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SoViN: a Software platform for Visual NavigationLaurent Lequièvre, Jonathan Courbon, Youef Mezouar , Philippe MartinetLASMEA24 Avenue des Landais63177 AUBIEREAbstratIn this paper, we present a software platform (SoVin) dediated to visual memory manage-ment and vision-based navigation of autonomous vehiles. This software allows to ahievenavigation tasks in large sale environments using natural landmarks. It has espeially beendesigned to prototype visual memory-based strategies. Suh approahes have the major ad-vantage that only key views and related image desriptors are stored. This proess is thusexpeted to be e�ient by means of 1) memory needed to store data and 2) omputationalost. These points are ruial issues for real-time navigation in large sale environment. Wewill see that SoViN allows to meet these expetations.KeywordsMobile Robot; Visual memory-based navigation; Software arhiteture; Database aess andmanagement; HMI; large sale environment; Real-time appliation1 IntrodutionAutomati navigation an be seen as a four steps proess: 1) map building, 2) loaliza-tion onto the map, 3) path planning and 4) ontrol to atually ahieve the navigation task.Many works deal with the problems of fuzzing steps 1) and 2) on a single stage (Simulta-neous Loalization And Mapping; SLAM). Brie�y, suh an approah onsists generally onomparing urrent sensors data to the predited ones and then, to update both the map andthe position of the robot. In that aim, most of the strategies are based on visual sensorsor on range sensors. Unfortunately, even if omputers are more and more powerfull, thosestrategies are restrited to small environments sine the omputational ost highly inreaseswith the number of features integrated onto the map.In this paper, we partiularly fous on emerging navigation strategies using visual sensorsonly. The main idea is to represent the mobile robot environment with a bounded quantityof images gathered in a database (visual memory). For example, [10℄ proposes to use a se-quene of images reorded during a human teleoperated motion, and alled View-SequenedRoute Referene. Suh a strategy is alled �mapless� (refer to [4℄). Indeed, any notion of mapnor topology of the environment appears, neither to build the referene set of images, norfor the automati guidane of the mobile robot. Similar approahes have been proposed for



3rd National Conferene on �Control Arhitetures of Robots� Bourges, May 29-30, 2008urban vehiles in [17, 5℄. The visual memory an also be topologially organized if images orsequene of images are linked to a notion of plaes as in [7℄. Finally, suh an approah maybe enhaned by metri information suh as the position of 3D points reonstruted from theimages (refer for example to [12℄). Current appliations of these approahes are restritedto small sale environments (navigation task along trajetories no longer than 500 meters)essentially, beause of ine�ient memory management. In this paper, we desribe a Softwarefor Visual navigation: SoViN. This software allows easy memory management (upload, up-date, removal), memory visualisation and real-time navigation. This software is su�ientlygeneri to allow the prototyping of di�erent visual memory-based navigation methods. InSetion 2, four typial visual navigation strategies whih an be implemented using SoViNare desribed and Setion 3 presents the Software arhiteture. Experimentation's arried onwith an urban vehile are �nally presented in Setion 4.2 Visual navigation strategiesThe onsidered vision-based navigation strategies rely on two steps. The �rst step onsistson building o�-line the visual memory. The robot is �rst teleoperated along paths and videosequenes are aquired. Key images are extrated from the video sequenes and stored (visualmemory). The seond step is realized on-line. First, the robot loalizes itself in the visualmemory. A visual path is then extrated from the visual memory in order to reah a desiredkey image from an initial one. Finally, ontrol outputs are omputed to follow this visualpath. As examples, the di�erent steps of four approahes whih an be implemented usingSoViN are desribed in the sequel: in [7℄, a wheel hair navigates in an indoor environmentwith an embedded omnidiretional amera. In [12℄ and in [5℄, an urban vehile follows avisual path. While a 3D reonstrution of the full path is omputed in [12℄, only a loalreonstrution is used in [5℄. In [1, 2℄, a omplete vision-based navigation framework isproposed for indoor or outdoor environment, with a perspetive or with an omnidiretionalamera.2.1 O�-line memory buildingIn [12, 5, 2℄, a perspetive amera is embedded onto the urban vehile and looks forwardwhile in [7℄ an omnidiretional amera pointing to the eil is employed.Key images seletion In order to redue the omplexity of the images sequenes, only keyviews are stored and indexed on a visual path. This step is realized manually or automatially.In almost all the reent approahes, points are used as visual features. They are detetedand desribed by a desriptor whih is used to math points of two images. The ontrol lawis omputed from mathed points between the urrent image Ic aquired by the embeddedamera and the desired key image to reah In+1. It is thus neessary to trak those pointsfrom the key image In−1 to the following key image In. In [12, 2℄, points are deteted withthe Harris orner detetor [8℄. The mathing sores between points of those two images areomputed with a Zero Normalized Cross Correlation (ZNCC). This method is illuminationinvariant and its omputational ost is small. A new key image In is seleted if: a) there are asmany images as possible between In and In−1, b) there are at least N point orrespondenes



