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Autonomous Navigation of Vehicles from a Visual
Memory Using a Generic Camera Model

Jonathan Courbon, Youcef Mezouar, and Philippe Martinet

Abstract—In this paper, we present a complete framework for
autonomous vehicle navigation using a single camera and natural
landmarks. When navigating in an unknown environment for the
first time, usual behavior consists of memorizing some key views
along the performed path to use these references as checkpoints
for future navigation missions. The navigation framework for
the wheeled vehicles presented in this paper is based on this
assumption. During a human-guided learning step, the vehicle
performs paths that are sampled and stored as a set of ordered
key images, as acquired by an embedded camera. The visual paths
are topologically organized, providing a visual memory of the
environment. Given an image of the visual memory as a target, the
vehicle navigation mission is defined as a concatenation of visual
path subsets called visual routes. When autonomously running,
the control guides the vehicle along the reference visual route
without explicitly planning any trajectory. The control consists of
a vision-based control law that is adapted to the nonholonomic
constraint. Our navigation framework has been designed for a
generic class of cameras (including conventional, catadioptric,
and fisheye cameras). Experiments with an urban electric vehicle
navigating in an outdoor environment have been carried out with
a fisheye camera along a 750-m-long trajectory. Results validate
our approach.

Index Terms—Autonomous navigation, generic camera model,
monocular vision, nonholonomic mobile vehicle, real-time appli-
cation, robot navigation, urban vehicles, visual memory.

I. INTRODUCTION

THE saturation of vehicle traffic in large cities is a major
concern. Improvements can be gained from the devel-

opment of alternative public transportation systems. To meet
public expectations, such systems should be very flexible so
that they are suitable to answer many different individual needs
and be as nuisance free as possible (with respect to pollution,
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noise, urban scenery, etc.). Individual electric vehicles, which
are available in a car-sharing concept, clearly meet both require-
ments. They appear to be very suitable in specific areas where
the public demand is properly structured, such as in airport
terminals, attraction resorts, university campuses, or inner-city
pedestrian zones. To develop such a transportation system, the
automatic navigation of those vehicles has to be addressed.
Passengers could then move from any point to any other point
at their convenience in an automatic way, and vehicles could
autonomously be brought back to stations for refueling and
reuse.

Such an automatic navigation may be obtained with visual
sensors. The authors of [1] account for 20 years of work at the
intersection between robotics and computer vision communi-
ties. In many works, as in [2], computer vision techniques are
used in a landmark-based framework. Identifying the extracted
landmarks with known reference points allows to update the
results of the localization algorithm. These methods are based
on some knowledge about the environment, such as a given 3-D
model or a map built online. They generally rely on a com-
plete or partial 3-D reconstruction of the observed environment
through the analysis of data collected from disparate sensors.
The vehicle can thus be localized in an absolute reference
frame. Both motion planning and vehicle control can then be
designed in this space. The results obtained by the authors
of [3] leave to be forecasted that such a framework will be
reachable using a single camera. However, although an accurate
global localization is unquestionably useful, our aim is to build
a complete vision-based framework without recovering the
position of the vehicle with respect to a reference frame (in [1],
this type of framework is ranked among qualitative approaches)
and suitable for a large class of vision sensors.

Method Overview and Paper Structure

An overview of the proposed navigation framework is pre-
sented in Fig. 1. The method can be divided into the following
three steps: 1) visual memory building, 2) localization, and
3) autonomous navigation.

In the first offline step (visual memory building), a sequence
of images is acquired during a human-guided navigation. It
allows us to derive paths that drive the vehicle from its initial
locations to its goal locations. To reduce the complexity of the
image sequences, only key views are stored and indexed on a
visual path. The set of visual paths can be interpreted as a visual
memory of the environment. Section II more precisely details
this point.

1524-9050/$26.00 © 2009 IEEE
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Fig. 1. Overview of the proposed framework.

In the second step, before the beginning of the motion, the
localization of the robotic system is performed. During this
stage, no assumption about the vehicle’s position is made. The
localization process consists of finding the image that best
fits the current image in the visual memory. With this aim,
we propose a hierarchical process that combines the global
descriptors computed by cubic interpolation of a triangular
mesh and patch correlation around Harris corners. Note that we
only seek the most similar view and not the metric position of
the robotic system. More details about this process are given in
Section III.

