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Abstract— This work deals with the control by vision of
the Gough-Stewart platform. For that, a central catadioptric
camera is used to observe the platform legs. This allows to
obtain a large field of view, and then avoids the occlusion
problems observed when a classical perspective camera is used.
The leg projections onto the catadioptric plane are used to
determine their orientation in the camera frame. Finally, the
computed orientations will be used in a visual servoing scheme
of the platform effector.

I. I NTRODUCTION

Recently, it has been shown that visual servoing is a
good way to control parallel mechanisms [1], [2], [12].
In [12], the end effector pose is measured by vision and
used for regulation. However, the direct application of visual
servoing techniques assumes implicitly that the robot inverse
differential kinematic model is given and that it is calibrated.
In [1], [2] propose respectively an image-based and position-
based visual-servo schemes by observing the platform legs
with classical perspective camera. In [1], the authors usedthe
computed legs orientation from their image to control the end
effector position. In [2], it is shown that better results could
be obtained using the legs projection in image for regulation
without any 3D reconstruction.

Unfortunately, to position adequately the camera to ob-
serve simultaneously all the platform legs is a complex task.
In [1], [2], the camera was positioned in front of the platform
(see Fig 1.a). In this case, the legs in the front of the platform
are closer to the camera than the ones in the back. As
a consequence, the extraction of the image features lying
on the front legs will be more robust. Furthermore, large
parts of the legs in the back can be occluded by the front
legs (see Fig 1.b). This is an important drawback since the
vision based control assumes that all legs can be observed
during the servoing task. A first solution to address this
issues is to employ a system made of multiple cameras.
However, in this case, data provided by each camera must be
synchronized and calibrated. A second and simpler solution
consists on positioning a single omnidirectional camera at
the platform center (see Figure 2.a). In such a way, all
the legs can be simultaneously observed on panoramic view
and potential occlusions can not occur (see Figure 2.b). An
omnidirectional camera should highly increase the robustness
of visual control of the Gough-Stewart platform. We will
demonstrate this point in this paper.

Omnidirectional cameras are usually intended as a vision
system providing a360o panoramic views of the scene.
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Fig. 1. A Gough-Stewart platform observed by a classical perspective
camera: (a) camera position with respect to the platform legs, (b) leg images

(a) (b)

Fig. 2. A Gough-Stewart platform observed by an omnidirectional camera:
(a) camera position with respect to the platform legs, (b) leg images

Such an enhanced field of view can be achieved by either
using catadioptric systems, obtained by opportunely combin-
ing mirrors and conventional cameras, or employing purely
dioptric fish-eye lenses [3]. In practice, it is highly desirable
that such imaging systems have a single viewpoint [3], [11].
That is, there exists a single center of projection, so that,
every pixel in the sensed images measures the irradiance
of the light passing through the same viewpoint in one
particular direction. The reason why a single viewpoint is so
desirable is that it permits the generation of geometrically
correct perspective images from the pictures captured by the
omnidirectional camera. Geyer [6] and Barreto [5] developed
a unified projection model for these sensors using properties
of the projection of points on a sphere. In this work, this
unified model will be used, since it allows to formulate
control laws that are valid for any sensor in this class:
perspective, catadioptric or fish-eye.

To date, as far as we know there is no work coupling
the use of central catadioptric camera and parallel robots
control. As we can see on Figure 2.b, the omnidirectional
camera allows us to observe all legs without any occlusion.
Moreover, by putting the camera in the middle of the legs,
the latter are more closer to the image plane compared to in
the classical camera case. The features extraction might thus
be more robust. From the same Figure, we also note that



the leg positions in the image are almost radials. We will
take advantage of this configuration to develop an automatic
detection of them in image (see paragraph IV-A).

In the next section, we remind the unified catadioptric
camera model. In section 3, the cylindrical leg observation
and the interaction matrix related to the legs orientation in
the camera frame are recalled. In Section 4, an automatic
legs detection in image is proposed. The leg orientations in
the camera frame are computed from their image, and used
to control the platform effector position.