3rd National Conferene on �Control Arhitetures of Robots� Bourges, May 29-30, 2008between In−1 and In and ) there are at least M point orrespondenes between In−2 and
In. This riterion ensures that there are ommon mathes at least in three onseutiveviews. Finally, a partial 3D reonstrution using the epipolar geometry is omputed withthe alibrated 5-point algorithm [11℄ oupled to RANSAC algorithm [6℄. This last stepallows to keep only robust mathings. In [5℄, Harris orners are extrated in the key image
In−1 and initialize a modi�ed Kanade-Luas-Tomasi (KLT) feature traker [13℄. A partial3D reonstrution is realized with the 5-point algorithm [11℄ oupled to MLESAC randomsampling algorithm [16℄. A new key image is seleted when the number of mathed pointsis low or when the reonstrution error is high. In [7℄, rotation redued and olor enhanedSIFT features [9℄ are extrated in the �rst image. Those points are traked with the KLTtraker.Visual memory organisation The next step onsists on organizing the key images. Thevisual memory an be organized as a single oriented edge (by analogy to the graph theory)ontaining the suessive key images or an be omposed of multiple edges. In this last ase,the visual memory is organized as a graph, where eah edge is de�ned as a set of orderedimages as proposed in [7, 2℄.Some suplementaries informations are generally added to the stored images: 2D points ro-bustly mathed between two key images in [5, 2℄, robust 2D points, related 3D oordinatesand amera poses in [12℄, 3D position of the visual features in [7℄.2.2 On-line navigationThe on-line navigation an be divided on three main steps: initial loalization, path-planningand path following. The loalization onsists on �nding the key image of the memory whihbest �ts the urrent image aquired by the embedded amera. A visual path (i.e. a suessionof key images) is extrated from the memory in order to link the initial key image to a desiredkey image. Finally, the robot is ontrolled in real-time along the visual path.Initial loalization The initial loalization is realized manually or automatially. In [5℄,the user selets a referene image lose to the robot's urrent loation. For automati teh-niques, the initial loalization is obtained by omparing eah key image to the urrent image.This step requires few seonds but it is only performed one. In [12℄, this is ahieved by math-ing interest points between the two images and omputing a amera pose with RANSAC.The pose obtained with the higher number of inliers is onsidered as a good estimation ofthe amera pose for the �rst image. In [3℄, a hierarhial loalization proess is proposed.In a �rst step, only some key images are seleted by mathing the global desriptor of theurrent image to the global desriptors of every key image. The omputational ost of thisstep is low. To obtain the initial loalization, an approah similar to [12℄ is then used, butonly for the seleted key images. This seond step inreases the auray and the robustnessof the loalization proess.Path-building The path building step onsists on de�ning a path allowing the robot toreah a desired on�guration from a urrent one. It an also onsists on �nding a set ofimages linking the urrent to the desired images sine in the onsidered approahes the robot



3rd National Conferene on �Control Arhitetures of Robots� Bourges, May 29-30, 2008on�gurations are assoiated to images. When the visual memory is omposed of a singleedge, it is then straightforward to solve this problem. When many edges ompose the visualmemory, this step an be done manually by seleting the edges to follow or automatially byusing e�ient searh algorithm suh as Dijkstra's algorithm.Path following The path following step an be splitted in two main stages: the estimationof the state of the robot (sometimes alled loalization) and the omputation of the ontrollaw. The state is estimated from the urrent image, the desired image of the memory andeventually the former key image when 3 views are employed for 3D reonstrution purposes.In [12℄, the position and orientation of the urrent amera frame is omputed in an absoluteframe related to the visual path. The state of the robot is the position of the robot framewith respet to the trajetory the robot has travelled along during the o�-line step. Finally,a ontrol law, adapted to the non-holonomy of the vehile is omputed from this position.This ontrol law is based on the hained system theory [15℄. In [3℄, the state is hosen as thesaled displaement between the urrent amera frame and the desired amera key frame. Asimilar ontrol law as the one proposed [15℄ is used. In [5℄, the state is de�ned as the errorbetween the entroids of a set of points mathed in the urrent image and the desired keyimage. The rotational veloity is then de�ned as proportional to the error on entroids. In[7℄, a homing strategy is used.2.3 RequirementsTo ahieve visual memory-based navigation tasks several more or less basi tools are neessary.First, navigation tasks makes intensive use of image and data proessing suh as interestpoints extration, mathing and traking. It also employs automati image seletion fromvideo sequenes (importation step) generally based on mathing sores. 