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Abstract— In this paper, automatic path tracking of a four-
wheel-steering vehicle in presence of sliding is addressed. The
attractive feature of such a steering system is that, despite of
sliding phenomena, both lateral and angular deviations can
be explicitly controlled. Indeed, previous research has demon-
strated that high-precision path tracking on a low grip terrain
can be achieved with two-wheel-steering vehicles. However, in
this case, only the lateral deviation is kept satisfactorily close to
zero, the angular deviation is non null in order to compensate
for sliding effects. In this paper, previous adaptive control laws
are extended to the case of four-wheel-steering mobile robots
with the aim to servo both lateral and angular deviations.
Relying on an extended kinematic model, a backstepping
control approach, which considers successively front and rear
steering control, has been designed. Real world experiments
have been carried out on a low adherent terrain with a four-
wheel-steering vehicle equipped with a single RTK-GPS. This
demonstrates the capabilities of the proposed control law and
its robustness in real all-terrain conditions.

I. INTRODUCTION

Accurate automatic guidance of an off-road vehicle at

relatively high speed is still challenging, since it requires

to take into account the numerous dynamic phenomena,

usually disregarded in classical approaches. As pointed out

for example in [13], the low grip conditions usually met in

such a context damage particularly the accuracy of classical

path tracking control laws designed from rolling without

sliding assumptions (as developed in [10] or in [12]). This

can be seriously penalizing from the application point of

view, especially in agriculture, where autofarming emerges

as a promising solution [2], but where high-precision path

tracking is required whatever the grip conditions encoun-

tered.

In previous work [8], high accuracy guidance of a farm

two-wheel-steering vehicle has been achieved, despite sliding

phenomena. Nevertheless, a crab angle between the vehicle

heading and the tangent to the reference path is systemati-

cally observed, since such a behavior is necessary to com-

pensate for the sliding forces acting on the uncontrolled rear

wheels. The actuation of these latter theoretically enables the

explicit control of both lateral and angular deviations, and

appears to be very interesting from an agricultural point of

view: an angular error, which is moreover varying according

to the sliding conditions, leads to an unsatisfactory heading

of the mounted implement, and may cause indiscriminate

placement of field inputs (seeds, fertilizers, pesticides). As

a consequence, some recent marketed farm tractors, such as

Claas Xerion or JCB Fastract, propose manually steered rear

wheels, in order to compensate for the crabway motion on

a slope. The automatic control of the crab angle for such

vehicles would nevertheless provide an increased accuracy

and would offer extended possibilities in soil exploitation.

In the literature, four-wheel-steering vehicles have been

studied with the aim, on one hand to increase the ma-

noeuvrability of vehicles operating in confined space (e.g.

handlers, loaders, self-propelled sprayers [9]) and, on the

other hand to design active security devices for high speed

road vehicles (see for instance [6]). In the latter case, the

objective is to modify the vehicle lateral dynamics thanks

to the active rear wheels, in order to reduce side slip angles

and vehicle yaw rate. Several control approaches have been

proposed to meet this aim. Generally, they are based on gain-

scheduled feedforward control techniques: the rear steering

angle, whose range never exceeds one or two degrees, is

computed as a function of the front steering angle, the yaw

rate, and predefined gains related to the vehicle speed. These

techniques have already been implemented on marketed cars,

but do not address the variability of grip conditions pointed

out in an off-road context. Path tracking algorithms proposed

for such vehicles, mainly concerned with automatic parking

applications, also disregard grip conditions: for instance,

in [5], a horizontal plane and rolling without sliding are

assumed, in order for the vehicle models to exhibit the

flatness property. This feature is then used to plan a suitable

parking trajectory and servo the four-wheel-steering vehicle

along it.

On the contrary, the objective of this paper is to take

advantage of the rear steering actuation to compensate for

sliding effects during path tracking on a natural environment.

Based on a backstepping approach and adaptive techniques,

the proposed control law on one hand ensures accurate path

following, despite sliding phenomena, and on the other hand

explicitly controls the angular deviation whatever grip condi-

tions. This paper is organized as follows. First, an extended

kinematic model accounting for sliding effects is developed,

and on-line estimation of grip conditions is addressed. Then,

path tracking is considered using a backstepping approach. In

a first step, the rear steering angle is assumed to be measured

and the extended model is then turned into chained form,

so that a front steering control law can be designed with
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the sole aim to servo vehicle lateral deviation. Then, a rear

steering control law is designed in order to ensure also the

convergence of the vehicle angular deviation to some set

point. Next, the experimental mobile robot is presented, as

well as the available measurements. Finally, the capabilities

of the proposed control law are investigated through full-

scale experiments on a slippery ground.