II. CENTRAL CATADIOPTRIC CAMERA MODEL

For sake of completeness, we present here a slightly
modified version of the projection model of Geyer [6] and
Barreto [5] (Fig. 3). The projection of 3D points can be done
in the following steps:

1) world points in the mirror frame are projected onto the
unit sphere,

(XFm
) → (X s)Fm

=
X

‖X‖ = (Xs, Ys, Zs) (1)

2) the points coordinates are then changed to a new
reference frame centered inp = (0, 0, ξ),

(X s)Fm
→(X s)Fp

= (Xs, Ys, Zs − ξ) (2)

3) we then project the point onto the normalized plane,

m = (x, y, 1) = (
Xs

Zs − ξ
,

Ys

Zs − ξ
, 1) = ℏ(X s) (3)

4) the final projection involves a generalized camera
projection matrixK (with f the focal length,(u0, v0)
the principal point,s the skew andr the aspect ratio)

p = Km =




γ γs u0

0 γr v0

0 0 1



 = k(m) (4)

The functionℏ is bijective and

ℏ
−1(m) =




−ξ−
√

1+(1−ξ2)(x2+y2)

x2+y2+1 x

−ξ−
√

1+(1−ξ2)(x2+y2)

x2+y2+1 y

−ξ−
√

1+(1−ξ2)(x2+y2)

x2+y2+1 + ξ


 (5)

In this paper, the whole calibration parameters are supposed
to be known [10]. In the next section we remind an adequate
model of the platform legs in camera frame.

III. M ODELING

A. Cylindrical leg observation

The legs are supposed to be cylindrical. Therefore, their
projections are defined by the so-called interpretation planes.
Define the normal unitary vectorn = [nx ny nz]

T as the
orthogonal to the interpretation planeΠ defined by a line
in 3D space and the principal projection center. Thus the
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Fig. 3. Unified projection model

coordinates of the points belonging to the interpretation plane
hold the following equation:

X = [X Y Z]⊤ ∈ Π ⇐⇒ nxX + nyY + nzZ = 0 (6)

Let S be the intersection between the interpretation plane
and the sphere. By combining (1) and (6),S is then defined
by: {

X2
s + Y 2

s + Z2
s = 1

nxXs + nyYs + nzZs = 0
(7)

Using the spherical coordinates given by (5), a line in
space is thus mapped onto the image plane to a conic curve,
which can be written as:

α0x
2 + α1y

2 + 2α2xy + 2α3x + 2α4y + α5 = 0 (8)

with: 




α0 = n2
x − ξ2(1 − n2

y)
α1 = n2

y − ξ2(1 − n2
x)

α2 = nxny(1 − ξ2)
α3 = nxnz

α4 = nynz

α5 = n2
z

(9)

The coefficient of (8) are defined with a scale factor. If
α5 6= 0, the number of those equation parameters can be
reduced and (8) can be written as:

β0x
2 + β1y

2 + 2β2xy + 2β3x + 2β4y + 1 = 0 (10)

with βi = αi

α5

. From the parametersβi, it is possible to
determine the perpendicular vector to the interpretation plane
as follow: 





nz = (β2
3 + β2

4 + 1)−
1

2

nx = β3 nz

ny = β4 nz

(11)

A forward determination of the perpendicular vector to the
interpretation can also be obtained fromαi by:
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
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(12)

The case whereα5 = 0 corresponds to a degenerate case
where thez − axis belongs to the interpretation plane. In
this case, the projection of the leg edges is straight lines.
Unfortunately this happens for several end-effector pose.
Therefore, the estimation ofn using (11) or (12) fromαi

or βi will not be suitable, sinceα3 = α4 = α5 = 0.
For this reason, a more robust estimation ofn from the
projection onto a sphere projection will be proposed in the
following of this paper. The proposed method is based on
simple linear minimization. Further, the vectorn can be
computed whatever the leg position (i.e. no degenerate case).
More details about line projection with catadioptric cameras
are given on [7]. Finally, the leg orientation, expressed inthe
camera frame, can straightforwardly computed as follow:

cui =
cn1

i × cn2
i

‖ cn1
i × cn2

i ‖
(13)

