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SoViN: a Software platform for Visual NavigationLaurent Lequièvre, Jonathan Courbon, You
ef Mezouar , Philippe MartinetLASMEA24 Avenue des Landais63177 AUBIEREAbstra
tIn this paper, we present a software platform (SoVin) dedi
ated to visual memory manage-ment and vision-based navigation of autonomous vehi
les. This software allows to a
hievenavigation tasks in large s
ale environments using natural landmarks. It has espe
ially beendesigned to prototype visual memory-based strategies. Su
h approa
hes have the major ad-vantage that only key views and related image des
riptors are stored. This pro
ess is thusexpe
ted to be e�
ient by means of 1) memory needed to store data and 2) 
omputational
ost. These points are 
ru
ial issues for real-time navigation in large s
ale environment. Wewill see that SoViN allows to meet these expe
tations.KeywordsMobile Robot; Visual memory-based navigation; Software ar
hite
ture; Database a

ess andmanagement; HMI; large s
ale environment; Real-time appli
ation1 Introdu
tionAutomati
 navigation 
an be seen as a four steps pro
ess: 1) map building, 2) lo
aliza-tion onto the map, 3) path planning and 4) 
ontrol to a
tually a
hieve the navigation task.Many works deal with the problems of fuzzing steps 1) and 2) on a single stage (Simulta-neous Lo
alization And Mapping; SLAM). Brie�y, su
h an approa
h 
onsists generally on
omparing 
urrent sensors data to the predi
ted ones and then, to update both the map andthe position of the robot. In that aim, most of the strategies are based on visual sensorsor on range sensors. Unfortunately, even if 
omputers are more and more powerfull, thosestrategies are restri
ted to small environments sin
e the 
omputational 
ost highly in
reaseswith the number of features integrated onto the map.In this paper, we parti
ularly fo
us on emerging navigation strategies using visual sensorsonly. The main idea is to represent the mobile robot environment with a bounded quantityof images gathered in a database (visual memory). For example, [10℄ proposes to use a se-quen
e of images re
orded during a human teleoperated motion, and 
alled View-Sequen
edRoute Referen
e. Su
h a strategy is 
alled �mapless� (refer to [4℄). Indeed, any notion of mapnor topology of the environment appears, neither to build the referen
e set of images, norfor the automati
 guidan
e of the mobile robot. Similar approa
hes have been proposed for
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les in [17, 5℄. The visual memory 
an also be topologi
ally organized if images orsequen
e of images are linked to a notion of pla
es as in [7℄. Finally, su
h an approa
h maybe enhan
ed by metri
 information su
h as the position of 3D points re
onstru
ted from theimages (refer for example to [12℄). Current appli
ations of these approa
hes are restri
tedto small s
ale environments (navigation task along traje
tories no longer than 500 meters)essentially, be
ause of ine�
ient memory management. In this paper, we des
ribe a Softwarefor Visual navigation: SoViN. This software allows easy memory management (upload, up-date, removal), memory visualisation and real-time navigation. This software is su�
ientlygeneri
 to allow the prototyping of di�erent visual memory-based navigation methods. InSe
tion 2, four typi
al visual navigation strategies whi
h 
an be implemented using SoViNare des
ribed and Se
tion 3 presents the Software ar
hite
ture. Experimentation's 
arried onwith an urban vehi
le are �nally presented in Se
tion 4.2 Visual navigation strategiesThe 
onsidered vision-based navigation strategies rely on two steps. The �rst step 
onsistson building o�-line the visual memory. The robot is �rst teleoperated along paths and videosequen
es are a
quired. Key images are extra
ted from the video sequen
es and stored (visualmemory). The se
ond step is realized on-line. First, the robot lo
alizes itself in the visualmemory. A visual path is then extra
ted from the visual memory in order to rea
h a desiredkey image from an initial one. Finally, 
ontrol outputs are 
omputed to follow this visualpath. As examples, the di�erent steps of four approa
hes whi
h 
an be implemented usingSoViN are des
ribed in the sequel: in [7℄, a wheel 
hair navigates in an indoor environmentwith an embedded omnidire
tional 
amera. In [12℄ and in [5℄, an urban vehi
le follows avisual path. While a 3D re
onstru
tion of the full path is 
omputed in [12℄, only a lo
alre
onstru
tion is used in [5℄. In [1, 2℄, a 
omplete vision-based navigation framework isproposed for indoor or outdoor environment, with a perspe
tive or with an omnidire
tional
amera.2.1 O�-line memory buildingIn [12, 5, 2℄, a perspe
tive 
amera is embedded onto the urban vehi
le and looks forwardwhile in [7℄ an omnidire
tional 
amera pointing to the 
eil is employed.Key images sele
tion In order to redu
e the 
omplexity of the images sequen
es, only keyviews are stored and indexed on a visual path. This step is realized manually or automati
ally.In almost all the re
ent approa
hes, points are used as visual features. They are dete
tedand des
ribed by a des
riptor whi
h is used to mat
h points of two images. The 
ontrol lawis 
omputed from mat
hed points between the 
urrent image Ic a
quired by the embedded
amera and the desired key image to rea
h In+1. It is thus ne
essary to tra
k those pointsfrom the key image In−1 to the following key image In. In [12, 2℄, points are dete
ted withthe Harris 
orner dete
tor [8℄. The mat
hing s
ores between points of those two images are
omputed with a Zero Normalized Cross Correlation (ZNCC). This method is illuminationinvariant and its 
omputational 
ost is small. A new key image In is sele
ted if: a) there are asmany images as possible between In and In−1, b) there are at least N point 
orresponden
es
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) there are at least M point 
orresponden
es between In−2 and
In. This 
riterion ensures that there are 
ommon mat
hes at least in three 
onse
utiveviews. Finally, a partial 3D re
onstru
tion using the epipolar geometry is 
omputed withthe 
alibrated 5-point algorithm [11℄ 
oupled to RANSAC algorithm [6℄. This last stepallows to keep only robust mat
hings. In [5℄, Harris 
orners are extra
ted in the key image
In−1 and initialize a modi�ed Kanade-Lu
as-Tomasi (KLT) feature tra
ker [13℄. A partial3D re
onstru
tion is realized with the 5-point algorithm [11℄ 
oupled to MLESAC randomsampling algorithm [16℄. A new key image is sele
ted when the number of mat
hed pointsis low or when the re
onstru
tion error is high. In [7℄, rotation redu
ed and 
olor enhan
edSIFT features [9℄ are extra
ted in the �rst image. Those points are tra
ked with the KLTtra
ker.Visual memory organisation The next step 
onsists on organizing the key images. Thevisual memory 
an be organized as a single oriented edge (by analogy to the graph theory)
ontaining the su

