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Abstrat. In this paper, we present results of a omplete framework
for non-holonomi robot navigation in indoor and outdoor environments
using a single wide �eld-of-view amera. The proposed navigation frame-
work for wheeled robots is based on a visual memory ontaining key im-
ages to reah. During a human-guided learning step, the robot performs
paths whih are sampled and stored as a set of ordered key images, a-
quired by an embedded amera. The set of these obtained visual paths
is topologially organized and provides a visual memory of the envi-
ronment. Given an image of one of the visual paths as a target, the
robot navigation mission is de�ned as a visual route. When running au-
tonomously, the ontrol guides the robot along the referene visual route
without expliitly planning any trajetory. The ontrol onsists in a on-
trol law adapted to the nonholonomi onstraint and diretly omputed
from visual points. The proposed framework has been designed for a
generi lass of ameras. In this paper, experiments have been arried
on with atadioptri and �sheye ameras, in indoor environment with
a AT3 Pioneer robot and in outdoor environment with an autonomous
urban vehile.

1 Introdution

Often used among more "traditional" embedded sensors - proprioeptive sensors

like odometers as exteroeptive ones like sonars - vision sensor provides aurate

loalization methods. The authors of [1℄ aounts of twenty years of works at

the meeting point of mobile robotis and omputer vision ommunities. In many

works, a map of the environment and the robot loalization in this absolute

frame are simultaneously updated. Both motion planning and robot ontrol an

then be designed in this spae. The results obtained by the authors of [2℄ leave

to be forasted that suh a framework will be reahable using a single amera.

However, although an aurate global loalization is unquestionably useful, our

aim is to build a omplete vision-based framework without reovering the po-

sition of the mobile robot with respet to a referene frame. In [1℄ this type of

framework is ranked among qualitative approahes.

The priniple of this approah is to represent the robot environment with a
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Fig. 1. Three appliations: navigation of a Pioneer AT3 equipped with a atadioptri
amera (a) and with a �sheye amera (b) and navigation of an urban vehile ().

bounded quantity of images gathered in a set alled visual memory. In the on-

text of mobile robotis, [3℄ proposes to use a sequene of images, reorded during

a human teleoperated motion, and alled View-Sequened Route Referene. This

onept underlines the lose link between a human-guided learning and the per-

formed paths during an autonomous run. However, the automati ontrol of the

robot in [3℄ is not formulated as a visual servoing task. In [4℄, homing strategy is

used to ontrol a wheelhair from a memory of omnidiretional images but the

ontrol of this holonomi robot is not part of the presented framework.

In the proposed framework, the ontrol design diretly takes into aount the

non-holonomi model of the robot and is omputed from the feature mathing.

Panorami views aquired by large �eld-of-view ameras are well adapted to this

approah sine they provide a large amount of visual features whih an be ex-

ploited as well as for loalization than for visual servoing.

The aim of this paper is to present di�erent experimental validation. The on-

ept of visual memory is brie�y explained in Setion 2 and more details an be

found in [5℄. The Setion 3 deals with the vision-based ontrol sheme designed

to ontrol the robot motions along a visual route using large �eld-of-view im-

ages. Finally, in Setion 4, experiments on a Pioneer AT3 mobile robot using

atadioptri and �sheye ameras (refer to Fig. 1 (a), (b)) and on an urban vehi-

le equipped with a �sheye amera (refer to Fig. 1 ()) illustrate the proposed

framework.

2 Vision-based memory navigation (VBMN) strategy

Our approah an be divided in three steps 1) visual memory building, 2) loal-

ization into the visual memory, 3) navigation into the visual memory (refer to

Fig. 2).

2.1 Visual Memory Struture

The learning stage relies on the human experiene. The user guides the robot

along paths where the robot is authorized to go. Only some key views are kept



Fig. 2. Priniple of our VMBN approah

and form the visual memory. The key image seletion is done as detailled in the

sequel. The onsidered visual features are points. As proposed in [2℄ and suess-

fully applied for the metri loalization of autonomous robots in outdoor envi-

ronment, interest points are deteted in eah image with Harris orner detetor

and mathed by omputing a Zero Normalized Cross Correlation sore. In our ex-

periment, 500 points are deteted in eah image. The �rst image of the sequene

aquired during the learning step is seleted as the �rst key frame I1. A key

frame Ii+1 is then hosen so that there are as many frames as possible between

Ii and Ii+1 while there are at least M ommon interest points traked between

Ii and Ii+1. From this seletion, it results a visual path Ψ whih is a direted

graph omposed of n suessive key images (verties): Ψ = {Ii|i = {1, 2, . . . , n}}.
For ontrol purpose, two hypothesis are supposed to be veri�ed: 1) the autho-