II. EXTENDED KINEMATIC MODEL

A. Model formalism

Since vehicles considered in this paper are expected to

move on a natural terrain, the low grip conditions must be

accounted in the modeling, in order to enable, in next section,

the design of accurate path following control laws. Dyna-

mical models incorporating tire/ground interaction forces, as

described in [4] or in [1], do not appear tractable when

vehicles are moving off-road: numerous parameters have

then to be known. This is a concern, especially when grip

conditions are variable. Alternatively, it is here proposed to

extend classical four-wheel-steering kinematic models, such

as [10], since they propose a suitable structure to address

control design.

Consequently, each two front and rear wheels are con-

sidered equivalent to two virtual wheels located at mid-

distance between the actual ones, as depicted on figure 1.

In order to account for sliding phenomena, two additional

parameters - homogeneous with sideslip angles in a dynamic

model - are added to the classical representation. In the same

way than in [8], these two angles denoted respectively βF

and βR for the front and rear axle, represent the difference

between the theoretical direction of the linear velocity vector

at wheel centers, described by the wheel plane, and their

actual direction. These angles are assumed to be entirely

representative of the sliding influence on vehicle dynamics.

The notations used in the paper are listed below and

depicted on figure 1.

• F and R are respectively the center of the front and

rear virtual wheels. R is the point to be controlled.

• L is the vehicle wheelbase.

• θv is the orientation of vehicle centerline with respect

to an absolute frame [O,XO, YO).
• Vr is the vehicle linear velocity at point R, assumed to

be strictly positive and manually controlled.

• δF and δR are the front and rear steering angles. They

constitute the two control variables.

• βF and βR are the front and rear side slip angles.

• M is the point on the reference path Γ which is

the closest to R. M is assumed to be unique, see

hypothesis (2) below.

• s is the curvilinear abscissa of point M along Γ.

• c(s) is the curvature of path Γ at point M .

• θΓ(s) is the orientation of the tangent to Γ at point M

with respect to the absolute frame [O,XO, YO).
• θ̃ = θv−θΓ is the vehicle angular deviation with respect

to Γ.

• y is the vehicle lateral deviation at point R with respect

to Γ.

Fig. 1. Path tracking parameters and variables

As the control objective is to follow reference path Γ, the

equations of motion have to be derived with respect to this

path. It can be established see [10], that:



















ṡ = Vr
cos(θ̃+δR−βR)

1−c(s) y

ẏ = Vr sin(θ̃ + δR − βR)

˙̃
θ = Vr [cos(δR − βR)λ1 − λ2]

(1)

with: λ1 = tan(δF −βF )−tan(δR−βR)
L

, λ2 = c cos(θ̃+δR−βR)
1−c(s) y

It can be noticed that this model becomes singular when

y = 1
c(s) , i.e. when points A and R (depicted on figure 1)

are superposed. This problem is not encountered in practice

since, on one hand actual path curvatures are quite small,

and on the other hand, the vehicle remains close to Γ when

properly initialized. The lateral deviation is thereby always

smaller than the radius of curvature of Γ. As a result, the

assumption (2) can be made and will be used in the sequel.

|y| <
1

|c(s)|
⇒ 1 − c(s) y > 0 (2)

B. Known data and grip estimation

Model (1) accurately describes the vehicle motion in

presence of sliding as soon as the two additional parameters

βF and βR are known. Therefore, the estimation of these two

variables appears to be of crucial importance. As pointed out

for example in [11] in the case of dynamical representations,

the direct evaluation of side slip angles appears to be hardly

feasible at a reasonable cost. Their estimation classically

requires the use of huge measurement systems (such as

expensive inertial measurement units...), and needs some pre-

liminary assumptions with respect to adherence conditions.

The variability of the soil conditions encountered in natural

environment, as well as their on-line modifications, do not

permit to apply directly observer algorithms used in on-road

context.