essive key images or 
an be 
omposed of multiple edges. In this last 
ase,the visual memory is organized as a graph, where ea
h edge is de�ned as a set of orderedimages as proposed in [7, 2℄.Some suplementaries informations are generally added to the stored images: 2D points ro-bustly mat
hed between two key images in [5, 2℄, robust 2D points, related 3D 
oordinatesand 
amera poses in [12℄, 3D position of the visual features in [7℄.2.2 On-line navigationThe on-line navigation 
an be divided on three main steps: initial lo
alization, path-planningand path following. The lo
alization 
onsists on �nding the key image of the memory whi
hbest �ts the 
urrent image a
quired by the embedded 
amera. A visual path (i.e. a su

essionof key images) is extra
ted from the memory in order to link the initial key image to a desiredkey image. Finally, the robot is 
ontrolled in real-time along the visual path.Initial lo
alization The initial lo
alization is realized manually or automati
ally. In [5℄,the user sele
ts a referen
e image 
lose to the robot's 
urrent lo
ation. For automati
 te
h-niques, the initial lo
alization is obtained by 
omparing ea
h key image to the 
urrent image.This step requires few se
onds but it is only performed on
e. In [12℄, this is a
hieved by mat
h-ing interest points between the two images and 
omputing a 
amera pose with RANSAC.The pose obtained with the higher number of inliers is 
onsidered as a good estimation ofthe 
amera pose for the �rst image. In [3℄, a hierar
hi
al lo
alization pro
ess is proposed.In a �rst step, only some key images are sele
ted by mat
hing the global des
riptor of the
urrent image to the global des
riptors of every key image. The 
omputational 
ost of thisstep is low. To obtain the initial lo
alization, an approa
h similar to [12℄ is then used, butonly for the sele
ted key images. This se
ond step in
reases the a