In the last stage (refer to Section IV), given an image of one
of the visual paths as a target, the vehicle navigation mission is
defined as a concatenation of visual path subsets called visual
route. A navigation task then consists of autonomously execut-
ing a visual route. The vehicle is controlled by a vision-based
control law that is adapted to its nonholonomic constraint.
This control guides the vehicle along the reference visual route
without explicitly planning any trajectory. Note that in our
approach the control part takes into account the model of the
vehicle.

Experiments have been carried out with an electrical urban
vehicle, navigating in an outdoor environment along a 750-m-
long trajectory. The results are presented in Section V.

II. VISUAL MEMORY AND ROUTES

In [1], approaches that use a “memorization” of images of
the environment acquired with an embedded camera are ranked
among mapless navigation systems. As proposed in [4] or [5],

no notion of mapping nor topology of the environment appears
in building the reference set of images, nor for the automatic
guidance of the vehicle. The first step of our framework consists
of a learning stage to build the visual memory. The visual
memory is structured according to the environment topology
to reduce the computational cost.

A. Visual Memory Structure

The learning stage relies on human experience. The user
guides the vehicle along one or several paths into each place
where the vehicle is authorized to go. A visual path Ψp is then
stored and indexed as the pth learned path.

1) Visual Paths: A visual path Ψp is a weighted directed
graph composed of n successive key images (vertices)

Ψp = {Ip
i | i ∈ {1, 2, . . . , n}} .

For control purposes (see Section IV), the authorized motions
during the learning stage are assssumed to be limited to those
of a car-like vehicle, which only goes forward. The following
hypothesis formalizes these constraints.

Hypothesis 1: Given two frames RFi and RFi+1, respec-
tively, associated to the vehicle when two successive key im-
ages Ii and Ii+1 of a visual path Ψ were acquired, there exists
an admissible path ψ from RFi to RFi+1 for a car-like vehicle
whose turn radius is bounded and only moves forward.

Moreover, because the controller is vision based, the ve-
hicle is controllable from Ii to Ii+1 only if the hereunder
Hypothesis 2 is respected.

Hypothesis 2: Two successive key images Ii and Ii+1 con-
tain a set Pi of matched visual features, which can be observed
along a path performed between RFi and RFi+1 and which
allows the computation of the control law.

In the sequel, we use interest points as visual features. During
the acquisition of a visual path, Hypothesis 2 constrains the
choice of the key images. The key image selection process is de-
tailed in Section II-C. As a consequence of Hypotheses 1 and 2,
each visual path Ψp corresponds to an oriented edge that
connects two configurations of the vehicle’s workspace. The
number of key images of a visual path is directly linked to the
human-guided path complexity. The weight of a visual path is
then defined as its cardinal.

2) Visual Memory Vertices: To connect two visual paths, the
terminal extremity of one path and the initial extremity of the
other path must be constrained as two consecutive key images
of a visual path. The paths are then connected by a vertex, and
two adjacent vertices of the visual memory are connected by a
visual path.

Proposition 1: Given two visual paths Ψp1 = {Ip1
i |i ∈

{1, 2, . . . , n1}} and Ψp2 = {Ip2
i |i ∈ {1, 2, . . . , n2}}, if the two

key images Ip1
n1

and Ip2
1 abide by both Hypotheses 1 and 2, then

a vertex connects Ψp1 to Ψp2 .
We also assume Proposition 1 in the particular case where the

terminal extremity of a visual path Ψp1 is the same key image
as the initial extremity of another visual path Ψp2 . This is useful
in practice when building the visual memory.
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Fig. 2. Tasks consist of navigating from the starting to the ending images.
With this aim, a visual route Ξ = Ψ1′ ⊕ Ψ2 ⊕ Ψ3′ connecting these two
images is defined.

3) Connected Multigraph of Weighted Directed Graphs:
According to Sections II-A1 and 2, the visual memory structure
is defined as a multigraph which vertices are key images linked
by edges which are the visual paths (directed graphs). Note
that more than one visual path may be incident to a node. It
is necessary that this multigraph is strongly connected. This
condition guarantees that any vertex of the visual memory is
attainable from every other through a set of visual path.