An observer is here proposed to achieve sideslip an-

gles indirect estimation, relying on the sole exteroceptive

measurements X̄ =
[

ȳ
¯̃
θ

]T

(respectively the measured

lateral and angular deviations). This observer is based on

the duality between observation and control. As proposed

in [7], βF and βR are considered as control variables to be

designed in order to ensure the convergence of the extended
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model outputs to the measured variables. More precisely,

model (1) without curvilinear abscissa equation, is rewritten

as a non-linear state representation:
˙̂
X = f(X̂, u) (3)

where f is derived from (1):

f(X̂, u) =



















Vr sin(
ˆ̃
θ + δR + u2)

Vr

[

cos(δR+u2)[tan(δF +u1)−tan(δR+u2)]
L

−

c(s) cos(
ˆ̃
θ+δR+u2)
1−c(s)ŷ

]

(4)

X̂ = [ ŷ
ˆ̃
θ ]T is the observed state and u =

[ u1 u2 ]T = −[ βF βR ]T are the side slip angles to be

estimated, considered as the control variables of system (3).

As side slip angles do not exceed few degrees in practice,

let us linearize this state equation with respect to “control

vector” u in the vicinity of zero (i.e. no sliding). It leads to:

˙̂
X = f(X̂, 0) + B(X̂)u (5)

with B denoting the derivative of f with respect to u,

evaluated at u = 0:

B(X̂) =







0 Vr cos(
ˆ̃
θ + δR)

Vr cos δR

L cos2 δF
Vr

c(s) sin(
ˆ̃
θ+δR)

1−c(s)ŷ − Vr

L cos δR

−Vr sin δR
tan δF −tan δR

L






(6)

The matrix B is invertible when
ˆ̃
θ + δR 6= π

2 [π], Vr 6= 0
and δr 6= π

2 [π]. These conditions are met in practical path

following conditions. Using this formalism and hypothesis,

the observation of sliding parameters is achieved thanks to

the following observer equation:

u = B(X̂)−1

{

G · e − f(X̂, 0) + ˙̄X
M

}

(7)

where e = X̂−X̄ , G is an Hurwitz matrix, which constitutes

the observer gain, and ˙̄X
M

is the numeric derivative of the

measured state. This expression of control vector u leads to

the following error dynamics:

ė = G · e (8)

which ensures the convergence of the observed state to

the measured one. The gain matrix G allows to decrease

the impact of sensor noise. Observer equation (7) provides

then an estimation of the side slip angles introduced into

the bicycle model depicted on figure 1 and ensures that

this extended model fits with the measured behavior of the

vehicle. Therefore, it constitutes a relevant basis for mobile

robot control design.

III. CONTROL LAW DESIGN

A. Motivations

The control objective is to perform an accurate path

tracking with respect to lateral and angular deviations (re-

spectively y and θ̃), compensating for the effects of low

grip conditions. As the velocity is viewed as a measured

parameter (manually controlled), system inputs are the front

and rear steering angles (δF and δR). The expression of

extended kinematic model (1) accounting for sliding effects

is still consistent with classical models of wheeled mobile

robots. As a consequence, according to [10], it can be

turned into a linear model named chained form without

any approximation. Nevertheless, in the case of two steering

axles, such a transformation requires the integration of δR

into the state vector, rewriting model (1) as model (9):

ẋ = f(x) + g1(x)w1 + g2(x)w2 (9)

with

x =





y

θ̃

δR − βR



 , g1 =





0
Vr cos(δR−βR)

L

0



 , g2 =





0
0
1





f =







Vr sin(θ̃ + δR − βR)

−Vr
sin(δR−βR)

L
− Vr

c(s) cos(θ̃+δR−βR)
1−c(s)y

0







(10)
and [w1 w2]

T = [tan(δF − βF ) δ̇R − β̇R]T .

Using this representation, a model with two chains can be

obtained and control laws can be designed for δF and δ̇R

thanks to linear control theory. Unfortunately, this imposes to

use δ̇R as the control variable for the rear axle. An integration

is then required, which may generate instability in practice,

due to the inevitable delays present on steering actuators.

B. Backstepping approach

An alternative based on backstepping method is then

proposed, allowing the design of control laws for steering

angles instead of their derivative. In a first step, let us

consider the rear steering angle as a measured parameter in

model (1). From this hypothesis, it results that δR − βR can

be considered as a unique rear side slip angle denoted βR2.

Model (1) is then consistent with a front steering mobile

robot in presence of sliding such as considered in [8],

with a unique control variable δF . Following the same

methodology than in this reference, the state and control

transformations (11) can be introduced.