ura
y and the robustnessof the lo
alization pro
ess.Path-building The path building step 
onsists on de�ning a path allowing the robot torea
h a desired 
on�guration from a 
urrent one. It 
an also 
onsists on �nding a set ofimages linking the 
urrent to the desired images sin
e in the 
onsidered approa
hes the robot
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on�gurations are asso
iated to images. When the visual memory is 
omposed of a singleedge, it is then straightforward to solve this problem. When many edges 
ompose the visualmemory, this step 
an be done manually by sele
ting the edges to follow or automati
ally byusing e�
ient sear
h algorithm su
h as Dijkstra's algorithm.Path following The path following step 
an be splitted in two main stages: the estimationof the state of the robot (sometimes 
alled lo
alization) and the 
omputation of the 
ontrollaw. The state is estimated from the 
urrent image, the desired image of the memory andeventually the former key image when 3 views are employed for 3D re
onstru
tion purposes.In [12℄, the position and orientation of the 
urrent 
amera frame is 
omputed in an absoluteframe related to the visual path. The state of the robot is the position of the robot framewith respe
t to the traje
tory the robot has travelled along during the o�-line step. Finally,a 
ontrol law, adapted to the non-holonomy of the vehi
le is 
omputed from this position.This 
ontrol law is based on the 
hained system theory [15℄. In [3℄, the state is 
hosen as thes
aled displa
ement between the 
urrent 
amera frame and the desired 
amera key frame. Asimilar 
ontrol law as the one proposed [15℄ is used. In [5℄, the state is de�ned as the errorbetween the 
entroids of a set of points mat
hed in the 
urrent image and the desired keyimage. The rotational velo
ity is then de�ned as proportional to the error on 
entroids. In[7℄, a homing strategy is used.2.3 RequirementsTo a
hieve visual memory-based navigation tasks several more or less basi
 tools are ne
essary.First, navigation tasks makes intensive use of image and data pro
essing su
h as interestpoints extra
tion, mat
hing and tra
king. It also employs automati
 image sele
tion fromvideo sequen
es (importation step) generally based on mat
hing s
ores. 3D re
onstru
tionalgorithm 
an also be usefull for robust mat
hing as well as 3D lo
alisation when needed.Those tools are used both in on-line and o�-line stages to sele
t key images and estimate 2Dpoints with their position and their des
riptors, 3D points, 
amera positions, et
 . . . .To be e�
ient, one have also to make use of spe
i�
 tools for organisation and managementof those data. When small environments are 
onsidered data 
an be dire
tly downloaded inRAM while it is not the 
ase when o�ine and online steps o

ur at di�erent time or whenthe amount of data is too important. Data have to be stored into a well stru
tured data-base allowing fast reading. Note that data uploading may o

ur in real-time during theautonomous navigation. As explained before, the map is generally a graph of edges whereea
h edge 
ontains su

essive images a
quired by a 
amera. 2D points belong to an imageand may 
orrespond to 3D points if they have been mat
hed. The design of the databasemust agree this stru
ture and its a

ess must be su�
iently fast to allow real-time pro
essing(near the video rate). Finally, for debug purposes as well as to 
he
k and intera
t in real-time with the navigation pro
ess an HMI is ne
essary. In the sequel, the software for VisualNavigation (SoViN) developed to ful�ll those requirements is detailled.
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FIG. 1: SoViN is 
omposed of three main parts: pro
essing (libSovinPro
essing), data storage a

esslibrary (libSovinBDD) and Human Ma
hine Interfa
e (SovinHMI).3 Overview of SoViN ar
hite
tureThe ar
hite
ture of SoViN (Software for Visual Navigation) is summarized in Figure 1.Basi
ally, it 
an be de
omposed on three parts: a library for database a

ess and management,a library for pro
essing and an Human Ma
hine Interfa
e. Those three parts are detailled inthe sequel.3.1 Data modelsThe database is stru
tured using the full-integrated 
on
eption te
hnique MERISE. First theCon
eptual Data Model (CDM) has been designed in order to de�ne the required entitiesand their relations. The physi
al model of SoViN is then obtained from the CDM and usedto design the physi
al Sovin database. Finally, the obje
t model, integrated to libSovinBDDlibrary, has been developed to manage this database.A- Sovin Con
eptual Data ModelThe CDM represents a 
on
eptual des
ription of the data. This model was designed forSoViN to ful�ll the requirements of most of the vision-based navigation frameworks. Inthis model, entities represent stru
tured and organized data for storage in data managementsystems. Ea
h entity is identi�ed by a spe
i�
 attribute 
alled key or 'ID'. The relations linkdi�erent entities (n-ary relations or 
ardinality). This model with the entities, their majorattributes and the relations between entities is presented in Fig. 2 and detailled in the sequel.A TEST represents a set 
omposed of several EDGEs (
ardinality 0,n) or paths. AnEDGE represents a path a
quired during a teleoperated step. It 
an have none or n follow-
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FIG. 2: Con
eptual Data Model of Sovin Databaseing EDGEs (relation �Has for following Edge�). An EDGE 
ontains one or several NODEs(
ardinality 1,n). A NODE represents a position of the robot where an image was a
quired.The position of a NODE in an absolute referen
e frame is not ne
essary. However, it ex-ists a relation between two su

essive positions: a NODE has (or dot not have) a followingNODE (relation �Has for following Node�). Note that an EDGE must be linked at least toone NODE sin
e it starts and �nishes in a NODE (
ardinality 1,1). As an example, let us
onsider an urban environment. A TEST 
an represent a distri
t, an EDGE a street or apart of a street. From a street, it is possible to move to di�erent other streets. In a street,images are a
quired at su

