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Abstract— Robotic manipulation of everyday objects and
dependable execution of household chores is one of the most
desired and challenging skills for future service robots. Most
of the current research in robotic grasping is limited to pick-
and-place tasks, without paying attention to the whole range of
different tasks needed in human environments, such as opening
doors, interacting with furniture, household electrical appli-
ances, etc. In this article, a sensor-based integrated framework
for specifying both the grasp and the task is presented, with
the goal of motivating dependable task-oriented grasping and
manipulation. The grasp is defined as a desired task-suitable
relationship between the robot hand and the object being
manipulated. The task is defined under the task frame formalism
[1], which allows to specify tasks for sensor-guided dependable
interaction. Some guidelines for sensor-based execution of
tasks defined under the proposed formalism are also given.
Three different examples of dependable manipulation tasks,
performed by three different robots, are presented, making use
of the proposed approach and disparate sensor information:
book grasping by tactile-force integration, door opening by
vision-force control, and force-guided humanoid interaction
with kitchen furniture.

I. INTRODUCTION

Autonomous robots need advanced manipulation skills in
order to be useful for the end-user [2]. Most of current
research in robotic manipulation is limited to pick and place
tasks, without paying attention to the whole range of different
tasks needed in human environments. Apart from grasping
objects for pick and place, a dependable service robot work-
ing in cooperation with humans needs a complete repertoire
of tasks, including opening doors, interacting with furniture
and household electrical appliances, switching on/off the
lights, etc.

Most of the research in robotic grasping community aims
at finding a set of contacts on the object in order to obtain
force-closure grasps [3]. Force-closure guarantees that the
grasp can compensate forces in any direction, but is a too
restrictive condition in the sense that it would be much
more natural to plan a grasp which can generate the force
required for the task, instead of all the possible forces. It
is worth noting that there are very few approaches on task-
oriented robotic grasping in the community [4], [5]. In the
same way that robotic grasping works usually do not take the
task into account, task planning works for robotic compliant
interaction rarely consider the grasp planning problem. The
grasp depends completely on the intended task, and vice
versa. At the same time that the task dictates the way the

hand must be arranged around an object, also the grasp
dictates the actions that can be safely performed with it.

We propose a common framework where the grasp and the
task are closely related, allowing both task and grasp spec-
ification and dependable sensor-guided execution in terms
of hand, grasp and task frames. The grasp is defined as a
desired task-suitable relationship between the robot hand and
the object being manipulated, whereas the task is defined
under the task frame formalism [1], as a desired motion
that must be applied to the object. The concept of grasp
frame is used for relating the grasp with the task into a
common framework. On the one hand, the grasp frame is
used as the goal for hand control. On the other hand, it
is related to the task, through the object structural model.
The grasp frame allows to transform the desired task motion,
given in object coordinates, to robot motion, given in robot
coordinates, as long as a suitable sensor-based estimation of
the hand-to-object relative pose is provided, allowing to deal
with modelling errors, grasp uncertainties, sliding, etc. in
a dependable way. Having a good estimation of the hand-
to-object pose, the task frame can be estimated in robot
coordinates during execution, following a sensor-based task
frame tracking approach [1], allowing the robot to adapt
its motion to the particular object mechanism, even if no
detailed model is present. Several examples of dependable
sensor-guided compliant physical interaction tasks, based
on the proposed framework, are presented, showing the
suitability of our approach for the fast implementation of
dependable interaction tasks under very different robotic
systems.

II. A FRAMEWORK FOR DEPENDABLE PHYSICAL
INTERACTION

A. Task-oriented grasp

We make use of three different frames for dependable task-
oriented grasping: the task frame, the hand frame and the
grasp frame (see Figure 1).

The task frame (T ) is a frame given in object coordinates,
thus linked to the object frame (O), where the task is
specified according to the task frame formalism [1]. The pro-
grammer has to choose a suitable task frame, where the axis
match the natural constraints imposed by the environment
(by the mechanism in our case).

