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Abstract When navigating in an unknown environment for
the first time, a natural behavior consists on memorizing
some key views along the performed path, in order to use
these references as checkpoints for a future navigation mis-
sion. The navigation framework for wheeled mobile robots
presented in this paper is based on this assumption. During a
human-guided learning step, the robot performs paths which
are sampled and stored as a set of ordered key images, ac-
quired by an embedded camera. The set of these obtained
visual paths is topologically organized and provides a vi-
sual memory of the environment. Given an image of one
of the visual paths as a target, the robot navigation mission
is defined as a concatenation of visual path subsets, called
visual route. When running autonomously, the robot is con-
trolled by a visual servoing law adapted to its nonholonomic
constraint. Based on the regulation of successive homogra-
phies, this control guides the robot along the reference visual
route without explicitly planning any trajectory. The pro-
posed framework has been designed for the entire class of
central catadioptric cameras (including conventional cam-
eras). It has been validated onto two architectures. In the
first one, algorithms have been implemented onto a dedi-
cated hardware and the robot is equipped with a standard
perspective camera. In the second one, they have been im-
plemented on a standard PC and an omnidirectional camera
is considered.
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1 Introduction

Vision is a central clue of most of recent mobile robots
navigation frameworks. The authors of DeSouza and Kak
(2002) account of twenty years of works at the meeting
point of mobile robotics and computer vision communities.
Often used among more “traditional” embedded sensors—
proprioceptive sensors like odometers as exteroceptive ones
like sonars—it provides accurate localization methods. In
many works, and especially those dealing with indoor nav-
igation as in Hayet et al. (2002), computer vision tech-
niques are used in a landmark-based framework. Identifying
extracted landmarks to known references allows to update
the results of the localization algorithm. These methods are
based on some knowledges about the environment, such as
a given 3D model or a map built online. They generally rely
on a complete or partial 3D reconstruction of the observed
environment through the analysis of data collected from dis-
parate sensors. The mobile robot can thus be localized in an
absolute reference frame. Both motion planning and robot
control can then be designed in this space. The results ob-
tained by the authors of Royer et al. (2004) leave to be for-
casted that such a framework will be reachable using a sin-
gle camera. However, although an accurate global localiza-
tion is unquestionably useful, our aim is to build a complete
vision-based framework without recovering the position of
the mobile robot with respect to a reference frame.

The principle of this approach is to represent the robot
environment with a bounded quantity of images gathered in
a set called visual memory. In Remazeilles et al. (2004), this
concept is exploited to control the 6 dof of a robotic arm un-
der large displacements. A set of images is extracted from
a previously learnt database which describes successive tar-
gets for a global visual servoing task. In Nierobisch et al.
(2007), a similar approach is proposed using SIFT moments.
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In these papers, the kinematic constraints of a mobile robot
are not considered. In the context of mobile robotics, Mat-
sumoto et al. (1996, 1999) also propose to use a sequence of
images, but recorded during a human teleoperated motion,
and called View-Sequenced Route Reference. This concept
underlines the close link between a human-guided learning
stage and the performed paths during an autonomous run.
However, the automatic control of the robot is not formu-
lated as a visual servoing task. In this paper, we propose
a complete image-based framework (i.e. from environment
learning to control) for mobile robots navigation valid for
the entire class of central cameras. A sequence of images,
acquired during a human-guided learning, allows to derive
paths driving the robot from its initial to its goal locations.
In order to reduce the complexity of the image sequences,
only key views are stored and indexed on a visual path. The
set of visual paths can be interpreted as a visual memory of
the environment. The visual memory is structured as a graph
which takes into account the environment topology. A nav-
igation task consists then in performing autonomously a vi-
sual route which is a concatenation of visual paths. The vi-
sual route connects thus in the sensor space the initial and
goal configurations. Section 2 details more precisely this
point.

The Sect. 3 deals with the vision-based control scheme
designed to control the robot motions along a visual route.
The nonholonomic constraints of most current wheeled mo-
bile robots make the classical visual servoing methods un-
exploitable since the camera is fixed on the robot (Tsakiris
et al. 1998). However, motivated by the development of 2D
1/2 visual-servoing method proposed by Malis et al. (1999),
some authors have investigated the use of homography and
epipolar geometry to stabilize mobile robots (Chen et al.
2003; López-Nicolás et al. 2006). In this paper, because the
notions of visual route and path are very closed, we turn the
nonholonomic visual-servoing issue into a path following
one. The designed control law does not need any explicit
off-line path planning step. The on-line navigation step of
the framework is summarized in Fig. 1.

In Sect. 4, two implementations of this framework are de-
scribed. In the first one, a perspective camera is embedded
on the mobile robot and algorithms have been implemented
onto a dedicated hardware. In the second one, they have been
implemented on a standard PC and an omnidirectional cam-
era is considered.

2 Visual memory and routes

In DeSouza and Kak (2002), approaches using a “memoriza-
tion” of images of the environment acquired with an embed-
ded camera are ranked among mapless navigation systems.
Indeed, as proposed in Matsumoto et al. (1996) or in Jones

Fig. 1 Principle of the on-line navigation step. The robot is controlled
using the current image and the desired image of the visual route ex-
tracted from the visual memory (built during a human guided step)

et al. (1997), any notion of map nor topology of the environ-
ment appears, neither to build the reference set of images,
nor for the automatic guidance of the robot. The first step of
our framework consists on a learning stage to build the vi-
sual memory. The visual memory is structured according to
the environment topology to reduce the computational cost.