B. Visual Route

A visual route describes the vehicle’s mission in the sensor
space. Given two key images of the visual memory I∗

s and
Ig , which correspond, respectively, to the starting and goal
locations of the vehicle in the memory, a visual route is a set
of key images that describes a path from I∗

s to Ig , as presented
in Fig. 2. I∗

s is the closest key image to the current image Is.
The image I∗

s is extracted from the visual memory during a
localization step, as described in Section III. The visual route is
chosen as the minimum length path of the visual memory that
connects the two vertices associated to I∗

s and Ig . According
to the definition of the value of a visual path, the length of a
path is the sum of the values of its arcs. The minimum length
path is obtained by using Dijkstra’s algorithm. Consequently,
the visual route results from the concatenation of indexed
visual paths. Given two visual paths Ψp1 and Ψp2 , respectively,
containing n1 and n2 indexed key images, the concatenation
operation of Ψp1 and Ψp2 is defined as

Ψp1 ⊕ Ψp2 =
{
Ip1,2

j |j = {1, . . . , n1, n1 + 1, . . . , n1 + n2}
}

Ip1,2
j =

{
Ip1

j , if j ≤ n1

Ip2
j−n1

, if n1 < j ≤ n1 + n2.

C. Key-Images Selection

A central clue for the implementation of our framework relies
on efficient point matching. This process takes place in all steps

of the proposed navigation framework. It allows key image
selection during the learning stage; of course, it is also useful
during autonomous navigation to provide the necessary input
for state estimation (see Section IV). We use a process similar
to that proposed in [3] and successfully applied for the metric
localization of autonomous vehicles in an outdoor environment.
Interest points are detected in each image with a Harris corner
detector [6]. For an interest point P1 at coordinates (x, y)
in image Ii, we define a search region in image Ii+1. The
search region is a rectangle whose center has coordinates (x, y).
For each interest point P2 inside the search region in image
Ii+1, we compute a score between the neighborhoods of P1

and P2 using a zero-normalized cross correlation (ZNCC).
The point with the best score that is greater than a certain
threshold is kept as a good match, and the unicity constraint
is used to reject matches that have become impossible. This
method is illumination invariant, and its computational cost is
small.

The first image of the video sequence is selected as the first
key frame I1. A key frame Ii+1 is then chosen so that there are
as many video frames as possible between Ii and Ii+1, whereas
there are at least M common interest points tracked between Ii

and Ii+1.

III. LOCALIZATION IN A MEMORY OF

WIDE FIELD OF VIEW IMAGES

The output of the learning process is a data set of images
(visual memory). The first step of the autonomous navigation
process is the self-localization of the vehicle in the visual
memory. The localization consists of finding the image of the
memory that best fits the current image by comparing pre-
processed and online-acquired images. We particularly focus
on a method that is suitable when the data set consists of
omnidirectional images. Omnidirectional cameras are usually
intended as a vision system that provides a huge field of view.
Such an enhanced field of view can be achieved by either
using catadioptric systems, which are obtained by opportunely
combining mirrors and conventional cameras, or employing
purely dioptric fisheye lenses [7]. As first demonstrated in [8]
and exploited in robotic applications in [9], the images acquired
by those sensors behave similarly. In our experiments, a fisheye
camera is employed.

The efficiency of a visual localization method can be mea-
sured by means of the following: 1) accuracy of the results,
2) memory needed to store data, and 3) computational cost.
Our main objective is to optimize the localization process under
those criteria. Two main strategies exist to match the images:
the image can be represented by a single descriptor (global
approaches) [10]–[12] or alternatively by a set of descriptors
defined around visual features (landmark-based or local ap-
proaches) [13]–[15]. In those last methods, some relevant visual
features are extracted from the images. A descriptor is then
associated to each feature neighborhood. The robustness of the
extraction and the invariance of the descriptor are main issues
to improve the matching process.

In one hand, local approaches are generally more accurate
but have a high computational cost [15]. On the other hand,
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Fig. 3. Given the control point positions in the plane (a), the image (b) is seen
as a surface and interpolated (c).

global descriptors speed up the matching process at the price
of affecting the robustness to occlusions. Some approaches are
hierarchical [15], [16]: A first selection is done by using a
global descriptor, whereas the final localization results from
local descriptors.