3D reonstrutionalgorithm an also be usefull for robust mathing as well as 3D loalisation when needed.Those tools are used both in on-line and o�-line stages to selet key images and estimate 2Dpoints with their position and their desriptors, 3D points, amera positions, et . . . .To be e�ient, one have also to make use of spei� tools for organisation and managementof those data. When small environments are onsidered data an be diretly downloaded inRAM while it is not the ase when o�ine and online steps our at di�erent time or whenthe amount of data is too important. Data have to be stored into a well strutured data-base allowing fast reading. Note that data uploading may our in real-time during theautonomous navigation. As explained before, the map is generally a graph of edges whereeah edge ontains suessive images aquired by a amera. 2D points belong to an imageand may orrespond to 3D points if they have been mathed. The design of the databasemust agree this struture and its aess must be su�iently fast to allow real-time proessing(near the video rate). Finally, for debug purposes as well as to hek and interat in real-time with the navigation proess an HMI is neessary. In the sequel, the software for VisualNavigation (SoViN) developed to ful�ll those requirements is detailled.
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FIG. 1: SoViN is omposed of three main parts: proessing (libSovinProessing), data storage aesslibrary (libSovinBDD) and Human Mahine Interfae (SovinHMI).3 Overview of SoViN arhitetureThe arhiteture of SoViN (Software for Visual Navigation) is summarized in Figure 1.Basially, it an be deomposed on three parts: a library for database aess and management,a library for proessing and an Human Mahine Interfae. Those three parts are detailled inthe sequel.3.1 Data modelsThe database is strutured using the full-integrated oneption tehnique MERISE. First theConeptual Data Model (CDM) has been designed in order to de�ne the required entitiesand their relations. The physial model of SoViN is then obtained from the CDM and usedto design the physial Sovin database. Finally, the objet model, integrated to libSovinBDDlibrary, has been developed to manage this database.A- Sovin Coneptual Data ModelThe CDM represents a oneptual desription of the data. This model was designed forSoViN to ful�ll the requirements of most of the vision-based navigation frameworks. Inthis model, entities represent strutured and organized data for storage in data managementsystems. Eah entity is identi�ed by a spei� attribute alled key or 'ID'. The relations linkdi�erent entities (n-ary relations or ardinality). This model with the entities, their majorattributes and the relations between entities is presented in Fig. 2 and detailled in the sequel.A TEST represents a set omposed of several EDGEs (ardinality 0,n) or paths. AnEDGE represents a path aquired during a teleoperated step. It an have none or n follow-
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FIG. 2: Coneptual Data Model of Sovin Databaseing EDGEs (relation �Has for following Edge�). An EDGE ontains one or several NODEs(ardinality 1,n). A NODE represents a position of the robot where an image was aquired.The position of a NODE in an absolute referene frame is not neessary. However, it ex-ists a relation between two suessive positions: a NODE has (or dot not have) a followingNODE (relation �Has for following Node�). Note that an EDGE must be linked at least toone NODE sine it starts and �nishes in a NODE (ardinality 1,1). As an example, let usonsider an urban environment. A TEST an represent a distrit, an EDGE a street or apart of a street. From a street, it is possible to move to di�erent other streets. In a street,images are aquired at suessive NODEs.Let onsider that multiple ameras have been used for a TEST. At a NODE, an image ormultiple images are aquired by the sensors. Several images may be aquired at this NODEbut those images must be aquired by di�erent sensors. This ondition is full�lled by therelation �Contains Image Aquired By�. The entity �IMAGE� has several attributes like po-sitions and orientations oordinates and ontains the image (i.e. the olor or blak and whitepiture aquired by the amera).An other important element is the image points (2DPOINTS) and the 3D points (3DPOINTS).Those entities are part of the CDM. Eah image an ontain 2D points (ardinality 0,n), andeah 2D point may be or not the image of a single 3D point (ardinality 0,1).In this model, the n-ary relations (with their ardinalities) are readable in both diretions.For example, a 3D point exists if and only if a 2D point is the image of it, but this 3D pointmay be the origin of several 2D points (ardinality 1,n).B- Sovin Physial Data ModelThe physial data model (PDM) de�nes the implementation of the physial strutures of thedatabase (refer to Fig. 3). The PDM has been obtained from the oneptual model.Eah entity of the oneptual model is expressed into a table 1 of the physial model andeah attribute is onverted into olumn of the table. An element of an entity is stored as a1In the sequel of this artile, a table is written in bold font.