The hand frame (H) is a frame attached to the robot hand
(or tool) and it is used for control. Therefore, it is necessary



P = “one-finger preshape”
HMG = I4×4

Sc = diag (1, 1, 1, 1, 1, 0)
Sf = diag (0, 0, 1, 0, 0, 0)
v∗ = (0, 0, 0, 0, 0)
f∗ = (0, 0, 10 N, 0, 0)

P = “precision preshape”
HMG = I4×4

Sc = diag (1, 1, 1, 0, 1, 1)
Sf = diag (0, 0, 0, 0, 0, 0)
v∗ = (0, 0, 0, 0, 0.01 rad/s)
f∗ = (0, 0, 0, 0, 0)

P = “power preshape”
HMG = I4×4

Sc = diag (1, 1, 1, 1, 0, 1)
Sf = diag (0, 0, 1, 0, 0, 0)
v∗ = f (t)
f∗ = (0, 0, 10 N, 0, 0)

Fig. 1. Some task examples supported by the task-oriented grasping framework. First: pushing a button, with a force reference. Second: turning on a tap,
with a velocity reference. Third: ironing task, with a velocity and force reference. T , H and G are, respectively, the task, hand and grasp frame.

to link it with the robot end-effector frame (E), normally
through robot hand kinematics.

The grasp frame (G) is a frame given in object coordinates,
and related to the task frame through object kinematics. This
frame is set to parts of the object which are suitable for
grasping and task execution.

The task-oriented grasp is then defined as a desired
relative pose (possibly under-constrained) between the hand
frame and the grasp frame. If this desired relative pose
is achieved, the task, defined in the task frame, can be
transformed to the hand frame, through the grasp frame,
allowing the robot to make the motion needed for the task.
Constrained and free degrees of freedom for the grasp are
indicated. For the constrained DOFs, the hand frame must
completely reach the desired relative pose with respect to
the grasp frame. However, for free degrees of freedom, there
is no particular relative pose used as reference. Instead, the
robot may select a suitable pose, according to manipulability,
joint limit avoidance, etc.

Let T , G, H and E be the task, grasp, hand and end-
effector frames respectively. EMH , GMT and HMG are
homogeneous matrices relating end-effector frame to hand
frame, grasp frame to task frame and hand frame to grasp
frame respectively, being iMj =

[
iRj

itj

]
, where iRj is

the 3 × 3 rotation matrix between frames i and j, and itj

represents the position of frame j with respect to frame i.

Let P = {m0, m1, . . . , mn} be the hand posture, mi being
the angle for each of the n motors of the hand.

A task-oriented grasp is defined as:

G =
{P,H, G, HMG,Sc

}
(1)

where Sc is a 6× 6 diagonal selection matrix which indi-
cates the controlled degrees of freedom for the task-oriented
grasp. The task is defined as a velocity/force reference in the
task frame:

T = {T,v∗, f∗,Sf} (2)

where Sf is a 6 × 6 diagonal selection matrix, where
a value of 1 at the diagonal element i indicates that the
corresponding DOF is controlled with a force reference,
whereas a value of 0 indicates it is controlled with a velocity
reference. A velocity reference is suitable for tasks where
a desired motion is expected, whereas a force reference
is preferred for dynamic interaction with the environment,
where no object motion is expected, but a force must be
applied (for polishing a surface, for example). v∗ and f∗

are, respectively, the velocity and force reference vectors. A
suitable force controller must convert the force references on
force-controlled DOFs to velocities, so that the task is finally
described as a desired velocity given in the task frame: τ∗T .



For task execution, the desired velocity τ∗T is converted from
the task frame, to the robot end-effector frame as:

τE = EWH · ̂HWG · GWT · τ∗T (3)

where iWj is the 6 × 6 screw transformation matrix
associated to iMj .

B. Sensor-guided physical interaction

Whereas EMH and GMT can be computed from robot
kinematics and object model respectively, ĤMG (the esti-
mated relative pose between the robot hand and the part of
the object being manipulated) depends on the particular ex-
ecution and should be estimated online by the robot sensors.
The error between the desired relative pose, HMG, and the
estimated pose, ĤMG, can be due to the particular object
mechanism, or due to task redundancy, where a particular
DOF is controlled by a secondary task. The robot must
always estimate the hand-to-task relationship during task
execution by means of the model, world knowledge, vision
sensors, tactile sensors, force feedback, etc. The estimation
of ĤMG is the key for computing the task frame in robot
coordinates, thus allowing the transformation of the task
specification into dependable robot motion.

The best sensor to estimate this relationship is vision.
A robot could be observing its hand and the object si-
multaneously, while applying model-based pose estimation
techniques. Another interesting sensor is a tactile array,
which provides detailed local information about contact, and
could be used to detect grasp mistakes or misalignments. In
any case, as the robot is in contact with the environment, it is
extremely important to design a controller that can deal with
unpredicted forces and adapt the hand motion accordingly.
In general, the best solution is to combine several sensor
modalities for getting a robust estimation.