rized motions during the learning stage are assumed to be limited to those of a

ar-like robot, whih only goes forward and 2) two suessive key images Ii and

Ii+1 ontain a set Pi of mathed visual features, whih an be observed along a

path performed between RFi and RFi+1 and whih allows the omputation of

the ontrol law.

Finally, the visual memory onsits on a set of visual paths onneted (multi-

graph).



2.2 Visual route

A visual route desribes the robot's mission in the sensor spae. Given the images

I∗

s and Ig, a visual route is a set of key images whih desribes a path from I∗

s

to Ig. I
∗

s is the losest key image to the urrent image of the robot determined

during a loalization step. This step onsists in �nding the image of the memory

whih best �ts the urrent image aquired by the embedded amera. The last

step of the framework is to follow this visual route.

3 Routes following using an omnidiretional amera

Ic is the urrent image and Ii+1 is the next key image of the path to reah. The

hand-eye parameters (i.e. the rigid transformation between Fc and the frame

attahed to the amera) are supposed to be known. The vehile is supposed to

loally navigate in a planar surfae. Let us note Fi+1 = (Oi+1,Xi+1,Yi+1,Zi+1)
the frame attahed to the robot when Ii+1 was stored and Fc = (Oc,Xc,Yc,Zc)
a frame attahed to the robot in its urrent loation (refer to Fig. 3). The origin

Oc of Fc is the origin of the ontrol frame of the robot.
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Fig. 3. The frame Fi+1 along the trajetory (Γ ) is the frame where the desired image
Ii+1 was aquired. The urrent image Ic is situated at the frame Fc.

3.1 Priniple and ontrol law design

The ontrol strategy onsists in guiding Ic to Ii+1 by regulating asymptotially

the axle Yc on the straight line (Γ ) = (Oi+1,Yi+1) (refer to Fig. 3). The ontrol

objetive is ahieved if Yc is regulated before the origin of Fc reahes the origin

of Fi+1. The longitudinal veloity (respetively the angular veloity) of the robot

is V (respetively ω). Let y be the distane between Oc and (Γ ) and θ the angular

error between the urrent diretion of the vehile and the desired diretion. As



proposed in [6℄, an asymptotially stable guidane ontrol law based on the hain

system approah an be designed to ahieve this goal:

ω(y, θ) = −V cos3 θKpy − |V cos3 θ|Kd tan θ (1)

As long as the robot longitudinal veloity V is non zero, the performanes of

path following an be determined in terms of settling distane [7℄ that is to say in

terms of the distane to travel before reahing the desired position. Kp and Kd

are two positive gains whih set the performanes of the ontrol law depending

on the settling distane. The lateral and angular deviations of Fc with respet

to (Γ ) an be obtained through partial Eulidean reonstrutions as desribed

in Setion 3.2.

For robot relying on the Akermann's model (biyle model) as the RobuCab

vehile, the ontrol law an be obtained using the same approah.

3.2 State estimation from the uni�ed model of amera on the

sphere

A lassial model for entral atadioptri ameras is the uni�ed model on the

sphere [8℄. It has been shown in [9, 10℄ that this model is also suitable for �sheye

ameras in roboti appliations.

The point in the image plane orresponding to the 3D point X of oordinates

X = [X Y Z ]
T
is obtained after a projetion on a virtual unit sphere, followed

by a perspetive projetion on the normalized image plane Z = 1−ξ and a plane-

to-plane ollineation [8℄ (refer to Figure 4) where the parameter ξ desribes the

type of sensor. The homogeneous oordinates x
i
of this image point is
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Fig. 4. Geometry of two views using the uni�ed model on the sphere.

xi = KcM

[

X

Z + ξ‖X‖

Y

Z + ξ‖X‖
1

]

(2)



Kc ontains the usual intrinsi parameters of the perspetive amera and M

ontains the parameters of the frames hanges.