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FIG. 3: Physial Data Model of Sovin Databaserow of the orresponding table. As every row must be unique, an unique identifying integernamed key (primary key) is reated for eah row of the table. The primary keys are integerswith the �AUTO_INCREMENT� property, allowing that the data management system pro-vides us a unique key whih inreases progressively. Of ourse, primary keys annot be null.For instane, nodes are saved in the table NODE and eah node ontains a key IDNODE.The expression of the n-ary relations depends on the ardinalities. For simple ardinalities,the relationships between tables is onverted into foreign keys (whih are keys from othertables). Some n-ary relations impose to reate intermediate physial tables. This is the asewhen it is possible to have multiple elements of a table linked to the element of an other table(ardinality (*,n)). For example, a test ontains none or n edges. This ondition imposesto reate an intermediate entity (table) Contains_Edge in the physial model of SovinDatabase. The elements of the new table have to ontain the key of the element of Test(IDTEST) and the key of the element of Edge (IDEDGE).Eah table is omposed of keys and attributes. Relational database management systemssupport a number of data types: numeri types (integer, �oat, double, boolean ...), date andtime types (date, datetime, time ...), and string types (varhar, text, blob2 ...).For instane, the 2DPOINT table has for attributes (or olumns) the key IDPOINT2D (inte-ger) but also the elements of a 2D point: the oordinates U and V (�oat), the neighbourhooddesriptor DESC (blob) and the key of the image IDIMAGE the point belongs to. It should benotied that table 2DPOINT ontains the key IDIMAGE of the table IMAGE beause ofthe (1,1) ardinality of the Contains 2D Point relation.2Blob: binary large objet



3rd National Conferene on �Control Arhitetures of Robots� Bourges, May 29-30, 2008C- Sovin DatabaseOne the PDM has been designed, it is neessary to reate the database. Later, data willbe added, manipulated and seleted. In that aim, SQL (Strutured query language) is used.The SQL language an be use to speify data de�nition and to manage data manipulation.SQL sripts have been generated from the physial model to reate the database. One thedatabase is generated, the SQL language is used to send requests to the database in orderto insert, selet, update or delete elements of the tables. The seletion of data from one orseveral tables with some searh riteria is realized thanks to the 'SELECT' statement. Thiskind of omplex requests would be very di�ult to do with simple textual �les while the SQLlanguage managed it easily.A database language standard like SQL is appropriate for all database management system.In Sovin, the database management system MySql has been hosen. This system nativelysupports di�erent storage engines. This is an asset in our ase beause it is thus possible tohoose the more adapted storage engine for eah table in order to optimize its use. As ourappliations require fast readings ('SELECT' queries), MyISAM has been hosen as storageengine for all our tables.During a seletion query, MySQL reads all the lines of the onsidered table suessively, andeah time, make the omparisons neessary to extrat the relevant result. The larger thetable is, the more expensive researh ost is. To speed up information seeking, it is possibleto add indexes on the keys of the tables. The indexes are used to �nd more quikly resultingrows from a table given a spei� riteria. It is thus important to reate the indexes linkedto the seletion riteria. When the researh is based on the key, then it is neessary to buildan index on this key.The SQL sript written in List. 1 is exeuted to reate the table 2DPOINT. This sript hasbeen generated from the physial model and indexes have been added. We reover the re-quired parameters: the primary key ID2DPOINT annot be null and is inreased automatiallyby the data management system, the key of the image (IDIMAGE) annot be null too, thanksto the ardinality (1,1) of the relation �Contains 2D Point� and �nally the 3DPOINT tablekey ID3DPOINT an be null thanks to the ardinality (0,1) of the relation �Is Image Of�. Wehose the type Blob (binary large objet) for the desriptor of a 2D point, whih allows usto store an