2.1 Structure of the visual memory

The learning stage relies on the human experience. The user
guides the mobile robot along one or several paths into each
room where the robot is authorized to go (see Fig. 2a, b
and c). A visual path rΨp is then stored and indexed as the
pth learnt path in the r th room.

2.1.1 Visual paths

A visual path rΨp is a weighted directed graph composed of
n successive key images (vertices):

rΨp = {
r I p

i |i = {1,2, . . . , n}}

For control purpose (refer to Sect. 3), the authorized motions
during the learning stage are assumed to be limited to those
of a car-like vehicle, which only goes forward. The follow-
ing Hypothesis 1 formalizes these constraints.
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Fig. 2 Building a visual memory: Into the rooms (a) and (b) and the
corridor (c), the paths rΨp have been learnt by teleoperating the robot.
As a result, the graph (d) represents the topological organization of the
visual memory. The blue circles show the vertices

Hypothesis 1 Given two frames R Fi and R Fi+1, respec-
tively associated to the mobile robot when two successive
key images Ii and Ii+1 of a visual path Ψ were acquired,
there exists an admissible path ψ from R Fi to R Fi+1 for
a car-like vehicle whose turn radius is bounded, and which
only moves forward.

Moreover, because the controller is vision-based, the robot
is controllable from r I p

i to r I p

i+1 only if the hereunder Hy-
pothesis 2 is respected.

Hypothesis 2 Two successive key images Ii and Ii+1 con-
tain a set Pi of matched visual features, which can be
tracked along a path performed between R Fi and R Fi+1

and which allows the computation of the control law.

During the acquisition of a visual path, the Hypothesis 2
constrains the choice of the key images. A new key image
Ii+1 is stored when a pattern, which has been tracked since
Ii was acquired, is likely to leave the image. A specific pat-
tern tracker based-on particle filtering has been developed
for this application. This point is detailled in Sect. 4. As a
consequence of Hypothesis 1 and 2, each visual path rΨp

corresponds to an oriented edge which connects two config-
urations of the robot’s workspace. Moreover, the number of
key images of a visual path is directly linked to the human-
guided path complexity. According to this parameter, we de-
fine the weight of a visual path as its cardinal.

2.1.2 Visual memory vertices

In order to connect two visual paths, the terminal extrem-
ity of one of them and the initial extremity of the other one
must be constrained as two consecutive key images of a vi-
sual path. The paths are then connected by a vertex, and two
adjacent vertices of the visual memory are connected by a
visual path (see Fig. 2d).

Proposition 1 Given two visual paths Ψp1 = {I p1
i |i =

{1,2, . . . , n1}} and Ψp2 = {I p2
i |i = {1,2, . . . , n2}}, if the two

key images I p1
n1 and I p2

1 abide by both Hypothesis 1 and 2,
then a vertex connects Ψp1 to Ψp2 .

We also assume this Proposition 1 in the particular case
where the terminal extremity of a visual path Ψp1 is the same
key image as the initial extremity of another visual path Ψp2 .
This is useful in practice, when building the visual memory.

2.1.3 A connected multigraph of weighted directed graphs

According to Sects. 2.1.1 and 2.1.2, the visual memory
structure is defined as a multigraph which vertices are key
images linked by edges which are the visual paths (directed
graphs). Note that more than one visual path may be inci-
dent to a node. It is yet necessary that this multigraph is
strongly connected. Indeed, this condition warrants that any
vertex of the visual memory is attainable from every others,
through a set of visual path.

2.2 Visual route

A visual route describes the robot’s mission in the sensor
space. Given two key images of the visual memory I ∗

c and
Ig , corresponding respectively to the current and goal loca-
tions of the robot in the memory, a visual route is a set of key
images which describes a path from I ∗

c to Ig , as presented
in Fig. 3. I ∗

c is the closest key image to the current image ac-
quired by the embedded camera Ic . This can be done in an
off-line stage, as Remazeilles et al. propose in Remazeilles
et al. (2004), by comparing the photometric invariants of the
request image with those of the images stored onto the vi-
sual memory. The visual route is the minimum length path of
the visual memory connecting two vertices associated to Ic

and Ig . According to the definition of the value of a visual
path, the length of a path is the sum of the values of its arcs.
The minimum length path may be obtained using Dijkstra’s
algorithm for example. Consequently, the visual route re-
sults from the concatenation of indexed visual paths. Given
two visual paths Ψp1 and Ψp2 , respectively containing n1

and n2 indexed key images, the concatenation operation of
Ψp1 and Ψp2 is defined as follows:

Ψp1 ⊕ Ψp2 =
{

I p1,2
j |j = {1, . . . , n1, n1 + 1, . . . , n1 + n2}

}
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Fig. 3 A visual route: Ξ =1 Ψ ′
3 ⊕2 Ψ1 ⊕3 Ψ1 ⊕2 Ψ ′

1. 1Ψ ′
3 and 2Ψ ′

1 are
subsets of respectively 1Ψ3 and 2Ψ1. 1Ψ3 is splitted at the closest key
image to the initial Ic , while the last key image of 2Ψ ′

1 is a desired
image to reach by navigating onto the visual memory

I p1,2
j =

{
I p1

j if j ≤ n1

I p2
j−n1

if n1 < j ≤ n1 + n2

3 Visual route following

We are considering a sensor-based control strategy. Visual-
servoing is often considered as a way to achieve positioning
tasks. Classical methods, based on the task function formal-
ism, are based on the existence of a diffeomorphism between
the sensor space and the robot’s configuration space. Due to
the nonholomic constraints of most of wheeled mobile ro-
bots, under the condition of rolling without slipping, such a
diffeomorphism does not exist if the camera is rigidly fixed
to the robot. In Tsakiris et al. (1998), the authors add extra
degrees of freedom to the camera. The camera pose can then
be regulated in a closed loop.