We notie that the oordinates Xm of the projetion on the sphere an be

omputed as a funtion of the oordinates in the image x and the sensor param-

eter ξ:

Xm = (η−1 + ξ)x (3)

x =

[

x
T 1

1 + ξη

]T

with:







η =
−γ − ξ(x2 + y2)

ξ2(x2 + y2) − 1
γ =

√

1 + (1 − ξ2)(x2 + y2)

Depending on the ontext, a sale eulidean reonstrution is omputed using

the homography matrix when 3D points are oplanar or using the essential ma-

trix otherwise as detailled in the sequel.

Let X be a 3D point with oordinates Xc = [Xc Yc Zc ]
T

in the urrent frame

Fc and X
∗ = [Xi+1 Yi+1 Zi+1 ]

T
in the frame Fi+1. This point is projeted onto

the unit spheres into the points Xm and X ∗

m (refer to Fig. 4). We suppose that

the amera is alibrated.

Saled Eulidean reonstrution from planar 3D points Let onsider

that the point X belongs to a plane (π). After some algebri manipulation, we

obtain:

x ∝ Hx
∗ (4)

where H is the Eulidean homography matrix relative to the plane (π), funtion
of the amera displaement and of the plane oordinates in Fi+1. As usual, the

homography related to (π) an be estimated up to a sale fator with at least

four ouples of points. From the H-matrix, the amera motions parameters (the

rotation matrix R and the saled translation td∗ = t

d∗
) and the struture of the

observed sene an be estimated (for more details refer to [11℄).

Saled Eulidean reonstrution from non planar points When on-

sidering non-planar 3D points, the epipolar geometry is used. The epipolar plane

ontains the projetion enters Oc and Oi+1 and the 3D point X . The points

of oordinates Xm and X
∗

m learly belong to this plane whih is tradued by the

relation:

Xm
T
R(t × X

∗

m

T ) = Xm
T
R [t]

×
X
∗

m

T = 0 (5)

where R and t represent the rotational matrix and the translational vetor be-

tween the urrent and the desired frames. Similarly to the ase of pinhole model,

the relation (5) an be written:

Xm
T
EX

∗

m

T = 0 (6)

where E = R [t]
×

is the essential matrix [12℄. The essential matrix E between

two images is estimated using �ve ouples of mathed points as proposed in [13℄.



From the essential matrix, the amera motion parameters (that is the rotation

R and the translation t up to a sale) an be determined.

Finally, the estimation of the input of the ontrol law (1), i.e the angular devia-

tion θ and the lateral deviation y, are omputed straightforwardly from R and

t.

4 Experimentations

For our experiments, ameras have been alibrated using the Matlab toolbox

presented in [14℄. The parameters of the rigid transformation between the am-

era and the robot ontrol frames are roughly estimated. Grey level images are

aquired at a rate of 15 fps. A learning stage has been onduted o�-line and

images have been memorized as proposed in Setion 2.

4.1 Experimentation with a atadioptri amera and planar 3D

points in indoor environment

The proposed framework is implemented on an external standard PC whih

wireless ontrols a Pioneer AT3 robot. A atadioptri amera is embedded on

the robot and its prinipal axis is approximately onfounded with the rotation

axis of the robot (refer to Fig. 1 (a)). Three key views (refer to Fig. 5) have

been seleted to drive the robot from its initial on�guration to the desired one.

For this experiments, the positions of four planar points are memorized and then

traked. The ontrol is realized using the homography matrix from the projetion

of the patterns onto the equivalene sphere. Note that distanes from the optial

enter at the desired position to the referene plane have been overestimated

and that the diretions of the normals of the plane are roughly estimated. The

results of the experimentation (refer to Fig. 6) show that the lateral and the

angular errors are regulated to zero before reahing a key image.

Fig. 5. Initial image I0
c and desired images the robot has to reah I∗j , j = 1 : 3 (1st

experimentation).
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Fig. 6. Evolution of the lateral (in m) and the angular (in rad) errors and of the ontrol
input (angular speed in deg/s) during the experimentation (1st experimentation).