array of M �oats. Using the Blob type gives us more �exibility for the storage ofthe array, allowing us to save desriptors with di�erent size. In our experiment a desriptorof size M=121 is used whereas other appliations using for example SIFT desriptors willhave to save desriptors with size M=128. A typial seletion proess with 2D points is theextration of all the data of the points whih belongs to a given image of key IDIMAGE=1.The SQL query is:SELECT ID2DPOINT, U, V, DESC FROM 2DPOINT WHERE IDIMAGE=1. In order to dereasethe seletion time, an index i_2dpoint_idimage has been reated onto the IDIMAGE attribute(refer to line 14 of List. 1). This index is used by MySQL for the former query.3.2 Database aess and management library: LibSovinBDDThe Sovin software is written in C++. The Qt4 Library developed by Trollteh links the C++ode to MySql database. This library is free and has many funtionalities to ommuniatewith databases by using the Database Module. This module o�ers lasses to aess databases



3rd National Conferene on �Control Arhitetures of Robots� Bourges, May 29-30, 2008Listing 1: SQL sript for the reation of the table 2DPOINT1  r e a t e t ab l e 2DPOINT2 (3 ID2DPOINT in t not nu l l auto_inrement ,4 IDIMAGE in t not nu l l ,5 ID3DPOINT int ,6 U f l o a t not nu l l ,7 V f l o a t not nu l l ,8 DESC blob ,9 primary key (ID2DPOINT)10 )11 type = MyISAM;1213  r e a t e index i_2dpoint_idimage_id3dpoint on 2DPOINT(IDIMAGE,ID3DPOINT ) ;14  r e a t e index i_2dpoint_idimage on 2DPOINT(IDIMAGE) ;15  r e a t e index i_2dpoint_id3dpoint on 2DPOINT(ID3DPOINT ) ;and send SQL queries to the database server. Drivers for all major databases like MySql areprovided. Qt has also been hosen beause it ontains useful tools and lasses to buildgraphial interfaes.The funtionalities of the libSovinBDD are lassi�ed in di�erent diretories (refer to Fig.4). The Databases diretory ontains lasses for low level requests on the tables of thedatabase and aess to the data. The Management diretory ontains lasses for the highlevel management of the database. The Exeptions diretory ontains the exeptions raisedin ase of errors while aessing the database. The properties of onnetion to the databaseare ontained in a xml �le and the diretory Xml ontains the lasses for the reading of this�le.The diretories Databases and Management are detailled in the following.
FIG. 4: Diretories of LibSovinBDDDatabases : Sovin ontains several lasses to ommuniate with the database server. Eahtable is proessed using two lasses. The �rst lass (alled xTable where x is the name ofthe table) ontains the requests whih have to be sent to the table. The seond lass (alledxReord) represents a row of data (i.e. one element of the table). This lass is used to reador modify data.For instane, the lass Point2DTable ontains a method to retrieve all the 2D points (as avetor of Point2DReord) of an image knowing its key:s t a t i  void getVetorPoint2D ( onst i n t idImage , QVetor<Point2DReord> & v ) ;It is then possible to modify or get data of eah Point2DReord thanks to the funtions ofthis lass as:



3rd National Conferene on �Control Arhitetures of Robots� Bourges, May 29-30, 2008onst f l o a t & getU ( ) onst throw ( SovinInval idDataExept ion ) ;vo id setU ( onst f l o a t value ) ;onst i n t & getIdImage ( ) onst throw ( SovinInval idDataExept ion ) ;vo id setIdImage ( onst i n t id ) ;Note that the 'Table' lasses are interfaes allowing to send queries to the table. Consequently,this is not neessary to have several instanes of these lasses. By design, we have thus hosento set all the methods of these lasses stati. Moreover, with this hoie there is no dynamialloation, whih saves runtime.Management : Managing data of Sovin is not a simple task. Eah operation on data mustpreserve the integrity of the relational model. Several lasses were added to arry out thisproess.A �rst proess is the data importation (lass 'Importation'). It requires low level operationsto be done along a orret order. For instane, when a new image has to be added to an edge,it is �rst neessary to reate a node. This node is added to an edge and it is the followingnode of the previously imported node. Then, the image is added and is linked to the nodeand to a sensor.A seond proess is the deletion of data (lass 'Suppressions'). This is a omplex task: itrequires