[s, y, θ̃] → [a1, a2, a3] = [s, y, (1 − c y) tan(θ̃ + βR2)]

[Vr, δF ] → [m1,m2] = [Vr cos(θ̃+βR2)
1−c(s) y

, da3

dt
]

(11)

It leads to the following chained system:














ȧ1 = d a1

dt
= m1

ȧ2 = d a2

dt
= a3m1

ȧ3 = d a3

dt
= m2

(12)

which can be also expressed with derivatives with respect to

the curvilinear abscissa:
{

a′

2 = da2

da1

= a3

a′

3 = da3

da1

= m3 = m2

m1

(13)

In order to control the lateral deviation, a judicious choice

for m3 is (14), since it leads to a second order differential

equation, ensuring the convergence of a2 = y to zero.

m3 =
m2

m1
= −Kda3 − Kpa2 (Kd,Kp > 0) (14)
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Injecting (14) into (11) and considering βR2 as slow-varying

with respect to the dynamic imposed by the two gains Kp

and Kd, the control law for the front axle can finally be

derived as:

δF = arctan
{

tan(δR − βR)

+ L
cos(δR−βR) (

c(s) cos θ̃2

α
+ A cos3 θ̃2

α2 )
}

+ βF

(15)with:






θ̃2 = θ̃ + δR − βR

α = 1 − c(s)y

A = −
K2

d
y

4 − Kd α tanθ̃2 + c(s)α tan2θ̃2

(16)

The gains (Kp,Kd) allow to specify a settling distance

instead of a settling time. In the sequel, it is chosen Kp =
K2

d

4
in order to obtain a critical damping ξ = 1. With control law

(15), the lateral deviation is satisfactorily servoed to zero, as

well as θ̃2. Convergence of this latter variable implies that θ̃

converges to βR − δR, and not to some desired set point, as

expected.

Actual control of θ̃ can now be addressed using the rear

steering variable. This constitutes the second step of the ap-

proach. Reporting control law (15) into the third equation in

model (1) leads to the following angular deviation dynamic

with respect to curvilinear abscissa:

θ̃
′

= (−
K2

d y

4α
− Kd tanθ̃2 + c(s) tan2θ̃2) cos2 θ̃2 (17)

As above mentioned, control law (15) imposes that θ̃2 stays

close to zero. As a result, the term cos2 θ̃2 can be considered

as equal to 1, so that:

θ̃
′

= −
K2

d y

4α
− Kd tanθ̃2 + c(s) tan2θ̃2 (18)

In view of (18), two cases must be distinguished, according

to the curvature value.

1) Straight line following: (c(s)=0): in that case, the

angular deviation dynamics (18) can be simplified as:

θ̃
′

= −
K2

d y

4
− Kd tan θ̃2 (19)

Then, the error dynamic θ̃
′

= Kd2 (θ̃ref − θ̃) with Kd2 >

0 can easily be imposed by proposing the following rear

steering law:

δR = βR − θ̃ + arctan
(−Kd y

4
−

Kd2 (θ̃ref − θ̃)

Kd

)

(20)

This ensures the convergence of θ̃ to θ̃ref

2) Curve line following (c(s) 6=0): using the notation

X = tan θ̃2, equation (18) can be rewritten as:

−θ̃
′

−
K2

d y

4α
− Kd X + c(s)X2 = 0 (21)

Once more, the objective is to impose θ̃
′

= Kd2 (θ̃ref − θ̃).
If it was achieved, then the discriminant of equation (21)

would be:

∆ =
K2

d

α
− 4 c(s)Kd2 (θ̃ − θ̃ref ) (22)

As α is assumed to be always strictly positive, see hy-

pothesis (2), the condition ∆ > 0 leads to:






(θ̃ − θ̃ref ) <
K2

d

4 c(s) Kd2 α
if c(s) > 0

(θ̃ − θ̃ref ) >
K2

d

4 c(s) Kd2 α
if c(s) < 0

(23)

The choice for (Kd, Kd2) and the limit values of c(s) and

y lead, in the worse case, to a ±30◦ bound on (θ̃ − θ̃ref ),
which is always satisfied in practice.

Since ∆ has been shown to be strictly positive, two

solutions can be derived. Considering the actuators range

of variation, only one of the solutions can be applied.