III. APPLICATION OF THE FRAMEWORK

The proposed framework has been applied to three differ-
ent robotic systems: the UJI Service robot [6] at the Robotic
Intelligence Lab in Castellón (Spain), a mobile manipulator
[7] during a short stay at the Intelligent Systems Research
Center in Sungkyunkwan University (South Korea), and the
Armar-III Humanoid Robot [8], also during a short stay in
Karlsruhe University (Germany). The tasks involved:
• Book grasping by means of tactile and force integration.
• Door opening by vision and force feedback.
• Humanoid physical interaction with several kitchen fur-

niture (drawers, dishwasher, etc.) by force control with
joint and task redundancy management.

The variety of the tasks that have been implemented
shows the versatility of the proposed framework, and its
suitability for the fast implementation of dependable physical
interaction tasks in very different robotic systems. All the
tasks have been described in such a way that no object
models are necessary for successful execution. Instead, the
robot is able to adapt its motion to the particular case, without
being specifically programmed for any particular task.

Fig. 2. Frames involved in the book grasping task. The tactile array is used
to estimate the relationship between the hand and the grasp frame, HMG.

A. Experiment I: book grasping by tactile-force combination

For the first experiment, the sensor-based compliant phys-
ical interaction framework is applied to the task of taking
out a book from a bookshelf, using the UJI Service Robot.
The goal of the task is to extract a book from a shelf,
while standing among other books. The approach is to do
it as humans do: only one of the fingers is used, which is
placed on the top corner of the target book and is used to
make contact and pull back the book, making it turn with
respect to the base, as shown in Figure 3. In this task, the
force/torque sensor is used to apply a force towards the book
and avoid sliding, whereas a tactile array provides detailed
information about the contact, and helps estimating the hand
and grasp frame relationship. As shown in Figure 2, there
is one tactile array on each of the fingertips. This sensor
consists of an array of 8× 5 cells, each of one can measure
the local pressure at that point.

1) Planning the task, hand and grasp frame: In Figure
2, a representation of the book grasping task, including the
necessary frames, is shown. There are two possibilities for
the task frame in this case. The first is to set it to the book
base (frame T ′ in Figure 2), so that the task is described as
a rotation velocity around this frame. The second possibility
is to set the task frame on the top edge of the book (frame
T in Figure 2), so that the task is described as a negative
translational velocity along X direction. We have opted for
the second solution, because, in this case, the task frame
coincides with the grasp frame, and, then, there is no need
to know the book model. In the first case, the height of
the book should be known in order to transform the task
velocity from the task frame to the hand frame. By adopting
the second solution, we make the approach general for any



Fig. 3. The robot grasping the book by means of force and tactile-based continuous estimation of hand-to-object relative pose.

book size. Two references are set in the task frame, v∗ and
f∗. The first one is set to a negative velocity in X axis, in
order to perform the task motion, whereas f∗ is set to a force
along Z axis. This force is needed in order to make enough
pressure on the book surface and avoid slip. We have set
it to 10 N for our particular system, but it depends on the
friction coefficient between the fingertip and the book. For
small friction, a bigger force would be needed. Therefore,
Sf is set to diag(0, 0, 1, 0, 0, 0).

For this task, we define a special hand posture where one
of the fingers is slightly more closed than the other ones,
so that we can easily make contact on the top of the book
with one finger, as shown in Figure 2. The hand frame is
set to the inner part of the middle finger fingertip, just in
the centre of the tactile sensor. The hand frame pose with
respect to the robot end-effector, EMH , is computed from
hand kinematics.

The fingertip has to make contact on the top of the book.
Therefore, we set the grasp frame to the book top surface,
which could be located by vision or range sensors. The
desired relationship between the hand and the grasp frame,
HMG, is set to the identity.

2) Estimating hand-book relative pose: In this case, the
task is performed by combining force and tactile feedback.
Tactile information is used to estimate and improve the
contact between the hand and the book, whereas force
feedback is used in order to cope with uncertainties and
ensure that a suitable force is performed on the book surface
so that there is no sliding.

