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Abstract— This work deals with the control by vision of
the Gough-Stewart platform. For that, a central catadioptric
camera is used to observe the platform legs. This allows to
obtain a large field of view, and then avoids the occlusion
problems observed when a classical perspective camera iseas
The leg projections onto the catadioptric plane are used to
determine their orientation in the camera frame. Finally, the
computed orientations will be used in a visual servoing schmee
of the platform effector.

(a) (b)
I. INTRODUCTION , ) )
) . ) ~ Fig. 1. A Gough-Stewart platform observed by a classicalspestive
Recently, it has been shown that visual servoing is émera: (a) camera position with respect to the platforrs, Ig) leg images
good way to control parallel mechanisms [1], [2], [12].
In [12], the end effector pose is measured by vision and
used for regulation. However, the direct application ofrais
servoing techniques assumes implicitly that the robotreswe
differential kinematic model is given and that it is calitaa.
In [1], [2] propose respectively an image-based and pasitio
based visual-servo schemes by observing the platform legs
with classical perspective camera. In [1], the authors tised
computed legs orientation from their image to control thé en b
e L (a) (b)
effector position. In [2], it is shown that better resultaultb
be obtained using the legs projection in image for regutatiorFig. 2. A Gough-Stewart platform observed by an omnidicew camera:
without any 3D reconstruction. (a) camera position with respect to the platform legs, (b)ileages
Unfortunately, to position adequately the camera to ob-

serve simultaneously all the platform legs is a complex.task ) ) ) )
In [1], [2], the camera was positioned in front of the platfor Such an enhanced field of view can be achieved by either

(see Fig 1.a). In this case, the legs in the front of the piatfo USINg catadioptric systems, obtained by opportunely combi

are closer to the camera than the ones in the back. AR mirrors and conventional cameras, or employing purely

a consequence, the extraction of the image features lyifPPtric fish-eye lenses [3]. In practice, it is highly desite

on the front legs will be more robust. Furthermore, larg&hat such imaging systems have a single viewpoint [3], [11].

parts of the legs in the back can be occluded by the frorthat is. there exists a single center of projection, so that,

legs (see Fig 1.b). This is an important drawback since tHYe"Y Pixel in the sensed images measures the irradiance
vision based control assumes that all legs can be obser/qthe light passing through the same viewpoint in one

during the servoing task. A first solution to address thifarticular direction. The reason why a single viewpointds s

issues is to employ a system made of multiple cameradesirable is that it permits the generation of geometscall

However, in this case, data provided by each camera must B¥T€Ct Perspective images from the pictures captured @y th
synchronized and calibrated. A second and simpler solutignidirectional camera. Geyer [6] and Barreto [5] devetbpe
consists on positioning a single omnidirectional camera & Unified projection model for these sensors using proertie
the platform center (see Figure 2.a). In such a way, aff .the prolectlon_of points on a sphere. In this work, this
the legs can be simultaneously observed on panoramic vi&pified model will be used, since it allows to formulate
and potential occlusions can not occur (see Figure 2.b). AgPntrol laws that are valid for any sensor in this class:
omnidirectional camera should highly increase the rotssin Perspective, catadioptric or fish-eye. _

of visual control of the Gough-Stewart platform. We will 10 date, as far as we know there is no work coupling
demonstrate this point in this paper. the use of central catadioptric camera and parallel robots

Omnidirectional cameras are usually intended as a visidiPntrol. As we can see on Figure 2.b, the omnidirectional
system providing a360° panoramic views of the scene.c@mera allows us to observe all legs without any occlusion.
Moreover, by putting the camera in the middle of the legs,
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during the realization of this work. the classical camera case. The features extraction might th

firstname. | ast nane@ asnea. uni v-bpcl ernont . fr  be more robust. From the same Figure, we also note that



the leg positions in the image are almost radials. We will
take advantage of this configuration to develop an automatic
detection of them in image (see paragraph IV-A).

In the next section, we remind the unified catadioptric
camera model. In section 3, the cylindrical leg observation
and the interaction matrix related to the legs orientation i
the camera frame are recalled. In Section 4, an automatic
legs detection in image is proposed. The leg orientations in
the camera frame are computed from their image, and used
to control the platform effector position. /

II. CENTRAL CATADIOPTRIC CAMERA MODEL

For sake of completeness, we present here a slightly @ *
modified version of the projection model of Geyer [6] and T :
Barreto [5] (Fig. 3). The projection of 3D points can be done
in the following steps:

1) world points in the mirror frame are projected onto the Fig. 3. Unified projection model
unit sphere,