As a result, the rear control law achieving the expected

convergence can be written as following:

δR = βR−θ̃+arctan

{

Kd −

√

K2

d

α
− 4 c(s)Kd2 (θ̃ − θ̃ref )

2c(s)

}

(24)

Expressions (20) and (24) constitute the rear steering law for

respectively straight and curve line following. The continuity

of these expressions, when c(s) tends to zero, can be

established by standard but tedious computations.

C. Stability of the backstepping controller

The stability of the whole non-linear control strategy,

composed of control law (15) for the front steering angle

and (20) if c(s) = 0 or (24) if c(s) 6= 0 for the rear steering

angle, can be checked using Lyapunov theory. Consider

Lyapunov function candidate, with ǫ = θ̃ref − θ̃:

V = 1
2

{

y2 + (α tan θ̃2)
2 + ǫ2

}

(25)

The derivative of the positive function V with respect to

curvilinear abscissa (homogeneous with the time derivative

considering a non-null velocity) leads, after calculations, to

the following expressions (whatever the curvature value):

dV
ds

= −Kdα
2 tan2 θ̃2 − Kd2(ǫ cos θ̃2)

2 (26)

which is always negative. The stability of the mobile robot

trajectory tracking and the convergence of both ǫ and θ̃2 to

zero is then ensured. As a result, injecting the asymptotic

value of θ̃2 into equation (17) establishes that the lateral

deviation y also converges to zero. This finally demonstrates

the stability of path tracking control in presence of sliding,

with respect to lateral and angular deviations, with front and

rear control laws (15) and (20) if c(s) = 0 or (15) and (24)

if c(s) 6= 0.

IV. EXPERIMENTAL RESULTS

The experimental platform is the all-terrain four-wheel

steering vehicle depicted on figure 2. The vehicle weight and

maximum speed are respectively 600 kg and 18 km/h, and

it can climb slopes up to 45◦. The only exteroceptive sensor

on-boarded is a RTK-GPS receiver, whose antenna has been

located straight up the point R (see figure 1). It supplies an

absolute position with a 2cm accuracy, at a 10Hz sampling

frequency, and allows to estimate the vehicle heading thanks

to a Kalman filter.
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Fig. 2. Experimental platform

The path to be followed is recorded by a preliminary run

achieved in manual driving. In this paper, two types of path

have been recorded: a straight line achieved on a 15% sloping

ground (mobile robot running perpendicularly to the slope as

depicted on figure 2) and a curved path depicted on figure 3

achieved on a flat ground. In both cases, the terrain was an

irregular wet grass ground, where the vehicle is inevitably

prone to slide as it will be experimentally checked in the

sequel. In the forthcoming experimental results, the vehicle

speed is 1.8 m/s (6.5 km/h). The control gains (Kp,Kd) are

set to (0.16, 0.8) in order to impose a 11m settling distance

for the convergence of the lateral deviation. Finally, Kd2 =
1.1 has been chosen in order to impose a 3m settling distance

for the convergence of the angular deviation.
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Fig. 3. Path to be followed on a flat and slippery ground

A. Result during straight line on sloping ground

Several straight line following on a slope have been

performed using different control laws during a straight

line following on a slope. Firstly, a classical control law

neglecting for sliding effects has been applied only on the

front steering wheels (results are reported in black plain

line on figure 4). The expression of this one-axle control

law can be derived from (15) by setting sliding parameters

to zero ((βF , βR) = (0, 0)). It can be seen that, with

this classical approach, the tracking error as well as the

angular deviation cannot reach the desired zero value because

of sliding effects (the lateral deviation converges close to

−30cm, while the angular deviation reaches -2◦). A second

test has been performed, still using only the front steering

wheels, but accounting for sliding (control law (15)) (results

are depicted in gray plain line). The same angular deviation

than before can be observed (the asymptotic value -2◦ allows

to compensate for rear side slip angle), but an acceptable

tracking error within ±10cm is obtained. Finally, path track-

ing results when using both front and rear steering control

laws, with a null desired angular deviation, are shown in

black dashed line. With this control strategy, both lateral and

angular deviations are able to reach null values.
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Fig. 4. Validation of algorithm in slope

These first results permit to point out the benefit of rear

steering control in order to achieve accurate path tracking in

sliding conditions. The proposed algorithm indeed permits to

compensate for sliding effects in order to preserve an almost

null tracking error, but also to ensure the convergence of the

angular deviation to a set point. In slope, sliding phenomena

can then be compensated without admitting a crab angle.

