary flight conditions. The intermediate loop ensures
the convergence of the translational velocity v to the desired
velocity vd by assigning the desired matrix Hd. Finally, the control
torques C are assigned in order to have the rotational matrix H
converging to this desired matrix Hd in the inner loop. This
control scheme assures that the tilt angle is limited to small-angle
and that the velocity is bounded in order that the UAV remains in
quasi-stationary flight conditions. Stability analysis of the
embedded controller is detailed in Guénard, Moreau, Hamel,
and Mahony (2008). The experimental system and gain
adjustments ensure a quick convergence of the rotation to the
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desired rotation. For the translational dynamic, associated gains
are smaller. Thus, considering that the dynamic of v is slow
compared to the dynamic of H, Hd changes slowly. Coupling
terms between the two loops can be neglected and thus it is
assured that H-Hd and v-vd.

The position error ~p and the velocity error ~v are defined by the
following equations:

~p ¼ p�pd ð2Þ

~v ¼ v�vd ð3Þ

where pd is the constant desired position ð _pd ¼ 0Þ. The vectorial
function noted sateðxÞ represents the saturation of each compo-
nent of the vector x to e: sateðxiÞ ¼ xi if jxijre and
sateðxiÞ ¼ e signðxiÞ if jxij4e. As a consequence, the relation
x>sateðxÞ40 exists for all xa0.

Theorem 4.1. The control input defined by

vd ¼�k sateð ~pÞ ð4Þ

with k small compared to the translational dynamic gains, is

stabilizing and assures that the system stays in quasi-stationary

flight conditions.

Note that e depends on the quasi-stationary flight limit
conditions on the translational velocity. The proof is given in
Appendix.

4.4. State estimation from the generic camera model

In this work, the unified model described in Geyer and
Daniilidis (2003) is used since it allows to formulate state
estimations that are valid for visual sensors having a single
viewpoint (that is, there exists a single center of projection, so
that, every pixel in the sensed images measures the irradiance of
the light passing through the same viewpoint in one particular
direction). In other words, it encompasses all sensors in this class
(Geyer & Daniilidis, 2003): perspective and catadioptric cameras.
A large class of fisheye cameras are also concerned by this model
(Barreto, 2006; Courbon et al., 2007).
The unified projection model consists in a central projection
onto a virtual unitary sphere followed by a perspective projection
onto the image plane (Geyer & Daniilidis, 2003). This generic
model is parametrized by x describing the type of sensor and by a
matrix K containing the intrinsic parameters.

Let X be a 3D point and R and t the rotational matrix and the
translational vector between the current and the desired frames.
Let xm (respectively x�m) be the coordinates of the projection of X
onto the unit sphere linked to the current frame F c (resp. to F iþ1)
(refer to Fig. 7). The epipolar plane contains the projection centers
Oc and Oiþ1 and the 3D point X . Xm and X�m clearly belong to this
plane. The coplanarity of those points leads to the relation:

x>mEx�>m ¼ 0 ð5Þ

where E¼R skðtÞ is the essential matrix (Svoboda & Pajdla, 2002).
In Eq. (5), xm (respectively x�m) corresponds to the coordinates of
the point projected onto the sphere, in the current image I c

(respectively in the desired key image). Those coordinates are
obtained from the coordinates of the point matched in the first
and second images in two steps:

Step 1: The 2D projective point x ¼ ½x y 1�> is obtained from
the coordinates x

i
¼ ½u v 1�> of the point in the image after a

plane-to-plane collineation K�1: x ¼K�1x
i
.

Step 2: xm can be computed as a function of the coordinates in
the image and the sensor parameter x:

xm ¼ ðZ�1þxÞ x y
1

1þxZ

� �>
ð6Þ

with

Z¼�g�xðx
2þy2Þ

x2
ðx2þy2Þ�1

g¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð1�x2

Þðx2þy2Þ

q
8>>><
>>>:

The essential matrix E between two images can be estimated
using five couples of matched points as proposed in Nistér (2004)
if the camera calibration (matrix K and parameter x) is known.
Outliers are rejected using a random sample consensus (RANSAC)
algorithm (Fischler & Bolles, 1981). From the essential matrix, the
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Fig. 9. Some images of the visual memory Drone I of the UAV.

Fig. 10. Images of the sequence Drone II. (a) I1. (b) I2. (c) I3. (d) I4. (e) I5. (f) I6. (g) I7. (h) I8. (i) I9. (j) I10. (k) I11.

Fig. 8. Quad-rotor UAV used in the proposed experiments.