Contact on the book is performed with the tactile array.
Depending on the sensor cells that are activated, the rel-
ative pose between the sensor surface and the book can
be estimated. It is not possible to compute the complete
relative pose only with tactile sensors, because they only
provide local information when there is contact. However,
we can obtain a qualitative description of the relative pose.
For example, if there is contact with the upper part of the
sensor, but not with the lower part, we can deduce that the
sensor plane is rotated around Y axis with respect to the
book top plane.

All the tactile cells lie in the XY plane of the hand frame.

We consider that the finger is completely aligned with the
book surface when there are cells activated on each of the
four XY quadrants of the hand frame, i.e., all the tactile
sensor surface is in contact. If there is contact on the upper
half of the sensor, but not on the lower half, or vice versa,
we consider that there is a rotation about Y axis, between
the sensor (hand frame) and the book surface (grasp frame).
Similarly, a rotation around X axis can be detected.

3) Improving the grasp: The goal of this process is to
align the finger (tactile sensor) surface with the book surface,
taking as input the qualitative description of the relative
pose, described in the previous point. We follow a reactive
approach, where fingertip rotation around X and Y axis of
the hand frame is continuously controlled, in order to obtain
contact on each of the XY quadrants of the hand frame.
With this approach, the behaviour of the robot is completely
reactive to the tactile sensor readings. The goal is to keep
the sensor plane always parallel to the book top plane, thus
ensuring that ĤMG = I4×4.

4) Task motion and coping with uncertainties: According
to the task description, the task motion is performed by
moving the hand along negative X axis of the task frame,
while applying a force along Z axis. This motion makes the
book turn with respect to the base, as shown in Figure 3. Note
that, as the fingertip moves backwards and the book turns,
the tactile sensor may lose contact with the lower part. This
situation is detected by the qualitative pose estimator, and
corrected with the control strategy described in the previous
point, so that the hand frame is always aligned with the
grasp frame, ensuring that task motion can successfully be
transformed to dependable end-effector motion by equation
3. Figure 3 shows a sequence of the robot performing the
task.

B. Experiment II: door opening by vision-force combination

In this section, the framework for sensor-based compliant
physical interaction is applied to the task of pulling open the
door of a wardrobe, using a mobile manipulator composed
of an Amtec 7DOF ultra light weight robot arm mounted
on an ActivMedia PowerBot mobile robot. The hand of
the robot is a PowerCube parallel jaw gripper. This robot



Fig. 4. The vision task is to align hand frame H with the grasp frame G.

belongs to the Intelligent Systems Research Center (ISRC,
Sungkyunkwan University, South Korea), and is already
endowed with recognition and navigation capabilities [7], so
that it is able to recognise the object to manipulate and to
retrieve its structural model from a database.

1) Planning the task, hand and grasp frame: The struc-
tural model of the door is shown in Figure 4. The task
of pulling open the door can be specified naturally as a
rotation around Y axis of frame O, but also as a negative
translation velocity along Z axis of the frame G. The second
alternative has the advantage that we can set GMT = I4×4,
without the need to know the door model. We adopt this
approach in order to make the solution valid for other doors.
Thus, T = G, and we set v∗ to be a negative translation
velocity along Z axis (the desired opening velocity). As there
is no need for force references for this task, f∗ = 0 and
Sf = 06×6.

For the parallel jaw gripper, there are very few manip-
ulation possibilities. We consider only one possible task-
oriented hand preshape, which is the precision preshape. The
hand frame is set to the middle point between both fingertips,
as shown in Figure 4.

As the door contains a handle, the grasp frame is set to the
handle, so that the grasp is performed on it. More concretely,
the grasp frame is set centered at the handle major axis, as
shown in Figure 4. Then, according to the specification of the
hand and grasp frames, the desired relationship between both
is HMG = I4×4, i.e. the identity: when grasping, the hand
frame must be completely aligned with the grasp frame (the
handle must lie in the middle point between both fingertips).

2) Estimating hand-handle relative pose: As already ex-
plained in the previous sections, the relationship between the
hand and the handle must be estimated continuously during
task execution, in order to be able to transform the task

Fig. 5. The mobile manipulator at ISRC opening a door by means of force
and vision combination

motion (given in the task frame) to dependable robot motion
(given in the end-effector).