In the case of an embedded and fixed camera, the control
of the camera is generally based on wheeled mobile robots
control theory Samson (1995). In Ma et al. (1999), a car-
like robot is controlled with respect to the projection of a
ground curve in the image plane. The control law is formal-
ized as a path following problem. More recently, in Chen et
al. (2003), a partial estimation of the camera displacement
between the current and desired views has been exploited to
design vision-based control laws. The camera displacement
is estimated by uncoupling translation and rotation compo-
nents of an homography matrix. In Chen et al. (2003), a tra-
jectory following task is achieved. The trajectory to follow is
defined by a prerecorded video. In our case, unlike a whole
video sequence, we deal with a set of relay images which
have been acquired from geometrically spaced out points of
view. Indeed, a visual route following can be considered as a

Fig. 4 Frames and images: Ii and Ii+1 are two consecutive key im-
ages, acquired along a teleoperated path γ and Ic is the current image

sequence of visual-servoing tasks. A stabilization approach
could thus be used to control the camera motions from a key
image to the next one. However, a visual route is fundamen-
tally a path. To design the controller, described in the sequel,
the key images of the reference visual route are considered
as consecutive checkpoints to reach in the sensor space. The
control problem is formulated as a set of path following to
guide the nonholonomic mobile robot along the visual route.

3.1 Assumptions and models

Let Ii , Ii+1 be two consecutive key images of a given visual
route to follow and Ic be the current image. Let us note Fi =
(Oi,Xi ,Yi ,Zi ) and Fi+1 = (Oi+1,Xi+1,Yi+1,Zi+1) the
frames attached to the robot when Ii and Ii+1 were stored
and Fc = (Oc,Xc,Yc,Zc) a frame attached to the robot in
its current location. Figure 4 illustrates this setup. The origin
Oc of Fc is on the axle midpoint of a cart-like robot, which
evolutes on a perfect ground plane.

The control vector of the considered cart-like robot is u =
[V,ω]T where V is the longitudinal velocity along the axle
Yc of Fc, and ω is the rotational velocity around Zc. The
hand-eye parameters (i.e. the rigid transformation between
Fc and the frame attached to the camera) are supposed to be
known.

According to Hypothesis 2, the state of a set of visual
features Pi is known in the images Ii and Ii+1. Moreover
Pi has been tracked during the learning step along the path
γ between Fi and Fi+1. The state of Pi is also assumed
available in Ic (i.e. Pi is in the camera field of view). The
task to achieve is to drive the state of Pi from its current
value Ic to its value in Ii+1.

3.2 Control design

Consider the straight line Γ = (Oi+1,Yi+1) (see Fig. 5).
The control strategy consists in guiding Ic to Ii+1 by regu-
lating asymptotically the axle Yc on Γ . The control objec-
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Fig. 5 Control strategy using the homography matrix: the control con-
sists on regulating the lateral error y and the angular error θ to zero

tive is achieved if Yc is regulated to Γ before the origin of
Fc reaches the origin of Fi+1.

Let us first define M as the orthogonal projection of
the origin of Fc on Γ and the robot state vectors as X =
[s y θ ]�, where s is the curvilinear coordinate of M along
Γ , y is the lateral deviation between the origin of Fc and Γ ,
and θ is the angular deviation between Fc and Fi+1. With
these notations classical state space model (1) can be calcu-
lated:
⎧
⎪⎨

⎪⎩

ṡ = V cos θ

ẏ = V sin θ

θ̇ = ω

(1)

The control objectif is to ensure the convergence of y and
θ toward 0 before the origin of Fc reaches the origin of
Fi+1. This can be done using chained systems since model
(1) enters into the class of non-linear systems which can be
converted into chained forms (refer for instance to Samson
1995). A chained system results from a conversion of non-
linear model into an almost linear. More precisely, injecting
into model (1) the non-linear state transformation:

Φ
([

s y θ
]) = [

a1 a2 a3
] Δ= [

s y tan(θ)
]

(2)

and describing the motion of the mobile robot with respect to
s (instead of with respect to time) leads to the linear model:
⎧
⎪⎪⎨

⎪⎪⎩

d a2

d s
= a3

d a3

d s
= m3

(3)

Computations show that the new control variable m3 and the
actual control variable ω are related by an invertible trans-

formation. Thanks to linear control theory, it is then possi-
ble to design control law m3 to ensure the convergence of
(a2 a3) to 0. In view of (2), this consequently implies the
desired convergence of (y θ) to 0. If m3 is chosen as a clas-
sical PD controller, the inversion of the non-linear relation
between m3 and ω gives the non-linear control law to be
implemented:

ω(y, θ) = −V cos3 θKpy − |V cos3 θ |Kd tan θ (4)

Since control law (4) is designed from system (3), which is
driven with respect to curvilinear abscissa, its capabilities
are independent of the linear velocity. To be precise, closed
loop performance can be adjusted by tuning parameters Kp

and Kd which here define a distance of convergence, i.e. the
impulse response of y with respect to the covered distance
by the point M on Γ .