We propose a hierarchical approach for localization in a
database of omnidirectional images. The computational effi-
ciency is ensured in a first step by defining a well-suited global
descriptor that allows to select a set of candidate images. Local
descriptors are then exploited to only select the best image and
thus to ensure accuracy.

A. Global Descriptor

The first step is based on a geometrical image representation
that is derived from surface interpolation. Images first have their
histogram equalized to be more robust to illumination changes.
Pixels are seen as a discrete 3-D surface with the grey level as
the third coordinates (see Fig. 3)

I :
{

[0, 1, . . . , N ] × [0, 1, . . . ,M ] �→ [0, 255]
(u, v) → I(u, v).

The interpolation consists of locally approximating this surface
I(u, v) by a surface f(s, t), s ∈ [0; 1], t ∈ [0; 1]. Note that it
is necessary to have control points at the same positions to
compare descriptors of different images. Moreover, regular
positions ensure a better interpolation. In that aim, we propose
to use the triangular mesh vertices represented in Fig. 3(a)

as control points and the altitude Z of the control points of
the approximated surface as descriptors. This triangular mesh
is generated as proposed in [17]. It is based on the analogy
between a simplex mesh and a truss structure. Meshpoints
{P1, P2, . . . Pp} are nodes of the truss, and segments between
two meshpoints are bars. An appropriate force-displacement
function is applied to the bars at each iteration. This func-
tion takes into account the internal force due to the bars
and the external force due to the boundaries. Node loca-
tions Pi = (xiyi) are computed by solving for equilibrium
in a truss structure using piecewise linear force–displacement
relations.

The surface is interpolated by a cubic function. The required
computational cost is low, and the interpolation errors are
small.

B. First Selection and Local Descriptor

The descriptor Zc (respectively, Zi) is computed for the
current image Ic (respectively, for the memorized image Ii).
The global distance between those two images is dglobal

i =∑d
k=1 |Zc,k − Zi,k|, where Zi,k corresponds to the kth element

of the descriptor of the image Ii. The kept candidate images are
such that dglobal

i /mini dglobal
i ≤ t, where the threshold t ≥ 1

allows us to not reject the images that have a distance similar
to the minimal distance. The output of this first stage is a small
number of candidate images.

We then use a local approach to select the best candidate
since only a few images are involved (i.e., in this case, the
computational cost is low). With this aim, a classical local
approach based on the ZNCC between patches around Harris
corners is employed since the computational cost is much
lower than scale-invariant feature transform- or speeded up
robust features-based approaches, whereas a similar accuracy
is obtained with images corresponding to close viewpoints
(see [18] for detailed comparisons). In this stage, the local
distance between two images is simply chosen as dlocal

i =
1/n, where n is the number of matched features. The fi-
nal result of the localization is the image Ik such that
dlocal

k = mini(dlocal
i ).

This hierarchical method has been compared to state-of-
the-art techniques in [18]. The obtained results show that the
proposed method is the best compromise between accuracy,
amount of memorized data, and computational cost.

IV. ROUTE FOLLOWING

When starting the autonomous navigation task, the output of
the localization step provides the closest image I∗

s to the current
initial image Ic. A visual route Ψ that connects I∗

s to the goal
image is then extracted from the visual memory. As previously
explained, the visual route is composed of a set of key images.
The next step is to automatically follow this visual route
using a visual servoing technique. The principle is presented
in Fig. 4.

To design the controller, which is described in the sequel,
the key images of the reference visual route are considered
as consecutive checkpoints to reach the sensor space. The
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Fig. 4. Visual route-following process.

control problem is formulated as a path following to guide the
nonholonomic vehicle along the visual route.