essive NODEs.Let 
onsider that multiple 
ameras have been used for a TEST. At a NODE, an image ormultiple images are a
quired by the sensors. Several images may be a
quired at this NODEbut those images must be a
quired by di�erent sensors. This 
ondition is full�lled by therelation �Contains Image A
quired By�. The entity �IMAGE� has several attributes like po-sitions and orientations 
oordinates and 
ontains the image (i.e. the 
olor or bla
k and whitepi
ture a
quired by the 
amera).An other important element is the image points (2DPOINTS) and the 3D points (3DPOINTS).Those entities are part of the CDM. Ea
h image 
an 
ontain 2D points (
ardinality 0,n), andea
h 2D point may be or not the image of a single 3D point (
ardinality 0,1).In this model, the n-ary relations (with their 
ardinalities) are readable in both dire
tions.For example, a 3D point exists if and only if a 2D point is the image of it, but this 3D pointmay be the origin of several 2D points (
ardinality 1,n).B- Sovin Physi
al Data ModelThe physi
al data model (PDM) de�nes the implementation of the physi
al stru
tures of thedatabase (refer to Fig. 3). The PDM has been obtained from the 
on
eptual model.Ea
h entity of the 
on
eptual model is expressed into a table 1 of the physi
al model andea
h attribute is 
onverted into 
olumn of the table. An element of an entity is stored as a1In the sequel of this arti
le, a table is written in bold font.
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FIG. 3: Physi
al Data Model of Sovin Databaserow of the 
orresponding table. As every row must be unique, an unique identifying integernamed key (primary key) is 
reated for ea
h row of the table. The primary keys are integerswith the �AUTO_INCREMENT� property, allowing that the data management system pro-vides us a unique key whi
h in
reases progressively. Of 
ourse, primary keys 
annot be null.For instan
e, nodes are saved in the table NODE and ea
h node 
ontains a key IDNODE.The expression of the n-ary relations depends on the 
ardinalities. For simple 
ardinalities,the relationships between tables is 
onverted into foreign keys (whi
h are keys from othertables). Some n-ary relations impose to 
reate intermediate physi
al tables. This is the 
asewhen it is possible to have multiple elements of a table linked to the element of an other table(
ardinality (*,n)). For example, a test 
ontains none or n edges. This 
ondition imposesto 
reate an intermediate entity (table) Contains_Edge in the physi
al model of SovinDatabase. The elements of the new table have to 
ontain the key of the element of Test(IDTEST) and the key of the element of Edge (IDEDGE).Ea
h table is 
omposed of keys and attributes. Relational database management systemssupport a number of data types: numeri
 types (integer, �oat, double, boolean ...), date andtime types (date, datetime, time ...), and string types (var
har, text, blob2 ...).For instan
e, the 2DPOINT table has for attributes (or 
olumns) the key IDPOINT2D (inte-ger) but also the elements of a 2D point: the 
oordinates U and V (�oat), the neighbourhooddes
riptor DESC (blob) and the key of the image IDIMAGE the point belongs to. It should benoti
ed that table 2DPOINT 
ontains the key IDIMAGE of the table IMAGE be
ause ofthe (1,1) 
ardinality of the Contains 2D Point relation.2Blob: binary large obje
t
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e the PDM has been designed, it is ne
essary to 
reate the database. Later, data willbe added, manipulated and sele
ted. In that aim, SQL (Stru
tured query language) is used.The SQL language 
an be use to spe
ify data de�nition and to manage data manipulation.SQL s
ripts have been generated from the physi
al model to 
reate the database. On
e thedatabase is generated, the SQL language is used to send requests to the database in orderto insert, sele
t, update or delete elements of the tables. The sele
tion of data from one orseveral tables with some sear
h 
riteria is realized thanks to the 'SELECT' statement. Thiskind of 
omplex requests would be very di�
ult to do with simple textual �les while the SQLlanguage managed it easily.A database language standard like SQL is appropriate for all database management system.In Sovin, the database management system MySql has been 
hosen. This system nativelysupports di�erent storage engines. This is an asset in our 
ase be
ause it is thus possible to
hoose the more adapted storage engine for ea
h table in order to optimize its use. As ourappli
ations require fast readings ('SELECT' queries), MyISAM has been 
hosen as storageengine for all our tables.During a sele
tion query, MySQL reads all the lines of the 
onsidered table su

essively, andea
h time, make the 
omparisons ne
essary to extra
t the relevant result. The larger thetable is, the more expensive resear
h 
ost is. To speed up information seeking, it is possibleto add indexes on the keys of the tables. The indexes are used to �nd more qui
kly resultingrows from a table given a spe
i�
 
