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Abstract— This paper extends the recent work proposed in
[21]. In this work, it has been noted that three visual features (to
control three degrees of freedom) obtained from the spherical
projection of 3D spheres allows nice decoupling properties
and global stability. However, even if such an approach is
theoretically attractive, it is limited by a major practical issue
since spherical objects have to be observed while only three
degrees of freedom can be controlled. In this paper, we show
that similar properties can be obtained by observing a set of
points. The basic idea is to build a virtual 3D sphere from
two 3D points and to analyse its related spherical projection.
Furthermore, to control the six degrees of freedom a 2D 1/2
control scheme is proposed which allows us to fully decouple
rotational motions from translational motions.

I. INTRODUCTION

In vision-based control, the choice of the set of visual
features to be used in the control scheme is still an open
question, despite of the large quantity of results obtained
in the last few years. Several kinds of visual servoing can
be distinguished, according to the space where the visual
features were defined. In position-based visual servo (PBVS)
[22], the features are defined in the 3D space. The control
scheme using PBVS ensures a nice decoupling between the
degrees of freedom (dofs)(refer to [1]). For this reason,
adequate 3D trajectories can be obtained, such as a geodesic
for the orientation and a straight line for the translation.
However, position-based visual servoing may suffer from
potential instabilities due to image noise [3]. On the opposite,
in image-based visual servo (IBVS) [7], the visual servo is
performed in the image. Whatever the nature of the possible
measures extracted from the image, whether it be a set of
image points coordinates or a set of image moments, the
main question is how to combine them to obtain an adequate
behavior of the system. In most works, the combination of
different features is nothing but a simple stacking. If the
error between the initial value of the features and the desired
one is small, and if the task to realize constrains all the
available degrees of freedom (dofs), that may be a good
choice. However, as soon as the error is large, problems may
appear such as reaching local minimum or task singularities
[3].

The way to design adequate visual features is directly
linked to the modeling of their interaction with the robot
motion, from which all control properties can be analyzed
theoretically. If the interaction is too complex (i.e. highly
non linear and coupled), the analysis becomes impossible
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and the behavior of the system is generally not satisfactory in
difficult configurations where large displacements (especially
rotational ones) have to be realized. To overcome these
problems, it is possible to combine path planning and visual
servoing, since tracking planned trajectories allows the error
to always remain small [17]. A second approach is to use the
measures to build particular visual features that will ensure
expected properties of the control scheme. Several works
have been realized in image-based visual servoing following
the same general objective. In [18], a vanishing point and
the horizon line have been selected. This choice ensures a
good decoupling between translational and rotational dofs. In
[13], vanishing points have also been used for a dedicated
object (a 3D rectangle), once again for decoupling properties.
For the same object, six visual features have been designed
in [5] to control the six dofs of a robot arm, following a
partitioned approach. In [12], the coordinates of points are
expressed in a cylindrical coordinate system instead of the
classical Cartesian one, so as to improve the robot trajectory.
In [11], the three coordinates of the centroid of an object
in a virtual image obtained through a spherical projection
have been selected to control three dofs of an under-actuated
system. By selecting an adequate combination of moments,
it is also possible to determine partitioned systems with
good decoupling and linearizing properties when considering
planar objects [4] or non planar objects [20].

Recently, in [21] three visual features which allows nice
decoupling properties and global stability even in the pres-
ence of modeling errors, have been proposed. The proposed
approach is based on image features obtained from the pro-
jection onto a unit sphere of 3D spheres. As a consequence
of the use of a spherical projection, the obtained results are
valid for any sensor obeying the unified camera model. In
other words, it encompasses all sensors in this class [9]:
perspective and catadioptric. Some class of fisheye cameras
can also be concerned by this model [6]. However, even
if such an approach is theoretically attractive, it is limited
by a major practical issue since spherical objects have to
be observed while only three degrees of freedom can be
controlled. In this paper, we show that similar decoupling
properties can be obtained by observing a set of points. The
basic idea is to build a virtual 3D sphere from two 3D points
and to analyse its related spherical projection. We also show
that the system remains globally stable even in the presence
of modeling errors. Furthermore, to control the six degrees
of freedom a 2D 1/2 control scheme is presented allowing a
new decoupled control scheme from the spherical projection
of a set of points.
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II. MODELISATION

In this section, we recall the unified central projection
using the unitary sphere. Then, we present the geometric
relation between visual features related to 3D points and
spheres.