A. Model and Assumptions

1) Control Objective: Let Ii and Ii+1 be two consecutive
key images of a given visual route to follow, and let Ic

be the current image. Let us note that Fi = (Oi,Xi,Yi,Zi)
and Fi+1 = (Oi+1,Xi+1,Yi+1,Zi+1) are the frames attached
to the vehicle when Ii and Ii+1 were stored, and Fc =
(Oc,Xc,Yc,Zc) is the frame attached to the vehicle in its
current location. Fig. 5 illustrates this setup. The origin Oc of
Fc is on the center rear axle of a car-like vehicle, which moves
on a perfect ground plane. The hand–eye parameters (i.e., the
rigid transformation between Fc and the frame attached to the
camera) are supposed to be known. According to Hypothesis 2,
the state of a set of visual features Pi is known in the images
Ii and Ii+1. The state of Pi is also assumed available in Ic

(i.e., Pi is in the camera field of view). The task to achieve is to
drive the state of Pi from its current value to its value in Ii+1.
Let us note Γ as a path from Fi to Fi+1. The control strategy
consists of guiding Ic to Ii+1 by asymptotically regulating
the axle Yc on Γ. The control objective is achieved if Yc

is regulated to Γ before the origin of Fc reaches the origin
of Fi+1.

2) Vehicle Modeling: Our experimental vehicle is devoted
to urban transportation, i.e., it moves on asphalt-even grounds at
rather slow speeds. Therefore, it appears quite natural to rely on
a kinematic model and to assume pure rolling and nonslipping

Fig. 5. Images Ii and Ii+1 are two consecutive key images of the visual
route Ψ. Ic is the current image. Γ is the path to follow.

at the wheel–ground contact. In such cases, vehicle modeling is
commonly achieved, for instance, by relying on Ackermann’s
model, which is also named the bicycle model: the two front
wheels located at the mid-distance between actual front wheels
and actual rear wheels. As previously seen, our control problem
has as an objective that the vehicle follows a reference path Γ.
We propose to describe here its configuration with respect to
that path rather than with respect to an absolute frame. To
meet this objective, the following notations are introduced (see
Fig. 5).

1) OC is the center of the vehicle rear axle.
2) M is the point of Γ that is closest to OC . This point is

assumed to be unique, which is realistic when the vehicle
remains close to Γ.

3) s is the curvilinear coordinate of point M along Γ, and
c(s) denotes the curvature of Γ at that point.

4) y and θ are, respectively, the lateral and angular devia-
tions of the vehicle with respect to the reference path Γ.

5) δ is the virtual front wheel steering angle.
6) V is the linear velocity along the axle Yc of Fc.
7) l is the vehicle wheelbase.

The vehicle configuration can be described without ambiguity
by the state vector (s, y, θ): the first two variables provide point
OC location, and the last variable denotes the vehicle heading.
Since V is considered a parameter, the only control variable
available to achieve path following is δ. The vehicle kinematic
model can then be derived by writing that the velocity vectors
at point OC and at the center of the front wheel are directed
along the wheel planes and that the vehicle motion is, at each
instant, a rotation around an instantaneous rotation center. Such
calculations lead to (see [19])⎧⎪⎪⎨

⎪⎪⎩
ṡ = V cos θ

1−c(s)y

ẏ = V sin θ

θ̇ = V
(

tan δ
l − c(s) cos θ

1−c(s)y

)
.

(1)

Model (1) is clearly singular when y = (1/c(s)), i.e., when
point OC is superposed with the path Γ curvature center at
abscissa s. However, this configuration is never encountered
in practical situations: on one hand, the path curvature is
small, and on the other hand, the vehicle is expected to remain
close to Γ.
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B. Control Design

The control objective is to ensure the convergence of y and
θ toward 0 before the origin of Fc reaches the origin of Fi+1.
The vehicle model [see (1)] is clearly nonlinear. However, it has
been established in [20] that mobile robot models can generally
be converted in an exact way into almost linear models named
chained forms. This property offers two very attractive features:
on one hand, the path following control law can be designed
and tuned according to celebrated Linear System Theory while
nevertheless controlling the actual nonlinear vehicle model.
Control law convergence and performances are then guaranteed
whatever the vehicle initial configuration is. On the other hand,
the chained form enables to specify, in a very natural way, the
control law in terms of the distance covered by the vehicle
rather than time. Vehicle spatial trajectories can then easily be
controlled whatever the vehicle velocity is [21].