several low level operations desribed in 'Databases' diretory (funtions delete inthe lasses xTable) as well as a more omplex proess in order to keep the struture valid.In that aim, spei� funtions have been designed in a lass Suppressions for deleting eahelement while keeping a valid struture. As an example, the deletion of an image implies manyhanges in the struture (refer to List. 2). The image must be deleted from the table Image.It has to be deleted in the table Contains Image Aquired By too. Then, the 2D pointsassoiated to this image must be deleted (ardinality (1,1) of relation Contains2DPoint).This suppression proess needs funtions of the Databases diretory to retrieve elements ofthe table with the lasses Point2DTable and Point3DTable, to get data of those elementswith the lass Point2DReord. The lasses xTable are also used to delete the element givenby its id in the table (deletePoint3D, deletePoint2D). Of ourse, when removing a 2D point,the linked 3D point - if it exists - has to be removed if and only if this 3D point is notassoiated with another 2D point (refer to List. 3 for the deletion of a 2D point).Some very useful funtionalities needed by the experiments have been added. The 'Building'lass is dediated to these operations. For example, a funtion removes nodes at the startor the end of an edge. Sometimes, it is required to ut an edge at a spei� node to make arossroad or to start a new edge at this node. In that aim, a funtion uts an edge into twoedges.3.3 LibSovin ProessingProessing are omposed of three main parts (refer to Fig. 5). The �rst one ontains usefulllasses: MathUtils (for proessing funtionalities) and DataConversion (for onversion of databetween Qt+libSovinBDD objets and low level visual proessing objets). The seond onediretory lasses for the proessing Importate and Loalize. Finally, the third one ontainsthe lasses used during the on-line navigation step suh as the visual path building and thevisual path following proesses.



3rd National Conferene on �Control Arhitetures of Robots� Bourges, May 29-30, 2008Listing 2: Suppression of an image (and struture update)1 void Suppre s s i ons : : deleteImageInDepth ( onst i n t & idImage )2 {3 // searh 2D po int s key l i nk ed to the image4 QVetor<int> veIdPoint2D ;5 ImageTable : : getVetorIdPoint2D ( idImage , veIdPoint2D ) ;7 // d e l e t e a l l the 2D po int s with ' deletePoint2DInDepth ' method8 f o r ( i n t i =0; i<veIdPoint2D . s i z e ( ) ; i++)9 deletePoint2DInDepth ( veIdPoint2D [ i ℄ ) ;11 // d e l e t e the Image ontained in ' Contains Image Aquired By ' t ab l e12 // use o f low l e v e l method o f  l a s s ' ImageTable ' in ' Databases ' d i r e  t o r y13 ImageTable : : deleteImageAquiredBy ( idImage ) ;15 // d e l e t e the image16 // use o f low l e v e l method o f  l a s s ' ImageTable ' in ' Databases ' d i r e  t o r y17 ImageTable : : de leteImage ( idImage ) ;18 } Listing 3: Suppression of a 2D point (and struture update)1 void Suppre s s i ons : : deletePoint2DInDepth ( onst i n t & idPoint2d )2 {3 // searh 2D point by the key idPoint2d4 Point2DReord point2d ;5 Point2DTable : : getPoint2DReord ( idPoint2d , point2d ) ;7 // i f 2D point i s l i nk ed to a 3D point8 i f ( po int2d . hasIdPoint3D ( ) )9 {10 // get the key o f t h i s 3D point11 i n t idPoint3D=point2d . getIdPoint3D ( ) ;13 // i f t h i s 3D point i s not a s s o  i a t ed with another 2D point14 i f ( Point3DTable : : getNbPoint2D_HavingPoint3D( idPoint3D )==1)15 {16 // d e l e t e the 3D point17 Point3DTable : : de letePoint3D ( idPoint3D ) ;18 }19 }21 // dete t e the 2D point22 Point2DTable : : de letePoint2D ( idPoint2d ) ;24 } The omputation of the number of 2D points mathings between an image of the databaseand a urrent image (refer to List. 4) is a typial example of proessing funtion. It on-tains low-level funtions to aess the database, image proessing funtion (from the visualproessing library), data onversion funtions and proessing funtions developed in LibSo-vinProessing in order to manipulate the LibSovinBDD objets.3.4 Human Mahine InterfaeA module for visualisation and high level ations ontrol (HMI) has also been developed. Itonsists on a main window whih is a MDI (Multiple Doument Interfae). The seletion ofthe objets to visualize has been onstrained in order to follow the struture of our model.