The measurecui will be used in this paper to servo the
end-effector pose of the robot. In fact, by nature, this
feature does not depend on the kind of the camera since
the latter holds the unified model recalled above: classical
perspective, central catadioptric or fish-eye. Thus the results
presented in this paper are general, excepted the leg edges
detection which depend on the camera kind. Otherwise, the
features determination, the interaction matrix formulas and
the control law are still the same in both cases. This was
expected since the used features depend only on the frame
where it is defined.

B. Robot modeling

The length of each robot leg holds the vector form,
introduced as thevision-based kinematics of the hexapod
expressed in the camera frame in [2]:

qi
cui = cRe

eBi + cte − cAi (14)

where cRe and cte are respectively the orientation and
position of the end-effector frame with respect to the base
frame and where the left upperscript denotes the reference
frame in which the coordinates are taken,eBi are the
attachment points of the legs to the moving platform (end-
effector) by spherical joints,cAi are the attachment points
of the legs to the base. The point coordinatescAi and eBi

are hence constants. It follows that the derivative of (14) with
respect to time is thus given by:

q̇i
cui + qi ˙cui = ˙cRe

eBi + ˙cte (15)

From (14), we have:

eBi = cR
T
e (cte − cAi − qi

cui) (16)

By combining (15) and (16), we obtain:

q̇i
cui + qi ˙cui = ˙cRe

cR
T
e (cte − cAi − qi

cui) + ˙cte (17)

Recall that ˙cRe
cRT

e = [cωc]×, wherec
ωc is the rotational

velocity expressed in the camera frame and[ ]× represents
the skew-symmetric matrix associated to the vector cross-
product. Hence, (17) can be written as follows:

q̇i
cui + qi ˙cui = [cωc]×(cte − cAi − qi

cui) + ˙cte (18)

Moreover, it is known that:

c
ωc × cte + ˙cte = ˙ctc (19)

It follows that (20) can also be written as follows:

q̇i
cui + qi ˙cui =

[
I3 [ cAi]× + qi[

cui]×
]
cvc (20)

where cvc = [ ˙ctc
c
ωc]

T is the Cartesian velocity of the
camera frame, considered as attached to the base frame and
moving with respect to a fixed end-effector, expressed in
itself. Now, sincecui is unit vector, it satisfies:

{
cuT

i
cui = 1

cuT
i

˙cui = 0
(21)

By projecting (20) on cui and combining the result with
(21), one easily obtains the differential inverse kinematic
model [2]:

q̇ = cJinv
c

cvc (22)

cJinv
c = −




cuT

1
( cA1×

cu
1
)T

...
...

cuT
6

( cA6×
cu

6
)T



 (23)

Notice thatcJinv
c can be considered as the interaction matrix

associated to the joint values and thus be noted:

cJinv
c = Lq (24)

C. Visual servoing of leg directions

In few words, we recall that the time variatioṅs of the
visual featuress can be expressed linearly with respect to the
relative camera-object kinematics twistv by ṡ = Lsv where
Ls is the interaction matrix related tos. The control scheme
is usually designed to ensure an exponential decoupled
decrease of the visual features to their desired values∗, from
which we deduce if the object is motionless:

v = −λ L̂s

+
(s− s∗) (25)

where L̂s is a model or an approximation ofLs, L̂s

+
the

pseudo-inverse of̂Ls, λ a positive gain tuning the time
to convergence. To servo the leg directions, we defines

as the geodesic error between the current and desired legs
orientation (cu × cu∗):

sui = cui × cu∗

i , i = 1..6 (26)

This means that:

su
∗

i = 03×1, i = 1..6 (27)

Using a similar demonstration as in the above subsection,
by projecting (20) orthogonally tocuT

i rather than oncuT
i ,



the interaction matrix associated to a leg orientationcu is
obtained [2]:

cu̇i = MT
i

cvc (28)