riteria. It is thus important to 
reate the indexes linkedto the sele
tion 
riteria. When the resear
h is based on the key, then it is ne
essary to buildan index on this key.The SQL s
ript written in List. 1 is exe
uted to 
reate the table 2DPOINT. This s
ript hasbeen generated from the physi
al model and indexes have been added. We re
over the re-quired parameters: the primary key ID2DPOINT 
annot be null and is in
reased automati
allyby the data management system, the key of the image (IDIMAGE) 
annot be null too, thanksto the 
ardinality (1,1) of the relation �Contains 2D Point� and �nally the 3DPOINT tablekey ID3DPOINT 
an be null thanks to the 
ardinality (0,1) of the relation �Is Image Of�. We
hose the type Blob (binary large obje
t) for the des
riptor of a 2D point, whi
h allows usto store an array of M �oats. Using the Blob type gives us more �exibility for the storage ofthe array, allowing us to save des
riptors with di�erent size. In our experiment a des
riptorof size M=121 is used whereas other appli
ations using for example SIFT des
riptors willhave to save des
riptors with size M=128. A typi
al sele
tion pro
ess with 2D points is theextra
tion of all the data of the points whi
h belongs to a given image of key IDIMAGE=1.The SQL query is:SELECT ID2DPOINT, U, V, DESC FROM 2DPOINT WHERE IDIMAGE=1. In order to de
reasethe sele
tion time, an index i_2dpoint_idimage has been 
reated onto the IDIMAGE attribute(refer to line 14 of List. 1). This index is used by MySQL for the former query.3.2 Database a

ess and management library: LibSovinBDDThe Sovin software is written in C++. The Qt4 Library developed by Trollte
h links the C++
ode to MySql database. This library is free and has many fun
tionalities to 
ommuni
atewith databases by using the Database Module. This module o�ers 
lasses to a

ess databases
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ript for the 
reation of the table 2DPOINT1 
 r e a t e t ab l e 2DPOINT2 (3 ID2DPOINT in t not nu l l auto_in
rement ,4 IDIMAGE in t not nu l l ,5 ID3DPOINT int ,6 U f l o a t not nu l l ,7 V f l o a t not nu l l ,8 DESC blob ,9 primary key (ID2DPOINT)10 )11 type = MyISAM;1213 
 r e a t e index i_2dpoint_idimage_id3dpoint on 2DPOINT(IDIMAGE,ID3DPOINT ) ;14 
 r e a t e index i_2dpoint_idimage on 2DPOINT(IDIMAGE) ;15 
 r e a t e index i_2dpoint_id3dpoint on 2DPOINT(ID3DPOINT ) ;and send SQL queries to the database server. Drivers for all major databases like MySql areprovided. Qt has also been 
hosen be
ause it 
ontains useful tools and 
lasses to buildgraphi
al interfa
es.The fun
tionalities of the libSovinBDD are 
lassi�ed in di�erent dire
tories (refer to Fig.4). The Databases dire
tory 
ontains 
lasses for low level requests on the tables of thedatabase and a

ess to the data. The Management dire
tory 
ontains 
lasses for the highlevel management of the database. The Ex
eptions dire
tory 
ontains the ex
eptions raisedin 
ase of errors while a

