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Abstract— An efficient method for global robot localization
in a memory of omnidirectional images is presented. This
method is valid for indoor and outdoor environments and not
restricted to mobile robots. The proposed strategy is purely
vision-based and uses as reference a set of prerecorded images
(visual memory). The localization consists on finding in the
visual memory the image which best fits the current image. We
propose a hierarchical process combining global descriptors
computed onto cubic interpolation of triangular mesh and
patches correlation around Harris corners. To evaluate this
method, three large images data sets have been used. Results
of the proposed method are compared with those obtained from
state-of-the-art techniques by means of 1) accuracy, 2) amount
of memorized data required per image and 3) computational
cost. The proposed method shows the best compromise in term
of those criteria.

I. I NTRODUCTION

Several recent publications have focused on using visual
references as environment representation (visual memory)
for mobile robot navigation [1], [2]. In this representation,
images of the robot workspace are acquired during a learning
stage and memorized. The data set can be topologically
organized as in [1] or it can contain some additional metric
information as in [3]. The first step during a navigation
process is the self localization of the robot in this map of
the environment. The localization consists on finding the
image of the memory which best fits the current image by
comparing pre-processed and on-line acquired images.
The work presented in this paper is focused on the local-
ization onto an omnidirectional images memory. Omnidirec-
tional vision is usefull in many robotic applications because it
provides a large field-of-view of the environment. However,
it exhibits some supplementary difficulties compared to con-
ventional perspective images. Such images can be acquired
by fisheye or by catadioptric cameras, which have a similar
behaviour as demonstrated in [4].
The efficiency of a visual localization method can be mea-
sured by means of: 1) accuracy of the results, 2) memory
needed to store data and 3) computational cost. The main
objective of the work presented in this paper is to optimize
the localization process under those criteria.
The methods consist on matching the current image with all
the images of the memory. Two main strategies exist to match

images: the image can be represented by a single descriptor
(global approaches) [5], [6] or alternatively by a set of
descriptors defined around visual features (landmarks-based
or local approaches) [7], [8], [2]. Some hybrid approaches
consisting on globally describing a subset of the image have
also been proposed in order to be more robust to occlusions
than global methods [9].
In one hand, local approaches are generally more accurate
but have a high computational cost [2]. On the other hand,
global descriptors speed up the matching process at the
price of affecting the robustness to occlusions. One solution
consists on using a hierarchical approach which combines
the advantages of both methods [10]. In a first step, global
descriptors allow to select only some possible images and
then, if necessary, local descriptors are used to keep the
best image. The proposed global descriptor is based on a
cubic interpolation of the image with a triangular mesh. This
descriptor has a low computational cost and provides good
results with an acceptable amount of memorized data. This
approach is combined with a classical patches correlation
around Harris corners which gives accurate results with a
low computational cost. The results of our experimental com-
parisons with state-of-the-art techniques show that the best
compromise between computational efficiency and accuracy
is obtained with this proposed method.
This paper is organized as follow. Existing approaches are
presented in Section II. The proposed approach is detailled
in Section III. Finally, experiments have been performed
with different dense datasets. Our approach is compared with
other methods by means of the given criteria in Section IV.

II. OMNIDIRECTIONAL IMAGES DESCRIPTORS

This section briefly reviews global and local descriptors
for localization in a memory of omnidirectional images.

A. Global descriptors

A first solution is to globally describe the image. In that
aim, omnidirectional images are mapped onto cylindrical
images of size 128×32 in [5]. The image is directly de-
scribed by the gray level values. In [11], a shift invariant
representation is computed by rotating the cylindrical image
in a reference direction. Unfortunately, this direction isnot



absolute as soon as occlusions appear. In order to decrease
the size of the memorized data, images can be represented
by their eigen vectors using Principal Component Analysis
as proposed in [12]. Unfortunately, when a new image is
integrated in the memory, all eigen vectors have to be re-
computed. This process is very complex and it has a very
high computational cost. Moreover those methods are not
robust to changes of the environment.
The histogram of the gray level values is largely employed
as global signature. Its computation is efficient and it is
rotation-invariant. However, histogram methods are sensitive
to change of light conditions. Blaer et Allen [13] propose
color histograms for outdoor scene localization. A normal-
ization process is applied before computing the histograms
in order to reduce the illumination variations.
In [6], a global descriptor based on a polar version of high-
order local autocorrelation functions (PHLAC) is proposed.
It is based on a set of 35 local masks applied to the image
by convolution. Similarly to histogram, this descriptor is
rotation-invariant.