The conversion of the vehicle model [(1)] into chained
form can be achieved due to the following state and control
transformation:

Φ([s y θ]) = [a1 a2 a3]

Δ= [s y (1 − c(s)y) tan(θ)] (2)

(m1,m2) = Ψ(V, δ) (3)

with

m1
Δ=V

cos θ

1 − c(s)y
(4)

m2
Δ=

d

dt
((1 − c(s)y) tan(θ)) . (5)

Substituting (2), (4), and (5) into (1) establishes that the
nonlinear model [(1)] can be rewritten, without approximation,
as the standard chained form{

ȧ1 = m1

ȧ2 = a3 m1

ȧ3 = m2.
(6)

To verify that a chained system is almost linear, replace the time
derivative by a derivation with respect to the state variable a1.
Using the notations

dai

da1
= ái

m3 =
m2

m1

the chained form [(6)] can be rewritten as{
á1 = 1
á2 = a3

á3 = m3.
(7)

The last two equations of (7) clearly constitute a linear sys-
tem. Path following can now be easily addressed: in view
of (2), the desired convergence of (yθ) to 0 is equivalent to

those of (a2a3). The convergence of these two latter vari-
ables can easily be achieved by designing the auxiliary control
input as

m3 = −Kda3 − Kpa2 (Kp,Kd) ∈ R2 (8)

since reporting (8) in (7) provides

dá2

da1
+ Kdá2 + Kpa2 = 0. (9)

Moreover, since the evolution of the error dynamics [(9)] is
driven by a1 = s (distance covered by the vehicle along ref-
erence path Γ), the gains (Kd,Kp) impose a settling distance
instead of a settling time. Consequently, for a given initial
error, the vehicle trajectory will be identical whatever the
value of V is and even if V is time varying (V 	= 0). The
control law performances are, therefore, velocity independent.
The study of the second-order differential equation [see (9)]
can allow us to fix the gains (Kd,Kp) for desired control
performances.

The expression of the actual control law δ can finally be
obtained by inverting the chained transformation as

δ(y, θ) = arctan

×
(

− l

[
cos3 θ

(1 − c(s)y)2

×
(

dc(s)
ds

y tan θ − Kd (1 − c(s)y) tan θ

− Kpy + c(s) (1 − c(s)y) tan2 θ

)

+
c(s) cos θ

1 − c(s)y

])
. (10)

In our experiments, the path to follow is simply defined as
the straight line Γ′ = (Oi+1,Yi+1) (see Fig. 5). In this case,
c(s) = 0, and the control law [see (10)] can be simplified as

δ(y, θ) = arctan
(
−l

[
cos3 θ(−Kd tan θ − Kpy)

])
. (11)

The implementation of the control law [(11)] requires the
online estimation of the lateral deviation y and the angular
deviation θ of Fc with respect to Γ. In the next section, we
describe how the geometrical relationships between two views
acquired with a camera under the generic projection model
(conventional, catadioptric, and fisheye cameras) are exploited
to enable a partial Euclidean reconstruction from which (y, θ)
are derived.

C. State Estimation From the Generic Camera Model

Conventional cameras suffer from a restricted field of view.
Many applications in vision-based robotics, such as the one
proposed in this paper, can benefit from the panoramic field
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of view provided by omnidirectional cameras. In practice, it
is highly desirable that such imaging systems have a single
viewpoint [7], [22]. That is, there exists a single center of
projection so that every pixel in the sensed images measures
the irradiance of the light passing through the same viewpoint
in one particular direction. In this paper, we propose to use the
unified model described in [23] since it allows to formulate state
estimations that are valid for any sensor that obeys the unified
camera model. In other words, it encompasses all the sensors
in this class [23]: perspective and catadioptric cameras. A large
class of fisheye cameras are also concerned by this model [8],
[9], [24].

1) Camera Model: The unified projection model consists of
a central projection onto a virtual unitary sphere followed by a
perspective projection onto the image plane [23]. This generic
model is parameterized by ξ describing the type of sensor
and by a matrix K containing the intrinsic parameters. The
coordinates xi of the point in the image plane corresponding
to the 3-D point X are obtained after three steps.

Step 1: The world points X of coordinates X = [XY Z]T

in the camera frame Fm are projected onto the unit
sphere on a point Xm of coordinates Xm in Fm:
Xm = X/X‖X‖.