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FIG. 5: Diretories of LibSovinProessingListing 4: Mathing of a urrent image to an image of the database1 i n t getNbMathingsBetweenImages ( onst i n t idMemImage , MCharImage CurrentImage )2 Harr i sDete to r Detetor ;3 vetor<points2d> vePoints2D ;4 QVetor<Point2DReord> veCurrent2DPoints ;5 QVetor<Point2DReord> veKey2DPoints ;67 // Detete po int s in the ur rent image8 Detetor . Detet ( CurrentImage , vePoints2D ) ;9 // Convert i n t o LibSovinBDD ob j e  t10 DataConversion : : onvert2DPointsToVePoint2DRe ( vePoints2D , veCurrent2DPoints ) ;1112 // load the po int s o f the image o f the memory13 ImageTable : : Load2DPointsFromIdImage ( idMemImage , veKey2DPoints ) ;1415 // launh the po int s mathing proe s s16 i n t nb_mathing=Math ( veCurrent2DPoints ,17 veKey2DPoints ) ;It allows the graphial management (update, delete ...) and representation of the databaseontent (low level ations) as well as high level ations suh as the loalization of a givenimage in the images of the database. The design of the graphial part of this module hasbeen failitated by the use of the Qt library. The module uses the funtionalities developedin the LibSovinBDD and LibSovinProessing libraries. The main utility is the visualizationof the information ontained in the database (refer to Fig. 6). The HMI also allows thevisualisation of a Test as a graph dynamially generated (using the GraphViz library). Thisgraph represents the edges of a Test stored in Sovin database and a node of this graphrepresents an intersetion between two edges (extrated from the table Has for followingedge) (refer to Fig. 7). It also allows to easily hek the feature detetion and featuremathings algorithms results and to modify the database ontents (for instane edge utting(refer to Fig. 8)).4 ExperimentationsOur experimental vehile is an urban eletri ar, named RobuCab, manufatured byRobosoft Company. It is depited on Figure 9. Currently, RobuCab serves as developmentproduts in several Frenh laboratories. The 4 DC motors are powered by lead-aid batteries,providing 2 hours autonomy. Vision and guidane algorithms are implemented in C++ lan-guage on a laptop using RTAI-Linux OS with a 2GHz Centrino Duo proessor. The Fujinon�sheye lens, mounted onto a Marlin F131B amera, has a �eld-of-view of 185 deg and hasbeen alibrated. The image resolution in the experiments was 800× 600 pixels. The amera,
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FIG. 6: Overview of the Human Mahine Interfae of Sovinlooking forward, is situated at approximately 80m from the ground. The parameters of therigid transformation between the amera and the robot ontrol frames are roughly estimated.Grey level images are aquired at a rate of 15fps. Communiations between the embeddedPC, the low-level omputer whih ontrols the RobuCab and its sensors are performed usingthe real-time arhiteture Aroam [14℄. The RobuCab was manually driven along severalpaths onto our universitary ampus.4.1 Map buildingThe images aquired along all paths have been �rst stored. For eah of the seleted paths,an importation step is performed. This step onsists on building an edge, seleting the keyimages, extrating the 500 relevant image points of eah key image and robustly mathingtwo suessive images points. The data are stored into the database. Some informationabout the entire database are detailled in Tab. 1 with the number of data and the memorysize onto the disk for some of the main tables. This database ontains 3.2×106 data, whihresults to an amount of 4 255 MB onto the disk. The table IMAGE represents 65% of theentire memory size and the table 2DPOINT 34%.4.2 Visual loalizationThe vehile is assumed to be on a known edge. It an be given by the user or by anexternal sensor suh as a GPS. Firstly, the appliation requires the extration of the keys
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FIG. 7: Part of the graph representing the visual memory of a test of SoViN

FIG. 8: Importing data and utting edge windowsof all images, aquired by a given amera, whih belong to this edge. For onveniene, theimages are ordered with respet to the positions of the nodes along the path. Seondly, theloalization is a loal strategy whih requires the loading of the 2D points of the key images.During the importation step, for eah key image, 500 2D points have been stored with theirdesriptors. For eah key image, the 500 points are loaded and mathed to the urrentpoints. The key image with the smallest distane is onsidered as the urrent loalization inthe visual memory. The mean time to load the points of an image is 19 ms by image (meanobtained by loading the points for all images of all edges).Finally, the full loalization proess takes approximately 35 ms by key image of the edge.Note that the time to load a grey-level image of size 800x600 pixels from the database (timeto exeute the request and to transform it in an image objet) takes 16 ms.