X coordinates of the points belonging to the interpretatieng
(X7,) = (Xs)F, = T (Xs,Y5,Zs) (1) hold the following equation:

2) the points coordinates are then changed to a new X = [X YV Z]|" € Il <= n, X + nyY +n.Z =0 (6)
reference frame centered = (0,0, &),
Let S be the intersection between the interpretation plane

(Xo)r, = (Xs)r, = (X, Y5, Zs = &) (2)  and the sphere. By combining (1) and (8)js then defined
3) we then project the point onto the normalized plane,by:

X2+Y2+22=1 @)
e y Ny Xs +nyYs+n.2Z; =0
> ) —Sa 1)=~n Xs 3 . . . . . .
Zs—§& Zs—¢ )= h(X) @) Using the spherical coordinates given by (5), a line in
4) the final projection involves a generalized camergPace is thus mapped onto the image plane to a conic curve,
projection matrixK (with f the focal length(uo,v,)  Which can be written as:

the principal points the skew and- the aspect ratio)

m:('rvyv 1):(

aox?® + aqy? + 200y + 2037 + 204y + a5 =0 (8)

Y s w with:
0 2 2 2
ag=n; —&(1—n2)
p=Km=| 0 v v | =k(m) (4) a :ng_gg(l_ng)
0 0 1 v 1o 2 *
Q2 = nﬂﬁny( § ) (9)
The functionf is bijective and a3 = Ngn,
Qg = NyNy
—E—/1+(1-€2)(22+y2) %
x24y2+1 € a5 = nz
—1 _ —&—/1+(1-£2)(224y2) . . .
™ (m) = 22+ y2+1 =y ®) The coefficient of (8) are defined with a scale factor. If
—e—/1+(1—€2) (z2+92) as # 0, the number of those equation parameters can be
r2+y2+1 + 5

reduced and (8) can be written as:
In this paper, the whole calibration parameters are sugpose ) )
to be known [10]. In the next section we remind an adequate (0" + (1Y~ + 2822y + 2630 + 26,y +1=0  (10)

model of the platform legs in camera frame. , _ o ,
with 3; = &-. From the parameterg;, it is possible to

1. M ODELING determine the perpendicular vector to the interpretatiang
A. Cylindrical leg observation as follow:
/ * n.=(B2+B3+1)2

The legs are supposed to be cylindrical. Therefore, their e = B3 7, (11)
projections are defined by the so-called interpretationgda
Define the normal unitary vecton = [ngn, n.]T as the
orthogonal to the interpretation plarié defined by a line A forward determination of the perpendicular vector to the
in 3D space and the principal projection center. Thus thiaterpretation can also be obtained fram by:

Ny = Bamn



a3

oy qi CHi +qi C.Hi = CReCRZ(Cte — ‘A —q Cﬂi) + Cfe (17)
n— as (12) Recall thalCReCRZ = [‘w,] «, where‘w, is the rotational
Qs velocity expressed in the camera frame drid represents
Il ca | the skew-symmetric matrix associated to the vector cross-
Qs product. Hence, (17) can be written as follows:

The case wherers = 0 corresponds to a degenerate case di
where thez — axis belongs to the interpretation plane. In
this case, the projection of the leg edges is straight linedoreover, it is known that:

Unfortunately th|s_ happens for_several end-effector pose. We X %ty + t, = t, (19)
Therefore, the estimation ofi using (11) or (12) fromy;

or 3; will not be suitable, sincexs = as = az = 0. It follows that (20) can also be written as follows:

For this reason, a more robust estimation nffrom the Gw+acly = T [“Adx +a[w] Ve (20)
projection onto a sphere projection will be proposed in the _ . _
following of this paper. The proposed method is based owhere v = [t w.]” is the Cartesian velocity of the
simple linear minimization. Further, the vectar can be camera frame, considered as attached to the base frame and
computed whatever the leg position (i.e. no degeneratg.cas@oving with respect to a fixed end-effector, expressed in
More details about line projection with catadioptric casser itself. Now, since“u; is unit vector, it satisfies:

cgi + ¢ cgi = [cwc]x (cte — “A; — qi cui) + cte (18)

are given on [7]. Finally, the leg orientation, expressethi cul ey, =1

camera frame, can straightforwardly computed as follow: { T u. — 0 (21)
‘u — _‘n; x ‘n? (13) By projecting (20) on“u; and combining the result with
= |°nj x °ng| (21), one easily obtains the differential inverse kinemati