A. Unified central projection

Central imaging systems can be modeled using two con-
secutive projections: spherical projection and perspective
one. This geometric formulation called unified model has
been proposed by Geyer and Daniilidis in [8] and has
been intensively used by the vision and robotics community
(structure from motion, calibration, visual servoing, ...).

We recall, in this section, the unified central projection
model. Consider the virtual unitary sphere centered in M
as shown in Fig.1 and the perspective camera centered in
C. The frames attached to the spherical mirror and the
perspective camera are related by a simple translation of
−ξ along the Z axis. Let X be a 3D point with coordinates
X = [X Y Z]� in Fm. The world point X is projected in
the image plane into the point of homogeneous coordinates
xi = [xi yi 1]�. The image formation process can be split
in three steps given in the following:

- First step: The 3D world point X is first mapped
onto the unit sphere surface:

Xm =
1
ρ

[
X Y Z

]�
where ρ = ‖X‖ =

√
X2 + Y 2 + Z2.

- Second step: The point Xm lying on the unitary
sphere is then perspectively projected on the normalized
image plane Z = 1 − ξ in to a point of homogeneous
coordinates:

x = f(X) =
[

X

Z + ξρ

Y

Z + ξρ
1

]�
(1)

- Last step: The 2D projective point x is mapped into
the pixel image point with homogeneous coordinates xi using
the collineation matrix K:

xi = Kx

The matrix K contains the conventional camera intrinsic
parameters coupled with mirror intrinsic parameters. It can
be written as:

K =

⎡⎣fu αuv u0

0 fv v0

0 0 1

⎤⎦
The matrix K and the parameter ξ can be obtained after

calibration using for examples the methods proposed in [2].
In the sequel, the central imaging system is considered
calibrated. In this case, the inverse projection onto the unit
sphere can be obtained by inverting the second and last steps.
As a matter of fact, the point x in the normalized image plane
is obtained using the inverse mapping K−1:

x = [x y 1]� = K−1xi (2)

The point onto the unit sphere is then obtained by inverting
the non-linear projection equation (1):

Xm = f−1(x) = λ

[
x y 1− ξ

λ

]�
(3)

where λ =
ξ +

√
1 + (1− ξ2)(x2 + y2)

x2 + y2 + 1
.

Fig. 1. Unified central projection

As can be shown in equation (1), the perspective
projection model is obtained by setting ξ = 0.

B. Virtual sphere projection through two 3D points

In this section we present the central projection of a virtual
sphere through two points in the 3D space. This formulation
should be interesting to extract potential visual features as
presented in [21].

Fig. 2. Projection model of a virtual sphere
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Let P1 and P2 be two 3D points with coordinates P1 =
[X1 Y1 Z1]� and P2 = [X2 Y2 Z2]� with respect to the
unitary mirror frame Fm. These points are viewed in two
points p1 and p2 in the image plane. Using equations (2)
and (3), the coordinates of the points S1 and S2 onto the
unit sphere can be obtained from image points coordinates
p1 and p2 respectively.

Consider now a virtual sphere S(P1, R) of center the 3D
point P1 and radius R (R ∈ R+). The sphere S is virtual and
its radius R is constrained by the distance between the sphere
center P1 and the ray projection of the point P2 passing
through the center M of the unitary sphere (see figure 2).