Fig. 11. Key image Im-4 to reach (Exp. 1).

J. Courbon et al. / Control Engineering Practice 18 (2010) 789–799 795
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Fig. 12. (a) ErrX (expressed in meters), (b) ErrY (expressed in meters) and (c) yaw error (expressed in rad) vs. time (in seconds) (Exp. 1).

Fig. 13. Key images to successively reach (Exp. 2). (a) Key image Im-12. (b) Key image Im-11.
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camera motion parameters (that is the rotation R and the
translation t up to a scale) can be determined (refer to Hartley
& Zisserman, 2000). Finally, the input of the control law (4), i.e. ~p
and ~y can be computed straightforwardly from t and R. In the
experimentation proposed in Section 5, the scale factor is roughly
estimated. Let sARþ� be the scale factor. The control input:

vd ¼�k sateðs ~pÞ ¼�ks sateð ~pÞ ð7Þ

is stabilizing and assures that the system stays in quasi-stationary
flight conditions if ks is small compared to the translational
dynamic gains.
1 A patent by N. Guénard (CEA-LIST) is currently in registration about this

approach.
5. Experimental results

In this section, the results obtained with an experimental
platform are discussed. The UAV used for the experimentation
(refer to Fig. 8) is a quadrotor designed by the CEA. It is a vertical
take off and landing (VTOL) vehicle ideally suited for stationary
and quasi-stationary flight (Guénard et al., 2007).

5.1. Experimental set-up

The X4-flyer is equipped with a digital signal processing (DSP),
running at 150 MIPS, which performs the control algorithm of the
orientation dynamics and filtering computations. For orientation
dynamics, an embedded high gain controller running at 166 Hz
independently ensures the exponential stability of the orientation
towards the desired one. The translational velocities in xc and yc
directions are estimated from the INS measurements. Those
information are quickly diverging thus they are readjusted thanks
to the optical flow measured on the ground with a second
embedded camera, using a fuzzy logic approach.1 The control
along the axis zc is thus not considered here. The embedded
camera used for navigation has a field of view of 1201 and is
pointing forward. It transmits 640�480 pixels images at a
frequency of 12.5 fps to a laptop using RTAI-Linux OS with a
2 GHz Centrino Duo processor via a wireless analogical link.
Vision algorithms are implemented in C++ language in the laptop.
The state required by the control law is computed on this laptop
and is sent to the ground station by an ethernet connection.
Desired orientation and desired thrust are generated on the
ground station and sent to the UAV.

5.2. Learning step

During a first learning step, the UAV is manually controlled
along an approximately linear path situated in the ðxc ,ycÞ plane
and at 451 from the xc- axis direction of the UAV and images are
acquired by the embedded camera pointing forward (xc direction,
refer to Fig. 9).

Key images are selected as explained in Section 2.3. It results to
a single sequence (called Drone I in the sequel) containing 12 key
images (refer to Fig. 9). In addition, to experiment a local servoing
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Fig. 14. (a) ErrX (m) and (b) ErrY vs. time (s) (Exp. 2).
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Fig. 15. (a) ErrX (m), (b) ErrY (m) and (c) yaw error (rad) vs. time (s) (Exp. 3).

Fig. 16. Robustly matched features between the current image (a) and the image to reach (b; Im-5).
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(Exp. 2), a new edge connecting two images is added into the
visual memory. Those two images are such that the second key
image is approximately situated at 1.5 m along the xc- axis back to
the first image.

During a second learning step, a sequence is acquired in a
15-m long straight line in the direction xc of the UAV. The visual
memory built (called Drone II) contains in this case 11 key images
(refer to Fig. 10).
5.3. Goal reaching (Exp. 1)

This section deals with the vision-based control of the UAV in
order to reach the key image Im-4 drawn in Fig. 11. The robot is
manually guided to an initial position approximately situated at
1.5 m at the right of the frame attached to the key image and
similarly oriented. The robot is then automatically controlled in
order to reach the key image. A mean of 73 robust matches for
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Fig. 17. Robustly matched features between the current image (a) and the image to reach (b; Im-4).
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Fig. 18. Position errors ErrX (m) and ErrY (m) and yaw error ~c (rad) vs. time (s) (Sequence Drone II).
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each frame has been found during this experimentation. The
mean computational time during the on-line navigation is 94 ms/
image. Errors in translation (noted ErrX and ErrY), expressed in
meters, and error in yaw angle, expressed in radian versus time
(in seconds) are reported in Fig. 12. ErrX, ErrY and yaw angle
errors are converging to zero. The remaining noise is caused by
the mechanical vibrations of the body frame during the flight, the
lost of quality in images after the transmission, the partial 3D
reconstruction errors and by the asynchronous sensors’ data.
Moreover, oscillations may come from an error in translational
velocity estimation. Nevertheless, the navigation task is correctly
achieved.