Step 2: The point coordinates are then changed to a new
reference frame Fc centered in C = (0, 0,−ξ) and
perspectively projected onto the normalized image
plane Z = 1 − ξ as

x� = [x� 1] = [x, y 1] = f(X)

=
[

X

Z + ξ‖X‖
Y

Z + ξ‖X‖ 1
]

. (12)

Step 3: Finally, the coordinates x�
i = [x�

i 1] in the image
plane are obtained after a plane-to-plane colineation
K of the 2-D projective point x: xi = Kx.

We highlight that Xm can be computed as a function of the
coordinates in the image and the sensor parameter ξ as

Xm = (η−1 + ξ)x

x =
[
xT 1

1 + ξη

]T

(13)

with

{
η = −γ−ξ(x2+y2)

ξ2(x2+y2)−1

γ =
√

1 + (1 − ξ2)(x2 + y2).

2) Scaled Euclidean Reconstruction: Let X be a 3-D point
with coordinates Xc = [XcYcZc]T in the current frame Fc

and X∗ = [Xi+1Yi+1Zi+1]T in the frame Fi+1. Let Xm and
X∗

m be the coordinates of those points projected onto the unit

Fig. 6. Geometry of two views.

sphere (see Fig. 6). The epipolar plane contains the projection
centers Oc and Oi+1 and the 3-D point X. Xm and X∗

m clearly
belong to this plane. The coplanarity of those points leads to the
relation

XT
mR

(
t × X∗T

m

)
= XT

mR[t]×X∗T
m = 0 (14)

where R and t represent the rotational matrix and the
translational vector between the current and the desired
frames. As in the case of the pinhole model, (14) may be
written as

XT
mEX∗T

m = 0 (15)

where E = R[t]× is the essential matrix [22].
In (15), Xm (respectively, Xm

∗) corresponds to the coordi-
nates of the point projected onto the sphere in the current image
Ic (respectively, in the desired key image). Those coordinates
are obtained thanks to the (13) and to the coordinates of the
point matched in the first and second images. The essential
matrix E between two images can be estimated by using five
couples of matched points as proposed in [25] if the camera
calibration (matrix K) is known. Outliers are rejected using
a random sample consensus (RANSAC) algorithm [26]. From
the essential matrix, the camera motion parameters (that is,
the rotation R and the translation t up to a scale) can be
determined (see [27]). Finally, the estimation of the input of
the control law [see (11)], i.e., the angular deviation θ and the
lateral deviation y, can straightforwardly be computed from
R and t.

V. EXPERIMENTATIONS

A. Experimental Setup

Our experimental vehicle is depicted in Fig. 7. It is an
urban electric vehicle, which is named RobuCab, manufac-
tured by Robosoft Company. Currently, RobuCab serves as the
experimental testbed in several French laboratories. The four
dc motors are powered by lead-acid batteries, providing 2 h of
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Fig. 7. RobuCab vehicle with the embedded camera.

Fig. 8. Some key images of the memory.

autonomy. Vision and guidance algorithms are implemented in
C++ language on a laptop using RTAI-Linux OS with a 2-GHz
Centrino processor. The Fujinon fisheye lens mounted onto a
Marlin F131B camera has a field-of-view of 185◦. The image
resolution in the experiments was 800 × 600 pixels. It has
been calibrated using the Matlab toolbox presented in [24]. The
camera, looking forward, is situated at approximately 80 cm
from the ground. The parameters of the rigid transforma-
tion between the camera and the robot control frames are
roughly estimated. Grey-level images are acquired at a rate
of 15 ft/s.

B. Learning Step

In our experiment, RobuCab is manually driven along the
800-m-long path drawn in blue in Fig. 10. This path contains
important turns as well as ways down and up and a come back.
After the selection step, 800 key images are kept and form
the visual memory of the vehicle. Some of those images are
represented in Fig. 8.

C. Localization Step and Initialization

The navigation task has been started near the visual route
to follow [the corresponding image is shown in Fig. 9(a)].
In this configuration, 15 images of the visual memory have
been used in the first stage of the localization process. The

Fig. 9. Localization step. Is is the current initial image. The distance between
the current initial image and the key image global descriptors is drawn in (b).
After using the local descriptors, I∗

s is selected as the correct image.

distances between the global descriptor of the current image
and the descriptor of the memorized images (computed offline)
are obtained as presented in Section III-A [see Fig. 9(b)]. After
the second step of the localization process, the image shown
in Fig. 9(c) is chosen as the closest to the image in Fig. 9(a).
Given a goal image, a visual route starting from I∗

i and com-
posed of 750 key images has been extracted from the visual
memory.