By assuming the first step of the central projection model,
the occluding contour of the virtual sphere S(P1, R) is
projected to a small circle (c) onto the unitary spherical
mirror. This small circle (c) lies on a plane (π), called
interpretation plane, defined by its unit normal vector n =
[nx ny nz ]� and its distance d from the center M . So,
any point in (c) with coordinates [X Y Z]� expressed in
the mirror frame Fm satisfies the unit sphere and plane
equations:

(c) :
{

X2 + Y 2 + Z2 = 1
nxX + nyY + nzZ − d = 0 (4)

Note that a line in 3D space is projected to a great circle
since the interpretation plane passes through the center M
where d = 0 (refer to [2]). Therefore, the equations for
central projection of spheres and lines can be represented
in a unified framework.

From figure 2, it is easy to show that the vector coordinates
S1 (the spherical projection of P1 onto the unit sphere) is
normal to the plane (π). The normal vector n can thus be
computed through the inverse projection onto the unit sphere.

In [21], the radius r of the small circle (c) is written as:

r =
R

‖P1‖ =
R√

X2
1 + Y 2

1 + Z2
1

(5)

Since the sphere S(P1, R) is constrained by the points P1

and P2, the radius r can easily be obtained from the angular
distance between P1 and P2 and thus between S1 and S2:

r = sin(cos−1(S�1 S2))

=
√

1− (S�1 S2)2
(6)

Hence, from two points observed by a central camera,
circle parameters related to the projection of a virtual sphere
can be obtained. These parameters can be calculated in the
image plane or on the unit sphere since the camera calibration
is supposed known.

III. VISUAL SERVOING

In this section, we present a hybrid visual servoing scheme
to control the 6 dofs of the camera. As usual when designing
a 2 1/2 D visual servoing, the feature vector used as input
of the control law combines 2-D and 3-D informations [15],
[10]:

s = [s�1 θu�]�

where s1 is a 3-dimensional vector containing the 2D features
and, u and θ are respectively the axis and the rotation
angle obtained between the current and desired camera
situations. The rotation parameters can be obtained from an
homography matrix H related to a reference plane observed
by a central camera [10]. The matrix H can usually be
estimated up to a scale factor using at least four coplanar
observed points. Otherwise, three points are chosen to define
the reference plane and at least five supplementary points are
necessary to estimate the homography matrix by using for
example the linear algorithm proposed in [14].

Recently, Tatsambon and Chaumette show in [21] that sim-
ilar decoupling properties to those obtained with 3D points
[16] can be obtained by combining visual features related
to the spherical projection of a sphere. Let us now choose

s1 =
1
r

S1 =
1
r

[Xs1 Ys1 Zs1]� as the 3-dimensional
vector containing the 2D features. These parameters can be
estimated from a set of two points (defining a virtual sphere)
as explained in the previous Section. The task function e to
regulate to 0 [19] is given by: e = s − s∗ where s∗ is the
desired value of s. The exponential decay of e toward 0 can
be obtained by imposing ė = −λe (λ being a proportional
gain), the corresponding control law is:

τ = −λL−1(s− s∗) (7)

where τ is a 6-dimensional vector denoting the velocity
screw of the camera. It contains the instantaneous angular
velocity ω and the instantaneous linear velocity v. L is the
interaction matrix related to s. It links the variation of s to the
camera velocity: ṡ = Lτ . It is thus necessary to compute the
interaction matrix in order to derive the control law given
by the Equation (7). At this aim, we can follow a similar
reasoning that in [21].First, the time derivative of the vector
s1 can be decomposed as:

ṡ1 =
rṠ1 − S1 ṙ

r2
(8)

The time derivative of the radius r can be obtained from
the equation (5):

ṙ = Lrτ =
(

r2

R S�1 01×3

)
τ (9)

After few developments, we get the time derivative of the
spherical point S1:

Ṡ1 = LS1τ =
( r

R
(S1S�1 − I3) [S1]×

)
τ (10)

where [S1]× is the antisymmetric matrix related to the vector
S1. According to equations (9) and (10), equation (8) can
be rewritten as:

ṡ1 = Ls1τ

where
Ls1 =

(
Ls1υ Ls1ω

)
(11)
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and

Ls1υ =

⎛⎝ − 1
R 0 0

0 − 1
R 0

0 0 − 1
R

⎞⎠

Ls1ω =

⎛⎝ 0 −Zs1
r

Ys1
r

Zs1
r 0 −Xs1

r

−Ys1
r

Xs1
r 0

⎞⎠
(12)

As can be shown in Ls1, the only unknown parameter
is the radius R of the virtual sphere which appears as a
gain on the translational velocities. When a real sphere is
observed, an estimated value R̂ of the real radius R can be
used. However, in the considered case the radius R varies
when moving the camera and/or the two points selected to
define the virtual sphere (except for some configuration as
for example when the point P2 moves along the projection
ray). Fortunately, a non-zero positive value attributed to R
should insure the global stability of the control law [21].
Indeed, if we choose R̂ as a positive constant value, the
global asymptotic stability is guaranteed and the scale factor
between the real radius R and the estimated one R̂ appears
as an over-gain in the translational velocities.

Concerning the rotation vector θu, its time derivative can
be expressed as a function of the camera velocity screw:

d(θu)
dt

=
(

03 Lω

)
τ (13)

where Lω is given in [15]:

Lω = I3 − θ

2
[u]× +

(
1− sinc(θ)

sinc2( θ
2 )

)
[u]2× (14)

and sinc(θ) =
sin(θ)

θ
.

Finally, according to equations (11) and (13), the global
interaction matrix related to s = [s�1 θu�]� is given by:

Ls =
(

Ls1υ Ls1ω

03 Lω

)
(15)

In practice, an approximated interaction matrix L̂ is used to
compute the control vector (7):

τ = −λ

(
L̂−1

s1υ −L̂−1
s1υLs1ωL̂−1

ω

03 L̂−1
ω

)
(s− s∗) (16)

Note also that one can set L̂−1
ω to I3 since [15]:

L̂−1
ω θ̂u = θ̂u

IV. RESULTS

We present now results concerning a positioning task of
the six degrees of freedom of a camera using the previously
described control scheme. In the two first experiments, two
different types of central cameras are used, i.e a conventional
camera and a catadioptric camera (combination of mirror
and conventional camera). The motion in these experiments
is generic (translation and rotation motion). In the third
experiment, we show the benefit of decoupling rotational

motions from translational motions. We show in the last
one the gain effect on the translation velocities occurred by
the distance between the two points chosen for creating the
virtual sphere. For all experiments, the observed target is
composed by a set of coplanar points, the control gain is set
to λ = 0.1 and the radius R̂ is set to 0.2.

To be close to a real setup, uniform distribution random
noise of variance 2pixels has been added to the correct
pixel coordinates, and the calibration errors are simulated
by adding an error of 10% to the real camera parameters.

A. Experiment 1

In this experiment, a conventional camera with calibration
parameters fu = fv = 900, fuv = 0, u0 = 652 and v0 = 511
is used. For this type of camera, the parameter ξ is equal to
0. The displacement between the initial and desired camera
frames is given by the translation t = [1 0.7 0.7]� m and
the rotation θu = [0 0 178]� degree.

As can been noticed on Figure 3, the positioning task is
correctly realized despite image noises, erroneous calibration
parameters and unknown variable radius of the virtual sphere.
The correct regulation to zero of the components of s− s∗

can be observed in 3(b). The current points in the image
reach their desired positions in the image plane. The corre-
sponding trajectories in the image are shown in Figure 3(a).
As can be seen in Figures 3(c) and 3(d) which correspond
to the translational and rotational camera velocities, the
rotational motions are, as expected, perfectly decoupled from
the translational motions.
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Fig. 3. Experiment 1 with a perspective camera: (a) trajectory of points
on the image, (b) errors vector, (c) translational velocities given in m/s,
(d) rotational velocities given in rad/s

B. Experiment 2

Now, we present simulation results when using a cata-
dioptric camera. The calibration parameters are given by
fu = fv = 303, fuv = 0, u0 = 652, v0 = 511 and
ξ = 1. The displacement between the initial and desired
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camera positions is given by the translation t = [0 1 0]� m
and the rotation θu = [0 60 120]� degree.