5.4. Succession of two images (Exp. 2)

In this experiment, the two key images Im-12 and Im-11 of
Drone I are defined as targets (refer to Fig. 13).

When the first target is reached, the key image 2 is set as the
new target. When the key image 2 is reached, the key image 1 is
set as the new target and so on (7 times). The two images are
approximately situated in the direction of the vehicle. Transla-
tions thus occur mainly along the xc- axis direction. Results are
reported in Fig. 14. In the figures vertical dotted lines denote that
a key image is reached and the number on top of the axis
represents the number of the key image to reach. After each
change of desired key image, error in axis yc and yaw angles are
converging to zero. Error in axis xc is also converging. A static
error in axis xc remains due to errors in velocity estimation.
Future works will deal with this point.

5.5. Waypoints following (Exp. 3)

The visual path to follow is set manually as the sequence: Im:
3–4–5–6–7–8–9–10–9–8–7–6–5–4–3–2–3–4–5–6–7–8–9–10–9–
8–7–6–5–4–3–2. A key image is assumed to be reached when the
distance from the origin of the current frame to the origin of the
desired frame in the ðxc ,ycÞ plane is under a fixed threshold.
Results are drawn in Fig. 15. Even if errors in axis xc and yc and in
yaw angle are not exactly regulated to zero, the vehicle
successfully follows the visual path.

Samples of robust matching between the current image and
the desired key image are represented in Fig. 16 (68 matched
points) and Fig. 17 (48 matched points). In Fig. 17, the current
image has a low quality. Despite this fact, many points have been
matched and the visual path has been successfully followed.

5.6. Drone II (Exp. 4)

The UAV is manually teleoperated nearby an image of the
sequence Drone II. The localization step lasts 380 ms (35 ms/
image) and the initial image found is I3 (refer to Fig. 10). The
visual path extracted to reach I10 contains eight key images.

The autonomous navigation is stopped after reaching the key
image I9. Position and yaw errors are represented in Fig. 18.
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Firstly, note that the errors ErrX and ErrY are well regulated to
zero for each key image. At time t¼3.9 seconds, the quality of the
image is very poor leading to an inaccurate estimation of the
camera displacement as it can be observed in Fig. 18. Note that in
this case, control inputs are filtered for a safer behaviour of the
UAV.
6. Conclusion

A complete framework for autonomous navigation for an
unmanned aerial vehicle which enables a vehicle to follow a
visual path obtained during a learning stage using a single camera
and natural landmarks has been proposed. The robot environment
is represented as a graph of visual paths, called visual memory
from which a visual route connecting the initial and goal images
can be extracted. The vehicle can then be driven along the visual
route thanks to a vision based control law which takes into
account the dynamic model of the robot. Furthermore, the state of
the robot, required for the control law computation, is estimated
using a generic camera model valid for perspective, catadioptric
as well as a large class of fisheye cameras. Experiments with an
X4-flyer equipped with a fisheye camera have shown the validity
of the proposed approach.

From a practical point of view, this navigation scheme is
planned to be tested as soon as possible in outdoor environments.
Future research works will be devoted first to improve the
velocity estimator. Besides, another goal will be to robustly
estimate the velocity using only the embedded camera employed
for the navigation task. The second point is the improvement of
the control law in order to be more robust to external
perturbations such as the wind. Other perspectives include the
study of a fully automatic scheme to build the visual memory, and
the improvement of this navigation scheme in order to realize
navigation tasks along paths which have not been realized during
the learning stage.
Appendix
Proof of Theorem 4.1. Consider the storage function:

S¼ 1
2J ~pJ

2
ð8Þ

Taking into account Eqs. (1) and the control input (4), the time
derivative of S is _S ¼ ~p>v. This equation may be written as

_S ¼�k ~p> sateð ~pÞþ ~p
> ~v ð9Þ

The term ~p> ~v acts as a perturbation on the position stabilization.
If k is chosen small compared to the translational dynamic gains
then vd is slowly changing and v tends to vd faster than the
convergence of p to pd. In this condition, ~v tends to zero and then
_S ¼�k ~p> sateð ~pÞ. This function is definite negative which assures
the convergence of p to pd. &
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