essing the database. The properties of 
onne
tion to the databaseare 
ontained in a xml �le and the dire
tory Xml 
ontains the 
lasses for the reading of this�le.The dire
tories Databases and Management are detailled in the following.
FIG. 4: Dire
tories of LibSovinBDDDatabases : Sovin 
ontains several 
lasses to 
ommuni
ate with the database server. Ea
htable is pro
essed using two 
lasses. The �rst 
lass (
alled xTable where x is the name ofthe table) 
ontains the requests whi
h have to be sent to the table. The se
ond 
lass (
alledxRe
ord) represents a row of data (i.e. one element of the table). This 
lass is used to reador modify data.For instan
e, the 
lass Point2DTable 
ontains a method to retrieve all the 2D points (as ave
tor of Point2DRe
ord) of an image knowing its key:s t a t i 
 void getVe
torPoint2D ( 
onst i n t idImage , QVe
tor<Point2DRe
ord> & v ) ;It is then possible to modify or get data of ea
h Point2DRe
ord thanks to the fun
tions ofthis 
lass as:
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onst f l o a t & getU ( ) 
onst throw ( SovinInval idDataEx
ept ion ) ;vo id setU ( 
onst f l o a t value ) ;
onst i n t & getIdImage ( ) 
onst throw ( SovinInval idDataEx
ept ion ) ;vo id setIdImage ( 
onst i n t id ) ;Note that the 'Table' 
lasses are interfa
es allowing to send queries to the table. Consequently,this is not ne
essary to have several instan
es of these 
lasses. By design, we have thus 
hosento set all the methods of these 
lasses stati
. Moreover, with this 
hoi
e there is no dynami
allo
ation, whi
h saves runtime.Management : Managing data of Sovin is not a simple task. Ea
h operation on data mustpreserve the integrity of the relational model. Several 
lasses were added to 
arry out thispro
ess.A �rst pro
ess is the data importation (
lass 'Importation'). It requires low level operationsto be done along a 
orre
t order. For instan
e, when a new image has to be added to an edge,it is �rst ne
essary to 
reate a node. This node is added to an edge and it is the followingnode of the previously imported node. Then, the image is added and is linked to the nodeand to a sensor.A se
ond pro
ess is the deletion of data (
lass 'Suppressions'). This is a 
omplex task: itrequires several low level operations des
ribed in 'Databases' dire
tory (fun
tions delete inthe 
lasses xTable) as well as a more 
omplex pro
ess in order to keep the stru
ture valid.In that aim, spe
i�
 fun
tions have been designed in a 
lass Suppressions for deleting ea
helement while keeping a valid stru
ture. As an example, the deletion of an image implies many
hanges in the stru
ture (refer to List. 2). The image must be deleted from the table Image.It has to be deleted in the table Contains Image A
quired By too. Then, the 2D pointsasso
iated to this image must be deleted (
ardinality (1,1) of relation Contains2DPoint).This suppression pro
ess needs fun
tions of the Databases dire
tory to retrieve elements ofthe table with the 
lasses Point2DTable and Point3DTable, to get data of those elementswith the 
lass Point2DRe
ord. The 
lasses xTable are also used to delete the element givenby its id in the table (deletePoint3D, deletePoint2D). Of 
ourse, when removing a 2D point,the linked 3D point - if it exists - has to be removed if and only if this 3D point is notasso
iated with another 2D point (refer to List. 3 for the deletion of a 2D point).Some very useful fun
tionalities needed by the experiments have been added. The 'Building'
lass is dedi
ated to these operations. For example, a fun
tion removes nodes at the startor the end of an edge. Sometimes, it is required to 
ut an edge at a spe
i�
 node to make a
rossroad or to start a new edge at this node. In that aim, a fun
tion 
uts an edge into twoedges.3.3 LibSovin Pro
essingPro
essing are 
omposed of three main parts (refer to Fig. 5). The �rst one 
ontains usefull
lasses: MathUtils (for pro
essing fun
tionalities) and DataConversion (for 
onversion of databetween Qt+libSovinBDD obje
ts and low level visual pro
essing obje
ts). The se
ond onedire
tory 
lasses for the pro
essing Importate and Lo
alize. Finally, the third one 
ontainsthe 
lasses used during the on-line navigation step su
h as the visual path building and thevisual path following pro
esses.
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tures of Robots� Bourges, May 29-30, 2008Listing 2: Suppression of an image (and stru
ture update)1 void Suppre s s i ons : : deleteImageInDepth ( 
onst i n t & idImage )2 {3 // sear
h 2D po int s key l i nk ed to the image4 QVe
tor<int> ve
IdPoint2D ;5 ImageTable : : getVe
torIdPoint2D ( idImage , ve
IdPoint2D ) ;7 // d e l e t e a l l the 2D po int s with ' deletePoint2DInDepth ' method8 f o r ( i n t i =0; i<ve
IdPoint2D . s i z e ( ) ; i++)9 deletePoint2DInDepth ( ve
IdPoint2D [ i ℄ ) ;11 // d e l e t e the Image 
ontained in ' Contains Image A
quired By ' t ab l e12 // use o f low l e v e l method o f 
 l a s s ' ImageTable ' in ' Databases ' d i r e 
 t o r y13 ImageTable : : deleteImageA
quiredBy ( idImage ) ;15 // d e l e t e the image16 // use o f low l e v e l method o f 
 l a s s ' ImageTable ' in ' Databases ' d i r e 
 t o r y17 ImageTable : : de leteImage ( idImage ) ;18 } Listing 3: Suppression of a 2D point (and stru
ture update)1 void Suppre s s i ons : : deletePoint2DInDepth ( 
onst i n t & idPoint2d )2 {3 // sear
h 2D point by the key idPoint2d4 Point2DRe
ord point2d ;5 Point2DTable : : getPoint2DRe
ord ( idPoint2d , point2d ) ;7 // i f 2D point i s l i nk ed to a 3D point8 i f ( po int2d . hasIdPoint3D ( ) )9 {10 // get the key o f t h i s 3D point11 i n t idPoint3D=point2d . getIdPoint3D ( ) ;13 // i f t h i s 3D point i s not a s s o 
 i a t ed with another 2D point14 i f ( Point3DTable : : getNbPoint2D_HavingPoint3D( idPoint3D )==1)15 {16 // d e l e t e the 3D point17 Point3DTable : : de letePoint3D ( idPoint3D ) ;18 }19 }21 // dete t e the 2D point22 Point2DTable : : de letePoint2D ( idPoint2d ) ;24 } The 
omputation of the number of 2D points mat
hings between an image of the databaseand a 
urrent image (refer to List. 4) is a typi
al example of pro
essing fun
tion. It 
on-tains low-level fun
tions to a