Virtual visual servoing [9] is used to estimate the pose
of the hand and the handle, using a set of point features
drawn on a pattern whose model and position is known.
One pattern is attached to the gripper, in a known position
EMGP . Another pattern is attached to the object, also in a
known position with respect to the object reference frame:
OMOP . As future research we would like to implement a
feature extraction algorithm in order to use natural features
of the object instead of the markers [10]. Figure 4 shows
the different frames involved in the relative pose estimation
process and the task.

The matrix ĤMG, which relates hand and handle, is
computed directly from the pose estimation of the gripper
and the object, according to the following expression:

(
CMGP · EM−1

GP · EMH

)−1 ·CMOP ·OM−1
OP ·OMG (4)

where CMGP is an estimation of the pose of gripper
pattern, expressed in the camera frame, and CMOP is an
estimation of the object pattern pose, also in the camera
frame. EMH and OMG are the hand and grasp frame
positions with respect to the end-effector and the object
reference frame respectively, as set in the previous points.

3) Improving the grasp: After pose estimation, a measure
of the error between the desired (HMG) and current (ĤMG)
hand-grasp relative pose is obtained. It is desirable to design
a control strategy so that the grasp is continuously improving



during task execution. With a vision-based approach, any
misalignment between the gripper and the handle (due to
sliding, model errors, etc.) can be detected and corrected
through a position-based visual servoing control law [11]. We
set the vector s of visual features to be s = (t uθ)T , where
t is the translational part of the homogeneous matrix ĤMG,
and uθ is the axis/angle representation of the rotational part
of ĤMG. The velocity in the hand frame τH is computed
using a classical visual servoing control law:

τH = −λe +
∂̂e
∂t

(5)

where e(s, sd) = L̂+
s (s − sd) (in our case, sd = 0, as

HMG = I4×4). The interaction matrix L̂s is set for the
particular case of position-based visual servoing:

L̂s =
( −I3×3 03×3

03×3 −Lw

)

Lw = I3×3 − θ

2
[u]× +

(
1− sinc(θ)

sinc2( θ
2 )

)
[u]2×

where [u]× is the skew anti-symmetric matrix for the
rotation axis u. Finally, the end-effector motion is computed
as τE = EWH · τH .

4) Task motion and coping with uncertainties: The end-
effector velocity that the robot has to achieve in order to
perform the task motion, is computed by transforming the
task velocity, from the task frame to the end-effector frame,
according to equation 3.

Even if the relative pose between the hand and the
handle, ĤMG, is estimated and corrected continuously, this
estimation can be subject to important errors, considering
that it is based on vision algorithms, that can be strongly
affected by illumination, camera calibration errors, etc. Due
to this fact, the robot motion is also subject to errors, and
cannot match exactly the desired motion for the task. As the
hand is in contact with the environment, any deviation of
the hand motion regarding the task trajectory will generate
important forces on the robot hand that must be taken into
account.

We adopt an external vision/force control law [12] for
integrating vision and force and coping with uncertainties.
With this approach, the force vector, with current external
forces, is used to create a new vision reference according to:

s∗ = sd + L̂s · L̂−1
× ·K−1(f∗ − f) (6)

where f∗ is the desired wrench, added as input to the con-
trol loop (null in this particular case), K is the environment
stiffness matrix, and s∗ is the modified reference for visual
features. L̂× relates τE and ẊE according to ẊE = L̂× · τE
[11]. Then, the visual servoing control law, described in the
previous point, takes as visual reference the new computed
reference, s∗.

In conclusion, there are two simultaneous end-effector
motions: one, computed by equation 3, which is in charge

Fig. 6. The task frame is set to the handle. The task is specified as a
velocity reference along negative Z axis. A power grasp is performed.

of performing dependable task motion, and another one,
computed by equation 5, in charge of continuously aligning
the hand with the handle by vision-force control. For more
experimental results of the vision/force-guided door opening
task, along with a detailed analysis and a demonstration
video, please refer to [13].

C. Experiment III: humanoid physical interaction with
kitchen furniture

For this experiment, we focus on tasks that involve force-
guided robust physical interaction of a humanoid robot with
articulated furniture found in the kitchen, such as opening
doors and drawers. The Armar-III humanoid robot, built up
by the Collaborative Research Center 588 in Karlsruhe, has
been used for these experiments [8]. This robot is composed
of a humanoid torso mounted on a holonomic mobile plat-
form, and has a total of 43 DOFs. A complete kitchen has
been built in order to validate the robot capabilities in a
realistic household environment. The kitchen contains all of
the elements that can be found in any common kitchen, like
a dishwasher, a fridge, a microwave, different cupboards,
drawers, etc.