B. Local descriptors

Global descriptor-based methods are generally less robust
to occlusion compared to landmark-based methods. In those
last methods, some relevant visual features are extracted from
the images. A descriptor is then associated to each feature
neighbourhood. The robustness of the extraction and the
invariance of the descriptor are one main issue to improve
the matching process. We can sort the approaches into two
main categories. In the first category, the feature detection
and description designed for images acquired by perspective
cameras are directly employed with omnidirectional images.
The second category takes the geometry of the sensor into
account and thus uses operators designed for omnidirectional
images. The most popular visual features used in the context
of localization in an image database are projected points.
However, projected lines can also be exploited as proposed
in [14].

1) Perspective-based local descriptor:The Scale Invari-
ant Feature Transform (SIFT, [15]) has been shown to give
the best results in the case of images acquired with per-
spective cameras. The SIFT descriptor is a set of histograms
of gradient orientations of the normalized (with respect to
orientation and scale) Difference of Gaussian images. In
view of the effectiveness of this descriptor, several extensions
have been proposed. It has been used with omnidirectional
images in [7]. Given that many points are detected in an
omnidirectional image, Tamimi et al. [8] proposed an iter-
ative SIFT with a lower computational cost. In [16], points
are detected with a Sobel filter and described by a Modified
Scale Invariant Feature Transform (M-SIFT) signature. This
signature slightly takes into account the geometry of the om-
nidirectional sensor by rotating the patch around an interest
point. In [2], the Speeded Up Robust Features (SURF) are
employed as descriptors. SURF points are detected using the
Hessian matrix of the image convolued with box filters and
the descriptor is computed thanks to Haar-wavelet extraction.

The computational cost of this descriptor is much lower than
the one obtained for SIFT.
Unfortunately, those signatures describe a local neighbour-
hood around interest points and do not take into account the
high distortions caused by the geometry of the omnidirec-
tional cameras.

2) Descriptors adapted to omnidirectional images:In
the second category, detection and description processes
are specially designed to take into account those high
distortions. In [17], [18], a classical Harris corner detector
is proposed but the shape and the size of a patch around a
feature is modified according to the position of the point
and to the geometry of the catadioptric sensor. Finally,
a standard 2D correlation (respectively a centered and
normalized cross correlation) is applied to the patches in
[17] (respectively in [18]).

After computing the descriptors of the current and mem-
orized images, those descriptors have to be matched. For
local approaches, this step is generally based on Pyramidal
matching as in [14] or on Nearest Neighbour matching as in
[15]. This last algorithm considers that a matching is correct
if the ratio between the distances of the first and second
nearest neighbours is below a threshold.
It is possible to eliminate wrong matching through the
recovery of the epipolar geometry between two views [19] at
the price of higher computational cost. A full reconstruction
can also be obtained with three views and the 1D trifocal
tensor as proposed in [20].

C. Hybrid descriptor

Some hybrid descriptor have been designed to combine
the advantages of the two previously cited categories (local
and global approaches) by globally describing subsets of
the image. In [9], five histograms of the first and second
orders derivatives of the grey-level image are considered.
Instead of the whole image, the image is decomposed into
rings (refer to Fig. 1(a)). In one hand, a decomposition
into few rings decreases the accuracy. On the other hand,
increasing the number of rings increases the computational
cost and decreases the robustness to occlusions. In [12], the
image is first projected onto an englobing cylinder and a grid
decomposition is then proposed. This projection step is time
consuming and it implies the modification of the quality of
the image which can lead to less accurate localization results.
The proposed approach detailled in the next section allows
to obtain equal size subregions by using triangular mesh
(refer to Fig. 1(c)). In the experimental results (Section IV),
an angular sector decomposition (Fig. 1(b)) has also been
considered for comparison purposes.

III. PROPOSED APPROACH: CUBIC INTERPOLATION AND

ZNCC AROUND HARRIS CORNERS

We propose a new hierarchical approach for localization
in a database of omnidirectional images. The computational
efficiency is ensured in a first step by defining a well suited
global descriptor which allows to select a set of candidate
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Fig. 1. Different subregions decomposition: (a) rings, (b)angular sectors,
(c) triangular mesh
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Fig. 2. The proposed hierarchical approach

images. Local descriptors are then exploited to select only
the best image and thus to ensure accuracy. This principle is
summarized in Fig. 2.