ess the database, image pro
essing fun
tion (from the visualpro
essing library), data 
onversion fun
tions and pro
essing fun
tions developed in LibSo-vinPro
essing in order to manipulate the LibSovinBDD obje
ts.3.4 Human Ma
hine Interfa
eA module for visualisation and high level a
tions 
ontrol (HMI) has also been developed. It
onsists on a main window whi
h is a MDI (Multiple Do
ument Interfa
e). The sele
tion ofthe obje
ts to visualize has been 
onstrained in order to follow the stru
ture of our model.
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FIG. 5: Dire
tories of LibSovinPro
essingListing 4: Mat
hing of a 
urrent image to an image of the database1 i n t getNbMat
hingsBetweenImages ( 
onst i n t idMemImage , MCharImage CurrentImage )2 Harr i sDete
 to r Dete
tor ;3 ve
tor<points2d> ve
Points2D ;4 QVe
tor<Point2DRe
ord> ve
Current2DPoints ;5 QVe
tor<Point2DRe
ord> ve
Key2DPoints ;67 // Dete
te po int s in the 
ur rent image8 Dete
tor . Dete
t ( CurrentImage , ve
Points2D ) ;9 // Convert i n t o LibSovinBDD ob j e 
 t10 DataConversion : : 
onvert2DPointsToVe
Point2DRe
 ( ve
Points2D , ve
Current2DPoints ) ;1112 // load the po int s o f the image o f the memory13 ImageTable : : Load2DPointsFromIdImage ( idMemImage , ve
Key2DPoints ) ;1415 // laun
h the po int s mat
hing pro
e s s16 i n t nb_mat
hing=Mat
h ( ve
Current2DPoints ,17 ve
Key2DPoints ) ;It allows the graphi
al management (update, delete ...) and representation of the database
ontent (low level a
tions) as well as high level a
tions su
h as the lo
alization of a givenimage in the images of the database. The design of the graphi
al part of this module hasbeen fa
ilitated by the use of the Qt library. The module uses the fun
tionalities developedin the LibSovinBDD and LibSovinPro
essing libraries. The main utility is the visualizationof the information 
ontained in the database (refer to Fig. 6). The HMI also allows thevisualisation of a Test as a graph dynami
ally generated (using the GraphViz library). Thisgraph represents the edges of a Test stored in Sovin database and a node of this graphrepresents an interse
tion between two edges (extra
ted from the table Has for followingedge) (refer to Fig. 7). It also allows to easily 
he
k the feature dete
tion and featuremat
hings algorithms results and to modify the database 
ontents (for instan
e edge 
utting(refer to Fig. 8)).4 ExperimentationsOur experimental vehi
le is an urban ele
tri
 
ar, named RobuCab, manufa
tured byRobosoft Company. It is depi
ted on Figure 9. Currently, RobuCab serves as developmentprodu
ts in several Fren
h laboratories. The 4 DC motors are powered by lead-a
id batteries,providing 2 hours autonomy. Vision and guidan
e algorithms are implemented in C++ lan-guage on a laptop using RTAI-Linux OS with a 2GHz Centrino Duo pro
essor. The Fujinon�sheye lens, mounted onto a Marlin F131B 
amera, has a �eld-of-view of 185 deg and hasbeen 
alibrated. The image resolution in the experiments was 800× 600 pixels. The 
amera,
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FIG. 6: Overview of the Human Ma
hine Interfa
e of Sovinlooking forward, is situated at approximately 80
m from the ground. The parameters of therigid transformation between the 
amera and the robot 
ontrol frames are roughly estimated.Grey level images are a
quired at a rate of 15fps. Communi
ations between the embeddedPC, the low-level 
omputer whi
h 
ontrols the RobuCab and its sensors are performed usingthe real-time ar
hite
ture Aro

am [14℄. The RobuCab was manually driven along severalpaths onto our universitary 
ampus.4.1 Map buildingThe images a
quired along all paths have been �rst stored. For ea
h of the sele
ted paths,an importation step is performed. This step 
onsists on building an edge, sele
ting the keyimages, extra
ting the 500 relevant image points of ea
h key image and robustly mat
hingtwo su

essive images points. The data are stored into the database. Some informationabout the entire database are detailled in Tab. 1 with the number of data and the memorysize onto the disk for some of the main tables. This database 
ontains 3.2×106 data, whi
hresults to an amount of 4 255 MB onto the disk. The table IMAGE represents 65% of theentire memory size and the table 2DPOINT 34%.4.2 Visual lo
alizationThe vehi
le is assumed to be on a known edge. It 
an be given by the user or by anexternal sensor su
h as a GPS. Firstly, the appli
ation requires the extra
tion of the keys
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FIG. 7: Part of the graph representing the visual memory of a test of SoViN