1) Planning the task, hand and grasp frame: We consider
the task of pulling open the different doors and drawers
found in a kitchen environment. The task and grasp frames
are always set to the handle, as shown in Figure 6, and the
task velocity is set to a negative value along Z axis, i.e.
v∗ = (0, 0,−20, 0, 0, 0)T mm/s. This avoids the use of the
particular mechanism model, allowing the robot to use the



same task description for the different doors and drawers,
independently of the particular size or hinge position. The
force reference is not required for this particular task, thus
Sf = 0.

As shown in Figure 6, the hand is set to a power grasp
configuration, where the thumb is opposed to the rest of
fingers, and the hand frame is set to the center of the
grasp. Task redundancy is allowed in the rotational DOFs:
Sc = diag(1, 1, 1, 0, 0, 0). Normally, only a rotation around
the handle axis should be allowed as a task redundant DOF.
However, as the robot’s hand is highly compliant, and all
the DOFs are force-controlled, the three cartesian rotational
DOFs are set to be controlled by the secondary task (avoiding
joint limits), and not by the main task.

2) Estimating hand-handle relative pose: Due to the task
redundancy, the relative rotation between the hand and the
handle is not fixed. It can vary during execution according
to the cost function minimization approach (see examples of
Figure 7). However, this hand-to-handle relative pose, ĤMG,
must be known in order to compute the task jacobian and
transform the task velocity into robot joint velocity.

The framework outlined in section II assumes that ĤMG

can be computed through robot sensors. Here, position-force
information is used in order to find always the motion direc-
tion which minimizes the external forces. The robot starts by
pulling the handle. The mechanism of the particular door, as
well as the error in the estimation of ĤMG, generates small
forces in the hand, which the robot tries to minimize by
updating its position following an impedance force control
approach (introduced in point III-C.4). The robot keeps a
history of the hand trajectory and aligns the task and grasp
frame with the vector tangent to this trajectory, thus updating
the hand-to-handle relative pose estimation, ĤMG. With this
approach, the robot autonomously adapts to the particular
door, without having any model, and even without knowing
the particular mechanism.

3) Improving the grasp: The humanoid robot makes use
of two different kinds of redundancy for continuously adopt-
ing a confortable grasp during task execution: task and joint
redundancy. In the context of this experiment, 8 DOF are
used in the Armar-III humanoid robot: 7 in the arm, and 1 in
the hip (yaw). Therefore, two redundant degrees of freedom
exist at the joint level, allowing the robot to reach a given
cartesian pose with many different joint configurations.

We adopt the well-known gradient projection method
(GPM) for joint redundancy management [14]. The general
approach is to project a secondary task into the nullspace of
the first task, as following:

q̇ = J+
EτE + (I− J+

EJE)ej (7)

where q̇ is a vector with joint velocities, τE is the desired
end-effector cartesian velocity, JE is the arm jacobian at the
end-effector, (I − J+

EJE) is the nullspace projector, and ej

is the secondary task, which is normally computed as the
gradient of a cost function h(q), i.e. ej = ∂h

∂q . There are
many different possibilities for the cost function: increase

manipulability, minimize energy consumption, etc. In our
case, we compute h in order to avoid joint limits, thus
keeping a natural arm posture. Concretely, ej is taken as:

eji =
∂h
∂qi

=





− qi−qu
i

qr
i

if qi > qu
i

− qi−ql
i

qr
i

if qi < ql
i

0 in other case

where qu
i , ql

i and qr
i are, respectively, the upper bound,

lower bound and range for joint i. By upper and lower
bound, we understand the joint value at which the joint limit
avoidance secondary task is activated (not the mechanical
limit).

For dealing with task redundancy, equation 7 must be
transformed to task coordinates, by means of the end-
effector-to-task estimation, ÊMT = EMH · ĤMG · GMT .
First, the task jacobian must be computed from the arm
jacobian, as:

JT = ̂EWT

−1 · JE (8)

A modified task jacobian is then computed, taking into
account task redundancy, as Jr

T = Sc · JT , being Sc the
diagonal selection matrix, introduced in section II, which
selects the degrees of freedom of the task frame necessary
for the main task. Then, equation 7 is transformed into:

q̇ = Jr
T

+τ∗T + (I− Jr
T

+Jr
T )ej (9)

With this new expression, ej is projected not only on the
joint redundant DOFs, but also on the task redundant ones.
Therefore, more DOFs are available for the secondary task,
allowing the robot to perform the main task, while effectively
performing auxiliary motion.