The global descriptor is based on a cubic interpolation of
the image, with the nodes of the triangular mesh as control
point. The local descriptor is based on the neighbourhood of
Harris corners.

A. Proposed global descriptor

In order to be more robust to occlusions, we propose a
new approach which can be classified as an hybrid global
method. In hybrid methods, images are divided intos
subregions. After this decomposition step, each subregion
is globally described by ad-dimensional vector. The size
of the obtained descriptor iss × d. The major drawback of
those approaches is that subregions are seen as independant
zones while a continuous change exists between two
contiguous regions. Based on this observation, we propose
to use a geometrical image representation derived from
surface interpolation.

Subregion decomposition: In order to have
approximately the same quantity of information for each
subregion (similarly to square decomposition for perspective
images), a triangular mesh is employed (see Fig. 1(c)). In
this decomposition, nodes are approximately equidistant
one-by-one and the obtained triangles cover the same area.
We use the triangular mesh generator proposed in [21]. The
technique is based on the analogy between a simplex mesh
and a truss structure. Meshpoints{P1 , P2 , . . . Pp} are
nodes of the truss and segments between two meshpoints
are bars. An appropriate force-displacement function is
applied to the bars at each iteration. This function takes into
account the internal force due to the bars and the external
force due to the boundaries. Node locationsPi = [xi yi]
are computed by solving for equilibrium in a truss structure
using piecewise linear force-displacement relations. Those
nodes{P1 , P2 , . . . Pp} will be employed as control points

(a)

(b)

Fig. 3. (a) Image and (b) same image as a surface, with the control points
of the interpolated surface (small circles)

for the surface interpolation.

Surface interpolation:Images have first their histogram
equalized in order to be more robust to illumination changes.
A grey-level image can be seen as a 3D surface with the grey
level as the third coordinates (refer to Fig. 3):

I :

{

[0, 1, . . . , N ] × [0, 1, . . . , M ] 7→ [0, 255]
(u, v) → I(u, v)

The interpolation consists on locally approximating this sur-
faceI(u, v) by a surfacef(s, t), s ∈ [0; 1] , t ∈ [0; 1]. Many
interpolation techniques exist: linear, cubic, bicubic, nearest
neighbour. . . . All techniques are consideringcontrol points
(plotted in Fig. 3(b)). In order to compare descriptors of
different images, it is necessary to have control points at the
same positions. Moreover, regular positions ensure a better
interpolation. In that aim, we propose to use the triangular
mesh vertices presented previously as control points and the
altitudeZ of the control points of the approximated surface as
descriptors. The surface is interpolated by a cubic function.
The required computational cost is low and interpolation
errors are small.

B. First selection

DescriptorZc (respectivelyZi) is computed for the current
image Ic (respectively for the memorized imageIi). The
distance between those two images isdi = d(Ic, Ii) =
‖Zi−Zc‖. The chosen distance is theL1 distance:d(Zc,Zi) =
∑d

k=1 |Zc,k − Zi,k| where Zc,k (respectivelyZi,k) corre-
sponds to thekth element of the descriptor of the imageIc

(respectivelyIi). The best memorized image corresponds to



the image with the minimum distancedmin. Kept candidate
images are such thatdi

dmin

≤ t where the thresholdt ≥ 1
allows to not reject the images which have a distance similar
to dmin. If the number of candidate images is upper than1,
a matching based on local descriptors is then applied for
those selected images. Else, the result of the localizationis
the imageIk such thatdk = mini(di).

C. Local descriptor

The two main local descriptors approaches are the SIFT
[7] and the SURF [2]. As already mentionned, those ap-
proaches do not take into account the geometry of the omni-
directional sensor. If two omnidirectional images have been
taken approximately at the same position, those descriptors
are efficient whereas it is not the case for images taken
at distant positions. As we will see in the next section,
a classical local approach based on the Zero Normalized
Cross Correlation (ZNCC) between patches around Harris
corners has a lower computational cost than SIFT or SURF
and similar accuracy when images corresponding to closed
viewpoints are considered. The distance between two images
is di = d(Ic, Ii) = 1/(number of matched features). The
final result of the localization is the imageIk such that
dk = mini(di).