The implementation of control law (4) requires the on-
line estimation of the lateral deviation y and the angular de-
viation θ of Fc with respect to Γ . In the next section, we de-
scribe how geometrical relationships between two views ac-
quired with a central camera (catadioptric and conventional
cameras) are exploited to enable a partial Euclidean recon-
struction from which (y, θ) are derived.

3.3 State estimation from two views

One effective way for increasing the field of view of cam-
eras systems is to combine mirrors with conventional imag-
ing system Benosman and Kang (2000). The obtained sen-
sors are referred as catadioptric imaging systems. The result-
ing imaging systems have been termed central catadioptric
when a single projection center describes the world-image
mapping. The central catadioptric projection can be mod-
eled by a central projection onto a virtual unitary sphere, fol-
lowed by a perspective projection onto an image plane. This
virtual unitary sphere is centered in the principal effective
view point and the image plane is attached to the perspective
camera. In this model, called unified model and proposed by
Geyer and Daniilidis (2000), conventional perspective cam-
era appears as a particular case. The state estimation process
proposed in the sequel is thus valid for central catadioptric
camera as well as for conventional perspective cameras.

3.3.1 Camera model

Let Fc and Fm be the frames attached to the conventional
camera and to the mirror respectively. In the sequel, we sup-
pose that Fc and Fm are related by a simple translation along
the Z-axis (Fc and Fm have the same orientation as de-
picted in Fig. 6). The origins C and M of Fc and Fm will
be termed optical center and principal projection center re-
spectively. The optical center C has coordinates [0 0 − ξ ]T
with respect to Fm and the image plane Z = f (ψ − 2ξ) is
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Fig. 6 Unified model for central catadioptric cameras and geometry
of two views

orthogonal to the Z-axis where f is the focal length of the
conventional camera and ξ and ψ describe the type of sen-
sor and the shape of the mirror, and are function of mirror
shape parameters (refer to Barreto and Araujo 2002).

Consider the virtual unitary sphere centered in M as
shown in Fig. 6 and let X be a 3D point with coordinates
X = [X Y Z]T with respect to Fm. The world point X is
projected in the image plane into the point of homogeneous
coordinates xi = [xi yi 1]T . The image formation process
can be split in three steps as:

– First step: The 3D world point X is first projected on the
unit sphere surface into a point of coordinates in Fm:

Xm = X
‖X‖

The projective ray Xm passes through the principal pro-
jection center M and the world point X .

– Second step: The point Xm lying on the unitary sphere
is then perspectively projected on the normalized im-
age plane Z = 1 − ξ . This projection is a point of ho-
mogeneous coordinates x = [xT 1]T = f(X) (where x =
[x y]T ):

x = f(X) =
[

X

Z + ξ‖X‖
Y

Z + ξ‖X‖ 1
]�

(5)

– Third step: Finally the point of homogeneous coordinates
xi in the image plane is obtained after a plane-to-plane
collineation K of the 2D projective point x:

xi = Kx

The matrix K can be written as K = KcM where
the upper triangular matrix Kc contains the conventional
camera intrinsic parameters, and the diagonal matrix M

contains the mirror intrinsic parameters:

M =
⎡

⎣
ψ − ξ 0 0

0 ξ − ψ 0
0 0 1

⎤

⎦ , Kc =
⎡

⎣
fu αuv u0

0 fv v0

0 0 1

⎤

⎦

Note that, setting ξ = 0, the general projection model
becomes the well known perspective projection model.

In the sequel, we assume that Z �= 0. Let us denote

η = s‖X‖/|Z| = s

√
1 + X2/Z2 + Y 2/Z2

where s is the sign of Z. The coordinates of the image point
can be rewritten as:

x = X/Z

1 + ξη
, y = Y/Z

1 + ξη

By combining the two previous equations, it is easy to show
that η is the solution of the following second order equation:

η2 − (x + y)2(1 + ξη)2 − 1 = 0

Noticing that the sign of η is equal to the sign of Z, it can be
shown that the exact solution is:

η = −γ − ξ(x2 + y2)

ξ2(x2 + y2) − 1
(6)

where γ = √
1 + (1 − ξ2)(x2 + y2). Equation (6) shows

that η can be computed as a function of image coordinates x
and sensor parameter ξ . Noticing that:

Xm = (η−1 + ξ)x (7)

where x = [xT 1
1+ξη

]T , we deduce that Xm can also be com-
puted as a function of image coordinates x and sensor para-
meter ξ .

3.3.2 Scaled Euclidean reconstruction

Several methods were proposed to obtain Euclidean recon-
struction from two views (Faugeras and Lustman 1988).
They are generally based on the estimation of the funda-
mental matrix (Luong and Faugeras 1996) in pixel space or
on the estimation of the essential matrix (Longuet-Higgins
1981) in normalized space. However, for control purposes,
the methods based on the essential matrix are not well suited
since degenerate configurations can occur. Homography ma-
trix and Essential matrix based approaches do not share
the same degenerate configurations, for example pure ro-
tational motion is not a degenerate configuration when us-
ing homography-based method. The epipolar geometry of
central catadioptric system has been more recently inves-
tigated (Geyer and Daniilidis 2003; Svoboda et al. 1998).
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The central catadioptric fundamental and essential matri-
ces share similar degenerate configurations that those ob-
served with conventional perspective cameras, it is why we
will focus on homographic relationship. In the sequel, the
collineation matrix K and the mirror parameter ξ are sup-
posed known. To estimate these parameters the algorithm
proposed in Barreto and Araujo (2002) can be used. Let us
now show how we can compute homographic relationships
between two central catadioptric views.