MT
i = − 1

qi

(
I3 − cui

cuT
i

) [
I3 −[ cAi + q cui]×

]
(29)

By combining (28) and (26), the time derivative ofsui is
given by:

ṡui = LT
ui

cvc (30)

LT
ui

= −[ cu∗

i ]×MT
i (31)

Now, the standard method applies: we stack each individual
errors in a single over-constrained vectorsu and each asso-
ciated individual interaction matricesLT

ui
into a compound

one LT
u and impose a first-order convergence tosu. This

yields the following pseudo-control vectorcvc

cvc = −λL̂T
u

+
su (32)

By combining (22) and (32), the final control signal on the
robot actuators is given by:

q̇ = −λ ĉJinv
c L̂T

u

+
su (33)

where the “hat” notation means “estimated at each sample
time from the measurements”.

IV. EXPERIMENTAL RESULTS

In this section, we first give a simple method to detect
the edges of the platform legs from images. The direction
of the platform legs are thus computed from the legs limbs
in image. In the second paragraph the leg directions will
be used in a visual-servo scheme of the platform effector
position as described above.

A. Fast and automatic detection of the platform legs in
images

Whatever visual servoing technique used, the spatiotem-
poral tracking of the visual information is the key of its
success. This problem has been extensively studied in the
case of perspective projection. In the literature, few works are
concerned with the tracking problem in catadioptric sensor.
For instance Barreto [4] dealt with straight lines tracking
by contour-to-point tracker. [9] gave methods to obtain fast
extraction and estimation algorithms of line for catadioptric
image. Then, they explained how classical edge-tracking
algorithms can be adapted to catadioptric sensors. Recently,
a model based line tracking is given in [8]. Unfortunately,
this kind of methods requires a good initialization of line
projection in image. This initialization is often done man-
ually. Furthermore, the line projection in each new image
is determined by iterative method from its last position to
its current position. Those methods suppose thus that the
motion of the line projection in image is small enough to
ensure the convergence. Parallel robots are supposed able
to realize a large displacement in a limited period of time.
Thus, the motion of the legs projection in image could

be very large. At this level the tracking algorithms based
on iterative minimization might break down. To overcome
those problems, we propose an automatic detection of the
platform legs from an omnidirectional image. It is based on
the particular position of the legs with respect to the camera.
The projection of the legs in the image are almost radials
(see Figure 4.a). This property is used to develop a fully
automatic detection as follow:

• A set of circles with diameters ranging from a minimal
valuedmin to a maximal valuedmax are considered. As
we can see on Fig 4.a,dmin and dmax and the circle
center are fixed such that only the image part, where the
legs are projected is concerned. For the image given on
Fig 4.a a set of17 circles with dmin = 184 pixel and
dmax = 370 pixel are defined.

• The image is scanned along each defined circle. We
then get a mono-dimensional signal corresponding to
each circle. For example, Figure 4.b gives the signal
corresponding to the circle defined in Fig. 4.a.

• A binary signal (see 4.c) can be obtained after threshold-
ing of the signal obtained in the above step (see Figure
4.b).

• The signal derivative after thresholding can be obtained
using simple gradient filter. The derivative of the signal
given on 4.c is plotted on Fig 4.d. The peeks of the
signal define then the image of the leg limbs. It is
possible to detect the peeks from the derivative of
the signal given on 4.b without thresholding step (see
Fig 4.e). However, from the last Figure we can note
that other peeks appear. The thresholding step has got
to avoid them and make the detection of the peeks
belonging to the platform legs easier.

In conclusion of this paragraph, the method we propose
allows an automatic detection of legs limbs in images.
No initialization of the algorithm by the user is required.
Furthermore, the legs detection in image does not depend on
their velocity. In practice, our method take less than0.3ms

using a simple computer. It is then very adequate to high
speed task. In the next paragraph, the legs projection will be
used to compute their orientation in the camera frame.