IV. L OCALIZATION EXPERIMENTS

The performance of the method proposed in the last
section is shown for the localization in three large sets of
images by means of accuracy, amount of memorized data
required per image and computational cost. Best results for
a given criteria are set in bold type and worse results in
italic. The results of the proposed method are given in the
last raw of each table.

The cubic interpolation approach (Cub) is compared with
PHLAC [6] (PHLAC) and Gonzalez [9] (Gonz) methods.
It is also compared with three other global approaches:
using the mean gray level for each angular sector (Sect)
or for each triangular region (Triang), or representing each
sector by the histogram of gray level values (HistoSect).
The local approachCorrHar as proposed and successfully
employed in [3] is compared with SIFT (SIFT) and SURF
(SURF) methods. Finally, the proposed hierarchical method
(CubCorrHar) is compared with the other approaches
and with the hierarchical approach consisting of a sector
decompositionSectorand thenCorrHar (SectCorrHar).
SIFT 128-dimensional descriptors are computed with the
C demo code of D. Lowe and SURF 64-dimensional
descriptors with the C++ code provided by the authors. The
matching is based on a Nearest Neighbour matching. For
CubHarris, around 500 Harris points neighbourhoods are
matched with the same C++ code as used in [3].

Three data sets are used:Almere, UAV and Walking data
sets.Almere data set was provided for the workshop [22].
It contains images of size 1024×768 pixels acquired by a
catadioptric camera pointing to the ceil and embedded onto

a mobile robot navigating in a typical house environment
with people walking around. As in [2], every 5th frame are
extracted for the experiments: half for reference and the other
half for testing. The number of test images is 978.UAV data
set contains images of size 384×288 pixels taken by a fisheye
camera embedded onto a X4-flyer UAV navigating in an
indoor environment. The camera points a third to the ground,
a third to the ceil and the other third forward. One frame
every 5 frames is extracted for the experiments (reference)
and one frame every 20 frames with an offset for testing. The
number of test images is 188. Finally,Walk data set contains
images of size 640×480 pixels taken by a fisheye camera
carried by a human in different environments into or nearby
our laboratory. The number of test images is 445. Contrary
to the other data sets, test images come from an other walk,
during an other day thus conditions are different between the
training and the navigation steps. This method provide thus
more realistic conditions.

A. Required memory size

Tab.I shows the needed memory for the descriptors used
in the sequel. For the local methods, the dimension of a
descriptor depends on the number of detected features and
of the size of a patch descriptor. Excepted for the PHLAC, all
global descriptors depend on the sub-region decomposition.

Almere dataset UAV dataset Walk dataset
B&W image 768 Kb 108 Kb 300 Kb
SIFT 1 100Kb 440 Kb 800 Kb
SURF 240 Kb 80 Kb 150 Kb
Gonz 0.3 Kb 0.3 Kb 0.3 Kb
PHLAC 0.45 Kb 0.45 Kb 0.45 Kb
Sect 0.9 Kb 0.9 Kb 0.9 Kb
CorrHar 8 Kb 8 Kb 8 Kb
Triang 3.4 Kb 3.8 Kb 3.8 Kb

Cub 2.2 Kb 2.4 Kb 2.4 Kb

TABLE I

APPROXIMATIVE REQUIRED MEMORY FOR DIFFERENT DESCRIPTORS

Local descriptors are much bigger than global descriptors.
A higher computational time is thus expected for those
approaches. The SIFT descriptors are approximately 5 times
bigger than the SURF descriptors.GonzandPHLAC require
small memory. The size of cubic descriptor remains reason-
able.

B. Global descriptor performances

The performances of the global descriptors are detailled
in Tab. II where:

• GM is the percentage of tests where the correct image
is found

• GCM indicates the percentage of tests where the correct
image belongs to the set of selected images. For a
hierarchical approach, this is the main indicator in term
of accuracy. It is compared to the GCM of the cubic
approach GCMC thanks to the ratio rg=GCM/GCMC .



• t indicates the needed computational cost measured in
seconds and it is compared with the computational cost
of the cubic approach tC by means of the ratio rt=t/tC .

• extr. is the mean number of kept images and is also
important for computational cost issue since the second
step of hierarchical approaches is applied only on these
images.