Let R and t be the rotation matrix and the translation vec-
tor between two positions Fm and F ∗

m of the central cata-
dioptric camera (see Fig. 6). Consider a 3D reference plane
(π) given in F ∗

m by the vector π∗� = [n∗ − d∗], where n∗
is its unitary normal in F ∗

m and d∗ is the distance from (π)

to the origin of F ∗
m.

Let X be a 3D point with coordinates X = [X Y Z]�
with respect to Fm and with coordinates X = [X∗ Y ∗ Z∗]�
with respect to F ∗

m. Its projection in the unit sphere for the
two camera positions are:

Xm = (η−1 + ξ)x = 1

ρ

[
X Y Z

]�

X∗
m = (η∗−1 + ξ)x∗ = 1

ρ

[
X∗ Y ∗ Z∗]�

Using the homogenous coordinates X = [X Y Z H ]� and
X∗ = [X∗ Y ∗ Z∗ H ∗]�, we can write:

ρ(η−1 + ξ)x = [
I3 0

]
X = [

R t
]

X∗ (8)

The distance d(X ,π) from the world point X to the plane
(π) is given by the scalar product π∗� · X∗ and:

d(X∗,π∗) = ρ∗(η∗−1 + ξ)n∗�x∗ − d∗H ∗

As a consequence, the unknown homogenous component
H ∗ is given by:

H ∗ = ρ∗(η∗−1 + ξ)

d∗ n∗�x∗ − d(X∗,π∗)
d∗ (9)

The homogeneous coordinates of X with respect to F ∗
m can

be rewritten as:

X∗ = ρ∗(ψ∗−1 + ξ)
[

I3 0
]�

x∗ + [
01×3 H ∗ ]�

(10)

By combining (9) and (10), we obtain:

X∗ = ρ∗(η∗−1 + ξ)A∗x∗ + b∗ (11)

where

A∗
π =

[
I3

n∗
d∗

]�
and b∗

π =
[
01×3 − d(X ,π)

d∗
]

According to (11), the expression (8) can be rewritten as:

ρ(η−1 + ξ)x = ρ∗(η∗−1 + ξ)H x∗ + αt (12)

with H = R + t
d∗ n∗T and α = − d(X ,π)

d∗ .
H is the Euclidean homography matrix written as a func-

tion of the camera displacement and of the plane coordinates
with respect to F ∗

m. It has the same form as in the conven-
tional perspective case (it is decomposed into a rotation ma-
trix and a rank 1 matrix). If the world point X belongs to the
reference plane (π) (i.e. α = 0) then (12) becomes:

x ∝ H x∗ (13)

Note that (13) can be turned into a linear homogeneous
equation x × H x∗ = 0 (where × denotes the cross-product).
As usual, the homography matrix related to (π ), can thus be
estimated up to a scale factor, using four couples of coordi-
nates (xk;x∗

k), k = 1, . . . ,4, corresponding to the projection
in the image space of world points Xk belonging to (π). If
only three points belonging to (π) are available then at least
five supplementary points are necessary to estimate the ho-
mography matrix by using for example the linear algorithm
proposed in Malis and Chaumette (2000). From the esti-
mated homography matrix, the camera motion parameters
(that is the rotation R and the scaled translation td∗ = t

d∗ )
and the structure of the observed scene (for example the
vector n∗) can thus be determined (refer to Faugeras and
Lustman 1988).

In our case, the mobile robot is supposed to move on a
perfect ground plane. Then the estimation of the angular
deviation θ (around the axle Z) between Fc and Fi+1 and
of the lateral deviation y (i.e. the distance between the ori-
gin of Fc and Γ ) can be extracted straightforwardly from
R = Rc

i+1 and t/d∗ = tci+1/d
∗.

4 Implementations and validations

The proposed framework has been designed for the entire
class of central catadioptric cameras (including conventional
cameras). It has been validated onto two architectures. In
the first one, algorithms have been implemented onto a ded-
icated hardware and the robot is equipped with a standard
perspective camera. In the second one, they have been im-
plemented on a standard PC and an omnidirectional camera
is considered.

4.1 Implementations and validations on a dedicated
hardware

A central clue for implementation lies on the development
of an efficient method to track models of projected patterns
onto a video sequence (see Sect. 2). Indeed, the tracker takes
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place in all step of the proposed navigation framework. It
allows key images selection during the learning stage, of
course it is also usefull during the autonomous navigation
to provide the necessary input for state estimation (refer to
Sect. 3.3). The principle of this tracker as well as its imple-
mentation is described in the sequel.

4.1.1 Pattern tracking

Extensive studies of either active or rigid contour tracking
have been presented in literature (Isard and Blake 1998;
Zhong et al. 2000; Blake et al. 1993; Bascle et al. 1994;
Kass et al. 1988). The used methods are usually defined in
the Bayesian filtering framework assuming that the evolu-
tion of the contour curve state follows a Markov process
(evolution model) and that a noisy observation (measure-
ment model) is available. The contour state is tracked us-
ing a probabilistic recursive prediction and update strategy
(Arulampalam et al. 2002). More recently, Particle filtering
was introduced in contour tracking to handle non Gaussian-
ity of noise and non linearity of evolution model (Isard and
Blake 1998). The pattern tracker described here is based on
contour model and takes into account the image gray scale
level variations. It uses the condensation algorithm (Isard
and Blake 1998) to track efficiently 2D patterns on cluttered
background. An original observation model is used to up-
date the particle filter state.