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FIG. 9: RobuCab vehile with the embedded amera.Table Number of data Memory SizeEDGE 84 2 900 BNODE 6 067 53 KBIMAGE 6 067 2 777 MB2DPOINT 3 ×106 1 473 MB3DPOINT 230 300 3.7 MBTable 1: Database ontents during the autonomous navigation.4.3 Autonomous navigation4.3.1 Loalization stepThe autonomous navigation begins at Start position (refer to Fig. 10). The urrent imageis grabbed (Fig. 11 (a)) and the loalization proess starts. After 7 seonds, the image isloalized into the �rst edge (Fig. 11 (b)). 337 points are mathed. Note that between thesetwo images, illumination onditions have hanged as well as the ontents (for example, arsdisappear, and some objets are di�erent).The autonomous navigation onsists on following the path Ψ = C ⊕D⊕E ⊕F
′1 ⊕F

′2 ⊕

G
′1 ⊕ G

′2. Edges with a prime denote edges taken during other days than the �rst paths.The nodes N5 and N6 (refer to Fig. 10) are linked by the edge F but also by the suessionof F
′1 and F

′2 and the nodes N6 and N7 are linked by the edge G but also by the suessionof G
′1 and G

′2. This path ontains 7 edges and 396 key images. The total length of the pathis more than 400 m (obtained by odometri measures).4.3.2 Autonomous navigationThe speed of the vehile is set to 0.8 m/s. Grey level images, of size 800x600, are aquired at15fps. At eah frame, points are extrated and mathed with the desired key image. Robustmathing allows us to keep only the valid mathings. From these mathings, the epipolar
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FIG. 10: Some paths of the ampus (used in the experimentation) with the memorized trajetories.Edges are represented with their extremity nodes. Images aquired in those nodes are also drawn.
(a) (b)FIG. 11: Left image: urrent image aquired at Start position. Right image: nearest key image intothe edge.geometry is omputed and the lateral error y and the angular error θ are estimated. Theontrol law is omputed and sent to the RobuCab ontroller. The average omputation timeis 70 ms for eah urrent image. This time also inludes data loading related to the newdesired key image when the former is reahed. Our vehile suessfully follows the visualpath. The errors in the images (the mean of the distanes between the mathed points)derease to zero until reahing a key image (refer to Fig. 12). In the �gures small rossesdenote that a new key image is reahed, diamonds that a new edge begins. Some reahedimages (with the orresponding key images of the memory) are shown in Fig. 14. Note thatillumination onditions have hanged between the memorization and the autonomous stepsas well as the ontents but the vision-based navigation strategy sueeds. The lateral andangular errors are also well regulated to zero (refer to Fig. 13).
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FIG. 12: Errors in the images versus time (s).
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FIG. 13: Angular and lateral errors and ontrol input versus time (s).
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where the key images Ik have been reahed (k is the key ofthe image in the database).5 ConlusionIn this paper, a software for autonomous navigation has been presented. The softwareplatform (SoVin) is more partiularly dediated to visual memory management and vision-based navigation. It allows to ahieve navigation tasks in large sale environments usingnatural landmarks. Preliminary experiments obtained with SoViN have shown promisingresults. Future works will be devoted to intensively experiments the software in variouson�gurations and using di�erent vision-based navigation strategies as the one proposed in[12℄.
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