FIG. 8: Importing data and 
utting edge windowsof all images, a
quired by a given 
amera, whi
h belong to this edge. For 
onvenien
e, theimages are ordered with respe
t to the positions of the nodes along the path. Se
ondly, thelo
alization is a lo
al strategy whi
h requires the loading of the 2D points of the key images.During the importation step, for ea
h key image, 500 2D points have been stored with theirdes
riptors. For ea
h key image, the 500 points are loaded and mat
hed to the 
urrentpoints. The key image with the smallest distan
e is 
onsidered as the 
urrent lo
alization inthe visual memory. The mean time to load the points of an image is 19 ms by image (meanobtained by loading the points for all images of all edges).Finally, the full lo
alization pro
ess takes approximately 35 ms by key image of the edge.Note that the time to load a grey-level image of size 800x600 pixels from the database (timeto exe
ute the request and to transform it in an image obje
t) takes 16 ms.
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FIG. 9: RobuCab vehi
le with the embedded 
amera.Table Number of data Memory SizeEDGE 84 2 900 BNODE 6 067 53 KBIMAGE 6 067 2 777 MB2DPOINT 3 ×106 1 473 MB3DPOINT 230 300 3.7 MBTable 1: Database 
ontents during the autonomous navigation.4.3 Autonomous navigation4.3.1 Lo
alization stepThe autonomous navigation begins at Start position (refer to Fig. 10). The 
urrent imageis grabbed (Fig. 11 (a)) and the lo
alization pro
ess starts. After 7 se
onds, the image islo
alized into the �rst edge (Fig. 11 (b)). 337 points are mat
hed. Note that between thesetwo images, illumination 
onditions have 
hanged as well as the 
ontents (for example, 
arsdisappear, and some obje
ts are di�erent).The autonomous navigation 
onsists on following the path Ψ = C ⊕D⊕E ⊕F
′1 ⊕F

′2 ⊕

G
′1 ⊕ G

′2. Edges with a prime denote edges taken during other days than the �rst paths.The nodes N5 and N6 (refer to Fig. 10) are linked by the edge F but also by the su

essionof F
′1 and F

′2 and the nodes N6 and N7 are linked by the edge G but also by the su

essionof G
′1 and G

′2. This path 
ontains 7 edges and 396 key images. The total length of the pathis more than 400 m (obtained by odometri
 measures).4.3.2 Autonomous navigationThe speed of the vehi
le is set to 0.8 m/s. Grey level images, of size 800x600, are a
quired at15fps. At ea
h frame, points are extra
ted and mat
hed with the desired key image. Robustmat
hing allows us to keep only the valid mat
hings. From these mat
hings, the epipolar
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FIG. 10: Some paths of the 
ampus (used in the experimentation) with the memorized traje
tories.Edges are represented with their extremity nodes. Images a
quired in those nodes are also drawn.
(a) (b)FIG. 11: Left image: 
urrent image a
quired at Start position. Right image: nearest key image intothe edge.geometry is 
omputed and the lateral error y and the angular error θ are estimated. The
ontrol law is 
omputed and sent to the RobuCab 
ontroller. The average 
omputation timeis 70 ms for ea
h 
urrent image. This time also in
ludes data loading related to the newdesired key image when the former is rea
hed. Our vehi
le su

essfully follows the visualpath. The errors in the images (the mean of the distan
es between the mat
hed points)de
rease to zero until rea
hing a key image (refer to Fig. 12). In the �gures small 
rossesdenote that a new key image is rea
hed, diamonds that a new edge begins. Some rea
hedimages (with the 
orresponding key images of the memory) are shown in Fig. 14. Note thatillumination 
onditions have 
hanged between the memorization and the autonomous stepsas well as the 
ontents but the vision-based navigation strategy su

eeds. The lateral andangular errors are also well regulated to zero (refer to Fig. 13).
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FIG. 12: Errors in the images versus time (s).
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FIG. 13: Angular and lateral errors and 
ontrol input versus time (s).
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k
where the key images Ik have been rea
hed (k is the key ofthe image in the database).5 Con
lusionIn this paper, a software for autonomous navigation has been presented. The softwareplatform (SoVin) is more parti
ularly dedi
ated to visual memory management and vision-based navigation. It allows to a
hieve navigation tasks in large s
ale environments usingnatural landmarks. Preliminary experiments obtained with SoViN have shown promisingresults. Future works will be devoted to intensively experiments the software in various
on�gurations and using di�erent vision-based navigation strategies as the one proposed in[12℄.
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