Problem formulation

The tracking problem can be expressed as the estimation of
the state of a dynamical system based on noisy measure-
ments at discrete times. Let us consider that, at time k, the
state of a system is defined by a vector Xk and the measure-
ments by a vector Zk . Based on a Bayesian approach, the
tracking consists in iteratively predicting and updating the
posterior density function (pdf) of the system state using re-
spectively the dynamical and the observation models. The
pdf p(Xk|Z1:k) is estimated as the vector Z1:k = (Zi , i =
1, . . . , k) containing the latest measurements becomes avail-
able online.

Particle filtering is an elegant solution in case of non-
linearity of the evolution and measurement functions and
non-Gaussianity of noise (Arulampalam et al. 2002). The
key idea is to use a Monte Carlo method to represent the
pdf of Xk by a set of samples (particles) S(i)

k . A weight

w
(i)
k is associated to each particle. It corresponds to the

probability of realization of the particle. Starting from a set
{S(i)

k , i = 1, . . . ,Np} of Np particles with weights w
(i)
k , the

algorithm consists in iteratively: (1) applying the evolution
model on each particle to make it evolve toward a new state
S(i)

k+1, (2) computing the new weights w
(i)
k+1 using the obser-

vation model, (3) re-sampling the particle set (particles with
small weights are discarded while particles which obtained
high scores are duplicated so that Np remains constant).

Pattern modeling

The pattern model must enable not only real time tracking
but also automatic generation and recognition. It must be
complex enough to discard ambiguities due to the presence
of objects in the background similar to parts of the model
and simple enough to reduce the computational. The struc-
ture of a pattern is built in two levels: the first level is com-
posed of a set of contours polygonally approximated by seg-
ments and arcs, the second level is composed of a list of
vectors whose elements represent the evolution of the im-
age gray scales in the gradient direction around point sam-
pled on the contours (refer to Fig. 7). The contour repre-
sentation is used to automatic generation and recognition
and thus to initialize the tracking algorithm. During the
tracking, only gray scale vectors are used to estimate the
state of the pattern. Let us consider a window of interest
in the image with a center (xc, yc) and dimensions Δx and
Δy . Each segmented contour is sampled in a set of im-
age points {m(j) = (u(j), v(j)), j = 1, . . . ,Nm} where Nm

is the number of points. At each point, we define a vec-
tor V(j) = (g

(j)

1 , g
(j)

2 , . . . , g
(j)
l , . . .)T composed of Ns gray

scale value samples from the image following the gradient
direction at the pixel m(j) and with a fixed step size δ. g(j)

l is
a bilinear approximation of the gray scale values of the near-
est four pixels. A pattern model is then defined as follows:

M =
{(

U(j),V(j),W(j)
)

, j = 1, . . . ,Nm

}
(14)

with U(j) = [x(j), y(j), φ(j)]T , where x(j) = u(j)−xc

Δx
and

y(j) = v(j)−yc

Δy
are the normalized coordinates of m(j) in-

side the interest window and φ(j) the gradient orientation
at m(j). The vector W(j) = (a(j), b(j), . . .)T is composed
of a set of parameters defining a function C̃

(j)
GG which is an

approximation of the one-dimensional discrete normalized
auto-correlation function C

(j)
GG of G(j) where G(j)(l) = g

(j)
l

Fig. 7 Pattern model: sampled points on segmented contours and cor-
responding gray scale vectors in the gradient direction
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Fig. 8 Deriving the probability measure from the inter-correlation
measure

for l = 1, . . . ,Ns , and G(j)(l) = 0 elsewhere. We have:

C
(j)
GG (λ) =

(
1/ ‖ V(j) ‖2

) NS∑

l=−NS

G(j) (l)G(j) (l − λ)

The simplest expression of C̃
(j)
GG is a straight line equation

(see Fig. 8). W(j) is then one-dimensional and equal to the
slope.

Observation model

Let us first define the state vector Xk of a pattern pose in
image Ik at time k as:

Xk = (xk, yk, θk, sk)
T (15)

where xk , yk , θk are respectively the position of the pattern
center and its orientation in the image frame and sk is the
scale factor. The evolution of the state vector Xk is mod-
elled by a noise vector v from a Gaussian distribution of zero
mean value and standard deviation σv = (σx, σy, σθ , σs).
Thus, the dynamical model function is Xk = Xk−1 + v.