B. Estimation of the legs orientation and their related inter-
action matrix

Assume now that the points belonging to legs limbs
in image have been extracted using the method described
in the above paragraph. The corresponding points in the
normalized plane can then be obtained using the inverse of
the transformation given by equation (4). Once the later are
computed, the perpendicular vector to the interpretation plane
can be computed by two ways:

• The conics parametersβi defined in (10) can be com-
puted using a linear minimization. Fromβi, it is indeed
possible to compute the perpendicular vector to the
interpretation plane using (11).

• The camera has been calibrated. The point projections
on the sphere defined by the unified camera model are
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Fig. 4. Automatic detection of legs in image: (a) detection principle, (b)
mono-dimensional signal along the defined circle, (c) the signal on circle
after thresholding, (d) the derivative of the obtained signal after thresholding,
(e) the derivative of the obtained signal without thresholding.

obtained from the point coordinates in the normalized
plane and (5). The perpendicular vector to the inter-
pretation plane of the legs limbs can be determined by
linear solution using equation (7).

In practice, the second method gives more robust results with
respect to noise. This was expected since the first method
uses a non minimal parameters number (five parameters
instead of only two independent ones). Indeed it estimates the
five parameters of each conic using a linear method. While
the second one uses a minimal parameters number in a linear
optimization. Then, the later is used in the following of our
experiment. Once the perpendicular vectors to the two leg
limbs are computed, the corresponding leg orientations can
be computed from (13).

Now, as the legs orientation are estimated, the numerical
values of their related interaction matrices have also to be
determined to close the control loop. From equation (28),
we note that the later depend on the leg orientation, the
attachment pointsAi expressed in the camera frame, the
articulation valueqi and the legs orientation vector them-
selves. The joint valuesqi appear two times in (28): under

the form[ cA+q cu]× and as a gain. Considering the order of
magnitude ofAi andqi, one can neglect small errors on the
joint offsets. Moreover, since the joint are prismatic it iseasy
to measure their offsets manually with millimetric accuracy.
This is also sufficient to ensure that the gain is accurate
enough. Now, to totally determine the interaction matrices
value, only the value of the attachment pointsAi have to
be computed. In [2], a calibration procedure was proposed,
using leg observation. The proposed method determine in
first step the pointsAi expressed in the camera frame, then
expressed in the basis frame. Finally, the other kinematic
parameters can be deduced. This method can be combined
with the automatic legs detection to make it more practical.
The pointsAi can also be determined manually. In the next
paragraph, a manually estimation of them will be enough to
ensure convergence.

C. Example of an experimental result

In the following experiment, we give an example of an
omnidirectional visual-servo of the Gough-Stewart platform.
The initial and desired configurations of the platform are
given respectively on Figures 5.a and 5.b. The corresponding
image are given respectively on 5.c and 5.d. In 5.d, both
initial and desired positions of the legs limbs in image are
given. In fact, in this experiment, the leg lengths are almost in
their minimal possible values at the initial position. While, in
desired position, the leg lengths are in their maximal values.
Finally, 6.a gives the behaviors of the feature error squares
eT
i e. From this Figure we note that this error decrease to

0. A similar behavior of the velocities is also obtained on
Figure 6.b. Furthermore, from Figure 6.c, we note the good
behavior of the legs length to their desired values.

V. CONCLUSIONS AND FUTURE WORKS

A novel approach was proposed for controlling a parallel
robot using an omnidirectional camera. The use of omni-
directional camera allowed us to enlarge the field of view.
Indeed, compared to classical camera, the omnidirectional
camera allowed to observe the whole platform legs without
any occlusion. The visibility constraint is ensured whatever
the effector position. Furthermore, the legs positions with
respect to the image plane made their detection by a fully
automatic method very easy. No initialization of the legs
positions in image is required. Furthermore, the proposed
automatic detection method is very simple to implement and
not time expensive. Then, it is very suitable for high speed
task. Now, As the visibility constraint is ensured, future
works will be devoted to prove the global convergence of
the system. We are also interested to extend the results we
obtain in this work to a new parallel robot namely T3R1
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