Noise and modelling errors are set as in the previous
experiments. Once again, the positioning task is properly
realized. The errors vector, plotted in Figure 4(b), converges
to zero and thus the current image coincides with the desired
one at convergence (see Figure 4(a)). The Figures 4(c) and
4(d) representing the translational and rotational velocities
show that the rotational errors are corrected before the
translational ones. Indeed, the actual radius R of the virtual
sphere varies during the motion while R̂ is set as a constant
value to evaluate the interaction matrix Ls.
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Fig. 4. Experiment 2 with a catadioptric camera: (a) trajectory of points
on the image, (b) errors vector, (c) translational velocities given in m/s,
(d) rotational velocities given in rad/s

C. Experiment 3

In this experiment, we show the benefit of decoupling
rotational motions from the translational motions. Indeed,
for a positioning task corresponding to a pure translation,
rotational velocities in the control law (16) are not affected.
However, modelling errors and image noises can affect the
decoupling properties. To illustrate this point, we consider
a pure translational motion of t1 = [2 1 − 2]� m for the
perspective camera and of t2 = [−0.5 2.6 −0.5]� m for the
catadioptric camera. Results of this experiment are plotted
on Figures 5 where left figures and right figures correspond
to the perspective and catadioptric cameras respectively.
Image trajectories are shown in Figures 5(a) and 5(b). The
translational and rotational velocities shown in Figures 5(c,d)
and 5(e,f) confirm the decoupling and the robustness of the
proposed approach.

D. Experiment 4

Recall that 2 image points are necessary to generate a
virtual sphere. In this last experiment, we show how the
choice of these points affect the translational velocities. The
displacements between the initial and desired camera frames
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Fig. 5. Experiment 3: pure translation: (a) and (b) image trajectories, (c)
and (d)) translational velocities given in m/s, (e) and (f) rotational velocities
given in rad/s

are chosen as those used in experiments 1 and 2 for the
perspective and catadioptric cameras respectively. Since the
translation velocities are linked to the observation vector s1
by the radius R, the distance between two points in the
image, selected to define the virtual sphere, has an over-gain
effect on the translation control. Two pairings are considered
in this experiments. The first pairing is chosen as the two
closest points while the second pairing is chosen as the
farthest points in the image. Figure 6 (respectively Figure 7)
shows the translational and rotational velocities of the per-
spective camera (respectively catadioptric camera). Results
corresponding to the closest points are presented on the left
column and results related to the farthest points in the right
column. As can be observed in the translational velocities,
the gain on the translational velocities substantially increase
when the closest points are chosen to define the virtual
sphere. Indeed, the distance between the two points in the
image is proportional to the radius of the virtual sphere and
thus inversely proportional to the translational control gain.
Rotational velocities curves shown in Figures 6 and 7 are
not changed since the radius R appear only in the translation
control and the first point selected as the virtual sphere center
is chosen the same for the both pairings.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we have mainly extended the recent work
proposed in [21]. Indeed the proposed approach ensuring
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nice decoupling properties and global stability, was limited
by major practical issues since spherical objects have to
be observed while only three degrees of freedom can be
controlled. We have shown that similar properties can be
obtained by observing a set of points which significantly
increases the potential application of such a control scheme.
Furthermore, the 2D features obtained from two points have
been used in a 2D 1/2 control scheme to fully control and
decouple the 3 rotational dofs from the 3 translational ones.
We are currently working on obtaining a similar behavior
using a pure 2D control scheme.
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Fig. 6. Experiment 4 with perspective camera: left column when using
closest pairing and right column when using farthest paring. (a) and (b))
translational velocities given in m/s, (c) and (d) rotational velocities given
in rad/s
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Fig. 7. Experiment 4 with catadioptric camera: left column when using
closest pairing and right column when using farthest paring. (a) and (b))
translational velocities given in m/s, (c) and (d) rotational velocities given
in rad/s
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