A key point in particle filtering is the definition of
the observation model Zk in order to estimate w

(i)
k =

p(Zk|S(i)
k ). For each predicted particle S(i)

k , the model is
fitted to the image Ik . Around each image point coincid-
ing with a model point mj , an observed vector V(j)

k =
(g

(j)

1 , g
(j)

2 , . . . , g
(j)
l , . . .)T of gray scales is built following

a direction which is the transformation of the gradient ori-
entation of the model. For each observed vector we compute
the normalized inter-correlation between the vector stored in
the model and the observed vector components:

C
(j)
GGk

= V(j).V(j)
k

‖ V(j) ‖‖ V(j)
k ‖

The question is now how to use the inter-correlation mea-
sure to estimate p(Zk|S(i)

k )? We first compute the proba-

bility p(Z(j)
k |S(i)

k ) that each model point m(j) is placed ac-

cording to the state vector particle S(i)
k on the corresponding

point in the observed pattern. The maximum of probability
is expected at m(j). The inter-correlation measure C

(j)

GG(k)

can yeld an estimate of the deviation λ(j) = C̃
(j)−1
GG (C

(j)
GGk

)

Fig. 9 The developed prototype with the perspective camera

between the observed and the predicted gray scale vectors.
Assuming that the probability that the observed gray scale
vector fits the predicted one (Gaussian distribution with
respect to λ(j) (Fig. 8)), we can reasonably approximate
p(Z(j)

k |S(i)
k ) by �σ (λ), the one-dimensional Gaussian func-

tion with standard deviation σ . Furthermore, assuming that
the probabilities p(Z(j)

k |S(i)
k ) are mutually independent, it

results that

p
(

Zk|S(i)
k

)
=

Np∏

j=1

p
(

Z(j)
k |S(i)

k

)
(16)

The characterization of the auto-correlation function by the
parameter Vj for each model improve the precision of the

estimate of p(Zk|S(i)
k ). Indeed, the intercorrelation may de-

crease faster for a highly textured contour point than for a
point on a contour defined by two large and homogeneous
regions.

4.1.2 Implementation

The developed algorithms have been integrated and vali-
dated on a small mobile robot (cf. Fig. 9). The hardware
architecture should be able to interface easily with the al-
ready existing system architecture of the PekeeTM robot
from Wany Robotics. It should cope with the computation
requirements of the navigation algorithms, while fitting in
place in the robot and having a reasonable power consump-
tion. High integration constraints are usually solved by de-
veloping dedicated System On Chip chipset such as those
that can be found in smartphones, PDA, etc. In this aim,
a programmable chip (FPGA) with an embedded hardware
processor core has been employed. The programmable logic
allows the design of various interfaces, of powerful data
management and computation units, while the processor al-
lows flexibility for other tasks needed by the navigation al-
gorithms. Another determining factor is the availability of
a prototyping board for the targeted device. Providing flash
and dynamic memories, several expansion connectors, this
board allow to design, integrate and validate at an early stage
the whole navigation algorithms directly on the robot in real
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Fig. 10 FPGA main functional hardware blocs

situations. It was then possible to design safely a smaller
computational board fitting more efficiently our needs.

An EPXA10 chip from ALTERA was used as the main
part of the navigation module. It associates a high density
FPGA, an embedded 32 bits RISC ARM9TM processor run-
ning at 200 MHz and several peripherals (interrupt con-
troller, dynamic memory controller, timer, UART, . . .). The
FPGA device drives a CMOS image sensor, performs all the
navigation algorithms, and sends speed and steering com-
mands to the robot. The system is completed with a WiFi
wireless link already available on the robot essentially used
during the learning stage for teleoperation. The main func-
tional blocs of the FPGA are shown in Fig. 10. The perspec-
tive camera consists of a single chip 1/3′′ VGA CMOS pixel
sensor capturing gray scale images and converting them to
a digital raw data stream. While storing this data stream on
memory, the FPGA also performs automatic gain and expo-
sure control to adapt in real time for illumination changes.
The image sensor is associated with a miniature glass lens
offering a 87 diagonal field of view, necessary for covering
a wide area. Due to the statistical nature of the particle fil-
ter used for the tracking, image distortion does not need to
be corrected and the navigation algorithms have been found
to work efficiently. Images are used by the particle filter for
patterns tracking. Computing requirements for this task are
quite heavy and would not fit on the processor alone with the
real time constraints of the robot navigation. So most com-
putational part of the particle filter has been implemented

Fig. 11 Block diagram of the particle filter coprocessor

in hardware (cf. Fig. 11), relieving the embedded ARM9
processor and insuring good real time performances for the
video tracker.

Local memories are used to store the particle state and
the planar model to be tracked. A model is defined during
the supervised learning step with the polar coordinates of
characteristic points corresponding to an extremum of im-
age gradient. For each particle, the corresponding state vec-
tor (xc, yc, sc, θ) is applied to the model and the new coor-
dinates of the points are computed. For each predicted point,
a radial exploration is performed in the current image to ex-
tract the local extremum of the image gradient. The posi-
tion of this extremum along the radial axis is compared with
the considered particle point position. The resulting error is
squared and cumulated over each point, providing a mea-
surement criterion for the particle. This step is repeated for
all particles and the corresponding criteria are then stored
in local memory. All hardware computations are done using
fixed point binary representation. Operators are pipelined,
and N × P × V cycles are needed to fill the criteria mem-
ory, where N is the number of particles, P is the number of
points defining a planar model and V is number of points for
neighborhood exploration. In this application the number of
particles is limited to 256 particles, the number of points for
a model definition is limited to 64 points, and neighborhood
exploration is set to 20 points. With the current logic gate ar-
ray clocked at 40 MHz, and for the above maximum condi-
tions, this leads to an execution time of 8.2 ms which is com-
patible with the real time video data processing. The time
required for the overall tracking task is 24 ms. It includes
image acquisition, particle filter processing and tracker state
estimation.
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In addition to these specific tasks inherent in tracking al-
gorithm, the FPGA also manages interfaces communication
with the others parts of the system. It includes I2C controller
and video interface for the image sensor, specific robot com-
munication protocol controller, direct memory data transfer
management and jpeg compression. Indeed for monitoring
and debug purpose, a wireless link is established between
the robot and a remote PC running GUI software. It allows
to download configuration for the navigation module and to
upload images, tracker state in the image and robot state.
As image transfer could required a large amount of data, the
jpeg compression, implemented in hardware, is used to re-
duce the needed bandwidth.