D. Autonomous Navigation

The control [see (11)] is used to drive the vehicle along
the visual route. A key image is assumed to be reached if
the “image error” is smaller than a fixed threshold. In our
experiment, the “image error” has been defined as the longest
distance (expressed in pixels) between an image point and its
position in the desired key image. The longitudinal velocity V
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Fig. 10. Paths in the universitary campus executed during the memorization step (in red) and the autonomous step (in blue).

Fig. 11. Errors in the images (in pixels) versus time (in seconds).

is fixed between 1 and 0.4 ms−1. Kp and Kd have been set so
that the error presents a double pole located at a value of 0.3.
The vehicle successfully follows the learned path (see Fig. 10).
The experiment lasts 13 min for a path of 754 m. A mean of
123 robust matches for each frame has been found. The mean
computational time during the online navigation was 82 ms by
image. As can be observed in Fig. 11, the errors in the images
decrease to zero until reaching a key image. The lateral and
angular errors as well as the control inputs are represented in
Fig. 12. As can be seen, those errors are well regulated to zero
for each key view. Discontinuities due to transitions between
two successive key images can also be observed in Fig. 12.

Some of the reached images (with the corresponding im-
ages of the memory) are shown in Fig. 13. Note that illu-
mination conditions have changed between the memorization
and the autonomous steps (see Fig. 13(a) and (b), for exam-
ple) as well as the contents (see Fig. 13(i) and (j), where
a tram masks many visual features during the autonomous
navigation).

Fig. 12. Lateral y and angular θ errors, and control input δ versus time.

Evaluation With a RTKGPS: The experimental vehicle has
been equipped with a real-time kinematic differential GPS
(RTKGPS; Thales Sagitta model). It is accurate to 1 cm (stan-
dard deviation) in the horizontal plane when enough satellites
are available. The accuracy on a vertical axis is only 20 cm on
our hardware platform. We thus discard the vertical readings,
and the reported errors are measured in the horizontal plane.

Differential GPS (DGPS) data have been recorded during
the learning and autonomous stages. The results are reported
in Fig. 14. The red and blue plain lines represent, respectively,
the trajectories recorded during the learning and autonomous
stages. It can be observed that these trajectories are similar.

The distances (lateral error) between the vehicle positions
during the learning and autonomous stages are reported in
Fig. 14. The mean of the lateral error is about 25 cm with
a standard deviation of 34 cm. The median error is less than
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Fig. 13. Some of the current images Ir
k where the key images Ik have been reached. (a) Ia. (b) Ir

a . (c) Ib. (d) Ir
b . (e) Ic. (f) Ir

c . (g) Id. (h) Ir
d . (i) Ie. (j) Ir

e .

Fig. 14. Lateral error (distance between the autonomous and the learned
trajectories, expressed in meters) obtained from DGPS data versus time.

Fig. 15. Zoom on the trajectories around the tramway station (positions are
expressed in meters).

10 cm. The maximal errors are observed along severe turns
(see Fig. 15, representing a U-turn nearby the tramway station).
Note that despite those errors, the visual path is still satisfacto-
rily executed (after some images, the vehicle is still at a small
distance from the learned trajectory).

VI. CONCLUSION

We have presented a complete framework for autonomous
navigation that enables a vehicle to follow a visual path ob-
tained during a learning stage using a single camera and natural
landmarks. The robot environment is modeled as a graph of
visual paths called visual memory from which a visual route
connecting the initial and goal images can be extracted. The
robotic vehicle can then be driven along the visual route
thanks to a vision-based control law that takes into account
nonholonomic constraints. Furthermore, the state of the robot
is estimated using a generic camera model that is valid for a
perspective, catadioptric, and large class of fisheye cameras.
Our approach has been validated on an urban vehicle navigating
along a 750-m-long trajectory. The experiments have shown
that the navigation strategy is robust to some changes between
the learning and autonomous navigation steps.
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