GM(%) GCM(%) rg(%) t(s) rt extr.
Almere dataset

Sect 62.7 62.8 70.5 0.55 4.58 1
HistoSect 90.1 94.4 105.9 4.58 38.16 1.26
Triang 90.5 90.5 101.6 0.38 3.16 1
PHLAC 27.8 32.7 36.6 0.47 3.91 1.27
Gonz 86.9 88.5 99.3 4.09 34.08 1.07

Cub 89 89.1 100 0.12 1 1
UAV dataset

Sect 94.1 94.1 96.7 0.1 2.5 1
HistoSect 84 94.1 96.7 1.45 36.25 1.68
Triang 96.8 96.8 99.1 0.11 2.75 1
PHLAC 42 48.9 50.2 0.12 3 1.2
Gonz 83.5 86.1 88.5 0.53 13.25 1.11

Cub 97.3 97.3 100 0.04 1 1
Walk dataset

Sect 80.8 81.1 96.7 0.28 2 1
HistoSect 69.2 86.9 103.7 4.49 32.07 2.82
Triang 83.8 83.8 100 0.28 2 1
PHLAC 22.6 28 33.5 0.25 1.78 1.5

Cub 83.1 83.8 100 0.14 1 1

TABLE II

COMPARISON OF THEGLOBAL DESCRIPTORS

As detailled in Tab.II, the GCM corresponding toPHLAC
and Gonz approaches are very low.HistoSectis the more
accurate in term of GCM-indicator forAlmere and Walk
data sets. Unfortunately, the number of kept images extr. is
relatively high. Moreover, this approach as a high t-indicator.
Triang gives good results forAlmere and Walk data sets
but it has a higher computational cost thanCub approach.
The cubic interpolationCub gives the best results forUAV
data set and it is the best compromise between accuracy,
computational cost and number of kept images forAlmere
andWalk data sets.

C. Local descriptor performances

SURF, SIFT andCubHarris are considered. The two
main aspects are: the percentage (GM) which measures
the accuracy of the method and the computational cost t.
Execution times are compared with results ofCubHarris
with the ratio: rt=t/tCorrHar.

SIFT gives the best results forAlmere and Walk data
sets but the computational cost is very high (as expected).
SURF is computed approximately 7 times faster than SIFT.
For UAV and Walk data sets, the execution time ofSURF
and CubHarris is similar. CubHarris gives the best results
in UAV data set and it is the best compromise between
computational cost and accuracy.

D. All descriptors

In view of Sections IV-B and IV-C, a hierarchical
approach based on a cubic interpolation in a first step

GM(%) t(s) rt
Almere dataset

SURF 93.4 4 0.43
SIFT 93.6 31.5 3.46

CorrHar 91.5 9.1 1
UAV dataset

SURF 91.4 1 0.83
SIFT 90.4 7.1 5.91

CorrHar 96.8 1.2 1
Walk dataset

SURF 88.7 8.5 0.89
SIFT 92.5 152.1 16.01

CorrHar 91.2 9.5 1

TABLE III

COMPARISON OF THELOCAL DESCRIPTORS.

and onCubHarris in a second step seems to be the best
localization approach in terms of accuracy and efficiency.
An example of image retrieval (Walk dataset) is shown in
Fig. 4. Only some successive images of the database are
presented for clarity. The test image is given in Fig. 4(a).
The expected localization result isI17 (Fig. 4(g)) and the
actual results are:I13 for SIFT, I14 for SURF, I15 for Gonz,
I17 for CubCorrHar andI25 for PHLAC.

The whole results are presented in Tab. IV where GM and
t are defined in Section IV-B. Comparisons with results of the
proposed hierarchical method (CubCorrHar) are given with
the ratio: rg=GM/GMCubCorrHar and rt=t/tCubCorrHar.

SIFT gives the best results forAlmereandWalk data sets
but it has a very high computational cost.SURF is a good
compromise forAlmeredata set but is less accurate for the
two other data sets. Considering the whole data sets,Cub-
CorrHar gives the best compromise between computational
time and accuracy.

V. CONCLUSION

A new efficient localization method in a memory of om-
nidirectional images has been proposed. It combines global
descriptors computed onto cubic interpolation of triangu-
lar mesh which is computationally efficient and patches
correlation around Harris corners to ensure accuracy. This
method has been compared to state-of-the-art techniques.
The obtained results show that the proposed method is the
best compromise between accuracy, amount of memorized
data and computational cost.
Future work will be devoted to combine this approach with
partial 3D reconstruction technique for metric localization.
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