Finally, management of the navigation task is imple-
mented by the ARM9 processor. It consists of providing the
particle filter with pattern models that are possibly visible
in the current image. Estimation of the model state in the
image is then transposed back to estimate the state of the
robot. From this estimation, speed and steering trajectory
tracking controls are computed (using control law 4) and
sent to the motor controller to drive the robot to the next key
image. The cycle time for the overall system is about 70 ms,
which is compatible with the robot dynamic. The software
program size is 92 KB while the hardware implementation
uses 26% of the FPGA logic resources, among the 38400
logic blocs available in this device. For the FPGA and the
associated memories, power consumption measured during
experiments was 2.5 W.

4.1.3 Experimental results

Learning step

Starting from an initial configuration, an image capture is
performed by the FPGA and a pattern model is automati-
cally generated. Then the particle filter is initialized with this
first pattern. When the robot is moved, new models are gen-
erated and tracked to cover the newly explored space. A new
key image is stored when the tracked patterns are likely to
leave the image. The collection of all these records are used
to build the visual memory of the environment and to create
visual paths. In this experiment, 80 key images have been
stored.

Autonomous step

The reference path, which is represented on the Fig. 12 by
the white squares which are lying on the ground, has been
acquired as a visual route of fifteen key images. The Fig. 13
illustrates the evolution of planar patterns tracked during the
robot motion along the given visual route. At each frame, the
tracker provides the coordinates of a current tracked planar
pattern. H is then computed thanks to the knowledge of this

Fig. 12 Following a visual route: the previously learnt visual path,
about 10 m long, is materialized on the ground. The pictures were taken
during an autonomous run

Fig. 13 Evolution of the image space when the robot is regulated be-
tween two consecutive key image: in each image, the yellow square is
the current state of the tracker, the red one is the state to reach. At im-
age (7), a new reference state is given for the tracker. The image (6) is
thus considered close to the previous reference key image: the control
has succeeded

pattern in the key image to reach Ii+1. The robot state is then
estimated from H. A key image is assumed to be reached
when the state vector is smaller than a fixed threshold. The
longitudinal velocity V was fixed to 0.2 ms−1. When the ro-
bot stops at the end of the visual route, the positioning error
is around 5 cm and the angular error about 3°. Nevertheless,
note that the robot has been stopped roughly, by setting V

to zero since the last key image of the visual route has been
detected. Moreover, both camera intrinsic and hand-eye pa-
rameters has been roughly determined. Errors and control
outputs are represented in Fig. 14. The discontinuities are
due to the transition between two key images. As it can be
noticed, lateral and angular errors are well regulated to zero
for each key views.
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Fig. 14 Evolution of the lateral (in m) and the angular (in rad) errors
and of the control input (angular speed in deg/s) during the experimen-
tation with the perspective camera

Fig. 15 Mobile robot Pioneer 3 equipped with an omnidirectional
camera

Fig. 16 Visual route with the central catadioptric camera. The current
image of the camera is I 0

c . The visual route the robot has to follow is
composed of three key images I∗

1 , I∗
2 , I∗

3

4.2 Experiments with a catadioptric camera

The proposed framework has been also implemented on an
external standard PC which wireless controls a Pioneer 3AT
robot. An omnidirectional camera is embedded on the robot
(see Fig. 15).

A learning stage has been conducted off-line and im-
ages have been memorized as proposed in Sect. 2. Three
key views (cf. Fig. 16) have been selected to drive the robot
from its initial configuration to the desired one (note that
only few key images are necessary to cover a large envi-

Fig. 17 Evolution of the lateral (in m) and the angular (in rad) errors
and of the control input (angular speed in deg/s) during the experimen-
tation with the catadioptric camera

ronment with an omnidirectional camera). The results of the
experimentation (Fig. 17) confirm once again the validity of
our approach: the lateral and the angular errors are regulated
to zero before reaching a key image, even with a rough cali-
bration.

5 Conclusion

This paper described an original framework for image-based
navigation dedicated to nonholonomic mobile robots. In this
framework, an off-line session allows to learn the environ-
ment as a graph of visual paths. The set of these obtained
visual paths is topologically organized and provides a vi-
sual memory of the environment. Given an image of one
of the visual paths as a target, the robot navigation mission
is defined as a concatenation of visual path subsets, called
visual route and which describes, in the sensor space, an ad-
missible path for the mobile robot. This visual route is then
performed thanks to a vision-based control law adapted to
the robot nonholonomy. The proposed framework enables
autonomous navigation without requiring any absolute geo-
metrical localization of the robot. Furthermore, it has been
designed for the entire class of central cameras (includ-
ing conventional perspective cameras as well as catadioptric
sensors). Two implementations of our strategy have been de-
scribed. The first one combines a dedicated hardware and a
standard perspective camera whereas in the second one al-
gorithms have been implemented on a standard PC and an
omnidirectional camera has been considered. Future work
will be devoted to adequately combine disparate cameras
(perspective, catadioptric, fisheye) for navigation tasks.
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