Beyond this improvement, the proposed control laws for

front and rear axles, allow to specify any desired value for the

robot heading with respect to the reference path orientation.

Using the same reference path than in the previous tests,

three path tracking have been performed with the proposed

algorithm using different values of desired angular deviation.

The tracking results are compared on figure 5: the references

θ̃ref = 0◦, θ̃ref = −10◦ and θ̃ref = −20◦ are shown

respectively in black plain line, gray plain line and black

dashed line.
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Fig. 5. Path tracking in slope with different θ̃ref

As it can be seen, after a settling time, the tracking error

is not affected by the value of θ̃ref since lateral deviations

reported on figure 5(a) present the same evolution whatever

the reference. In the meanwhile, after a settling distance,

the angular deviations (depicted on figure 5(b)) reach the

desired value for θ̃ref . This demonstrates the capabilities of

the proposed algorithm to control both lateral and angular

deviations almost independently, despite sliding phenomena.

B. Result during curved path following

The last result proposed in this paper is devoted to curved

path following, and in particular the transition between rear
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control law expressions when c(s) becomes non null. Path

tracking of the reference path depicted on figure 3 has

been achieved at a velocity of 6.5 km/h on a wet grass

ground. The front and rear steering control laws proposed in

this paper have been used and desired angular deviation of

θ̃ref = −10◦ has been chosen to highlight angular deviation

control. Path following has first been run disregarding sliding

phenomena (βF and βR set to zero). The result is reported

in gray plain line on figure 6. The second tracking has

been achieved with sliding accounted. Results are reported

in black plain line.
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Fig. 6. Path tracking on a curved path θ̃ref

As it can be noticed, when sliding are accounted, the

path tracking error (after a settling distance) stays very close

to zero: it remains within a ±10cm range in the straight

line part (before curvilinear abscissa 15m) as well as in

the curved part (after 15m). In the same way, the angular

deviation also converges and remains close to the chosen

reference -10◦ (within a ±2◦ variation range) whatever the

curvature value. On the contrary, both lateral and angular

deviations are not able to converge to their desired value

when sliding are neglected. Finally, it can be seen that both

error signals (y and θ̃) are not affected by the transition in

the curvature (c(s) = 0 for s <15m and c(s) reaching to

0.12m−1 for s >15m). Therefore, these experimental tests

show the capability of the proposed approach to control

accurately both lateral and angular deviations in low grip

conditions whatever the shape of desired path.

V. CONCLUSIONS AND FUTURE WORK

This paper addresses path tracking problem for an off-road

four-wheel-steering vehicle moving on a slippery ground.

The adaptive control algorithm proposed in that paper aims

at achieving a high accurate guidance with respect to both

lateral and angular errors whatever the grip conditions and

the shape of path to be followed. To achieve this objective,

an extended kinematic model accounting for sliding effects

via two additional side slip angles is defined. Thanks to an

observer estimating these two sliding parameters, this model

is able to be representative of the mobile robot dynamics

despite harsh perturbations due to low grip conditions. As

a result, it constitutes a suitable basis in order to derive

control laws to tackle path tracking problem in natural en-

vironment. As classical control design (based on a complete

chained system transformation) leads to instability due to low

level actuator delays, an alternative control law based on a

backstepping approach, using an incomplete linear form, is

proposed. It permits to design two control laws for front and

rear steering wheels.

As a result, lateral and angular dynamics with respect to a

reference path can be controlled almost independently with

a high accuracy (around 5cm for lateral deviation and one

degree for vehicle orientation during full-scale experiments)

whatever the ground (grip conditions and geometry) and

whatever the shape of path to be followed.

Due to material limitations (mobile robot capabilities and

sensor sample time), the velocity was limited to 8 km/h

during experiments. Nevertheless, the theoretical validity of

the approach is preserved at faster evolutions (tested in simu-

lation). However, the increase in velocity can lead to tracking

error overshoots during curvature transient phases. This point

can be addressed by predictive algorithms, considering future

path curvature (as achieved on bigger vehicles). The increase

in velocity with respect to both material and control points is

under development. The extension of this work to the case of

a vehicle with a trailer is currently also investigated. Since we

are concerned with agricultural applications, the case of large

trailers or on-loaded implements constitutes a challenging

problem.
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