4.2 Experimentation with a �sheye amera in indoor environment

The Pioneer AT3 robot is now equiped with the Fujinon �sheye lens mounted

onto a Marlin F131B amera . The amera providing a �eld of view of 185 deg
and looking forward, is situated at approximately 30 m from the ground. Sev-

eral paths have been memorized (some of the images are shown in Fig. 7). The

robot starts indoor and ends outdoor and the amera grabs images with natural

landmarks. Given a goal image, a visual path has been extrated. At eah frame,

points are extrated from the urrent image and mathed with the desired key

image. A robust partial reonstrution is then applied using the urrent, de-

sired and the former desired images of the memory. Angular and lateral errors

are extrated and allow the omputation of the ontrol law (2). A key image is

supposed to be reahed when one of the "image errors" is smaller than a �xed

threshold. In our experiment, we have onsidered two "image errors": the longer

distane between an image point and its position in the desired key image (errIm-

ageMax) and the mean distane between those points (errPoints), expressed in

pixels. The longitudinal veloity V has been �xed to 200mms−1. The gains Kp

and Kd have been set in order that error presents a double pole loated at value

0.3. For safety, the absolute value of the ontrol input is bounded to 10 degrees

by seond. Lateral and angular errors as well as ontrol input are represented

in Fig. 8. Red rosses are plotted when key images hange. As in the �rst ex-

perimentation, those errors are well regulated to zero for eah key view. The

image errors (expressed in pixels) are also dereasing before reahing the key

views (refer to Fig. 9). Errors still remain di�erent to zero beause the urrent

image do not reahed exatly the desired image. As it an be notied in Fig. 10,

our method is robust to hanges in the environment. A man was going in the

diretion of the robot (at the left) during the manually driven step whereas a

man is walking at the right of the Pioneer AT3 robot during the autonomous

navigation.
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Fig. 7. Parts of the visual path to follow (2nd experimentation).

Fig. 8. Lateral y and angular θ errors and ontrol input δ vs time (2nd experimentation)

Fig. 9. Image errors: (errImageMax) and (errPoints) vs time (2nd experimentation)

4.3 Experimentation with a �sheye amera in outdoor environment

Our framework is now applied to the navigation of an urban eletri vehile,

named RobuCab. The same �sheye amera as previously, looking forward, is

situated at approximately 80 m from the ground. This vehile is manually

driven along the 800-meter-long path shown in blue in Fig. 11. This path ontains

important turns as well as ways down and up and a ome bak.

After the seletion step, 800 key images are kept and form the visual memory

of the vehile. The longitudinal veloity V is �xed between 1ms−1 and 0.4ms−1
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Fig. 10. The image (a) orresponds to the reahed key image (b) of the visual memory
(2nd experimentation).

depending on the position on the path to follow (straight lines or turns). The

experiment lasts 13 minutes for a path of 754 meters whih results to a mean

veloity of 0.8ms−1. A mean of 123 robust mathing for eah frame has been

found. The mean omputational time during the online navigation was of 82 ms

by image. The errors in the images derease to zero until reahing a key image

(refer to Fig. 12).

Lateral and angular errors as well as ontrol input are represented in Fig. 13.

As it an be notied, those errors are well regulated to zero for eah key view

exepted when high turns our. Our ontrol law (line reahing) is not able to

onverge quikly in those ases. Signi�ant errors are thus obtained during the

large turns but errors are then dereasing. In future works, we plan to improve

our ontrol law to manage more e�iently the navigation in large turns.

Fig. 11. Paths in the universitary ampus exeuted during the memorization step (in
red) and the autonomous step (in blue) (3rd experimentation).



Fig. 12. Errors in the images vs time (3rd experimentation).

Fig. 13. Lateral y and angular θ errors and ontrol input δ vs time (3rd experimenta-
tion).

5 Conlusion

In this paper an image-based navigation framework dediated to nonholonomi

mobile robots has been presented. The approah is illustrated in the ontext of

indoor/outdoor environment using a single wide �eld of view amera and natu-

ral landmarks. We propose to learn the environment as a graph of visual paths,

alled visual memory. A visual route is made of a sequene of key images of the

environment whih desribes, in the sensor spae, an admissible path for the

robot. This visual route an be performed thanks to a visual-servoing ontrol

law, whih is adapted to the robot nonholonomy.

Future works will be devoted to relax the statiity onstraint of the environment.

We will try to analyse and to take into aount environment modi�ations, whih

may our between learning steps and autonomous runs, in both visual route

building and following.
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