4) Task motion and coping with uncertainties: If the
estimation of the task frame with respect to the end-effector,
ÊMT , was perfect, the robot could perform the task without
any kind of force feedback. However, in practice, the task
frame estimation contains many errors. As the robot is in
contact with the environment, an error in the trajectory
generates very big forces on the robot hand. Thus, it is
necessary to control the force so that no big forces appear on
the robot hand. The robot, then, executes the task by trusting
on its estimation of the task frame, but locally modifies
the trajectory, following an impedance approach, in order
to avoid excessive forces.

The force control law running in the robot for compliant
cartesian velocity control with joint and task redundancy is
the following:

q̇ = Jr
T

+τ∗T +(I−Jr
T

+Jr
T )ej+J+

T K−1( ̂T WF ·f−f∗) (10)

being K the stiffness matrix for force control [15], ̂T WF

the screw transformation matrix associated to the homoge-
neous matrix ̂T MF , which relates the force sensor frame
and the task frame. The matrix ̂T MF can be computed as
̂T MF = ÊMT

−1 · EMF , where EMF relates the force



Fig. 7. The Armar-III robot interacting with the kitchen furniture: fridge, drawers, dishwasher and cupboards

sensor frame with the end-effector. Finally, f is the measured
force at the force sensor frame, and f∗ the desired force at
the task frame.

Whereas the first two terms allow to perform the task
motion and the auxiliary task, the last term adds a correction
to the joint velocities depending on desired and current
forces, allowing for a dependable execution of the task, even
when important errors exist in the task frame estimation,
ÊMT (and, thus, in J+

T ).
Figure 7 shows the Armar-III humanoid robot interacting

with four different elements found in a common kitchen: a
fridge, a drawer, a dishwasher and a cupboard. Each of them
have different size and even different mechanism. In the case
of the dishwasher, the hinges are located at the bottom part,
unlike the fridge and cupboard where the hinges are at left.

In the case of the drawer, the mechanism is not a rotation, but
a translation. However, the task description is the same for
all of them: pulling the handle. By the on-line force-based
estimation of the hand-to-handle relative pose, the robot is
able to adapt its motion to the particular case, without being
specifically programmed for any particular task.

In addition, because of the high number of redundant
DOFs and the task and joint redundancy management, the
humanoid robot is able to perform the tasks in a very natural
way, by adopting a comfortable arm posture, far from the
joint limits, if possible. Figure 8 shows the effects of the
secondary task when opening the door of the dishwasher.
When the task starts, cost is decreased due to internal motion,
using the redundant DOFs, to a value close to zero. The cost
remains small during task execution, until the end, when it



Fig. 8. Effects of the secondary task. Top: cost for each joint. Down: norm
of the cost vector.

starts increasing. This point corresponds to the case when
the arm is almost completely stretched (see Figure 7, third
row, third column, and joint 5 cost in Figure 8 top). At this
point, the task is considered as finished, as very little internal
motion is possible, making it impossible to avoid the joint
limits.

IV. CONCLUSIONS

We have shown three different examples of robotic execu-
tion of everyday chores, built on top of a general framework
for specifying dependable compliant physical interaction
tasks based on multisensor information. First, the framework
has been applied to a book grasping task, combining tactile
and force feedback. The second application has been a door
opening task with a mobile manipulator endowed with a
parallel jaw gripper, using vision and force sensors. Finally,
a third example has shown the use of a complex humanoid
robot for performing everyday tasks in a kitchen environ-
ment. The three examples exhibit a considerable degree of
robustness, in the sense that the use of multiple sensor
feedback on all of them allows to deal with uncertainties
and errors, so that the robot can adapt its motion depending
on the particular situation, without being specifically pro-
grammed for a particular task. The implementation of these
examples in very different robotic systems during a short
period of time shows the suitability of the framework for
versatile specification and fast implementation of disparate

multisensor physical interaction tasks.
As future research, we would like to use the proposed

framework for the specification and compliant execution of
several common tasks in home environments, based on inte-
grated visual, tactile and force feedback. We think that the
integration of multiple and disparate sensor information for
hand-to-object pose estimation is a key point for successful
and dependable robotic physical interaction.
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