The measure‘u; will be used in this paper to servo the model [2]:
end-effector pose of the robot. In fact, by nature, this

feature does not depend on the kind of the camera since

the latter holds the unified model recalled above: classical
perspective, central catadioptric or fish-eye. Thus theltes

presented in this paper are general, excepted the leg edges
detection which depend on the camera kind. Otherwise, tidotice that°J?*” can be considered as the interaction matrix
features determination, the interaction matrix formulad a associated to the joint values and thus be noted:

the control law are still the same in both cases. This was

CJin'u ch (22)
CE;AF (°A1x CE])T
= —| : : (23)

ng (CAG x CEG)T

q:

CJin'u

expected since the used features depend only on the frame I =Lq (24)
where it is defined. C. Misual servoing of leg directions
B. Robot modeling In few words, we recall that the time variatiénof the

visual features can be expressed linearly with respect to the
relative camera-object kinematics twistoy $ = Lgv where

Ls is the interaction matrix related to The control scheme

is usually designed to ensure an exponential decoupled
¢ ‘u; = ‘R °B; + “t. — “A; (14) decrease of the visual features to their desired vsiyérom
which we deduce if the object is motionless:

The length of each robot leg holds the vector form,
introduced as thevision-based kinematics of the hexapod
expressed in the camera frame in [2]:

where ‘R, and “t. are respectively the orientation and
position of the end-effector frame with respect to the base v =)\ f*(s —s%) (25)
frame and where the left upperscript denotes the reference
frame in which the coordinates are takefiB; are the WhereLs is @ model or an approximation dis, L the
attachment points of the legs to the moving platform (endsseudo-inverse oLs, A a positive gain tuning the time
effector) by spherical joints¢A; are the attachment points to convergence. To servo the leg directions, we define
of the legs to the base. The point coordinatés; and “B;  as the geodesic error between the current and desired legs
are hence constants. It follows that the derivative of (1w orientation Cu x “u*):
respect to time is thus given b.y. Sus = “u, x “ut,i=1.6 (26)

6“0 +4:°U; = ‘R "By + “te (5 This means that:
From (14), we have:

eR. — ¢ Tiey _ ecpA. . cC )
B; =R, ("t = "Ai — ¢ "w;) (16) Using a similar demonstration as in the above subsection,
By combining (15) and (16), we obtain: by projecting (20) orthogonally téu? rather than orfu?

Su;c :03X1,i:1..6 (27)



the interaction matrix associated to a leg orientatianis
obtained [2]:

Cgi = M;F CVc
M7 1
4qi
By combining (28) and (26), the time derivative «f; is
given by:

(28)
(Is — “u;“uf) [Is  —[°A; + ¢°u,;](29)

. _ T c
su; = Ly, “ve

Li _[CH?]XM?

(30)
(31)

Now, the standard method applies: we stack each individual

errors in a single over-constrained vecsgrand each asso-
ciated individual interaction matrices]. into a compound
one LT and impose a first-order convergencestp This
yields the following pseudo-control vectdi,.
—~+
‘v.=—-ALT s,

(32)

By combining (22) and (32), the final control signal on the

robot actuators is given by:

—_—
q=—X\JmLT s, (33)

where the “hat” notation means “estimated at each sample

time from the measurements”.

IV. EXPERIMENTAL RESULTS

be very large. At this level the tracking algorithms based
on iterative minimization might break down. To overcome
those problems, we propose an automatic detection of the
platform legs from an omnidirectional image. It is based on
the particular position of the legs with respect to the camer
The projection of the legs in the image are almost radials
(see Figure 4.a). This property is used to develop a fully
automatic detection as follow:

o A set of circles with diameters ranging from a minimal
valued,,;, to a maximal valuel,,,,, are considered. As
we can see on Fig 4.d,,;, andd,,., and the circle
center are fixed such that only the image part, where the
legs are projected is concerned. For the image given on
Fig 4.a a set ofi7 circles withd,,,;;, = 184 pixzel and
dmaz = 370 pizel are defined.

o The image is scanned along each defined circle. We
then get a mono-dimensional signal corresponding to
each circle. For example, Figure 4.b gives the signal
corresponding to the circle defined in Fig. 4.a.

« Abinary signal (see 4.c) can be obtained after threshold-
ing of the signal obtained in the above step (see Figure
4.b).

o The signal derivative after thresholding can be obtained
using simple gradient filter. The derivative of the signal
given on 4.c is plotted on Fig 4.d. The peeks of the
signal define then the image of the leg limbs. It is
possible to detect the peeks from the derivative of
the signal given on 4.b without thresholding step (see

In this section, we first give a simple method to detect
the edges of the platform legs from images. The direction
of the platform legs are thus computed from the legs limbs
in image. In the second paragraph the leg directions will

Fig 4.e). However, from the last Figure we can note
that other peeks appear. The thresholding step has got
to avoid them and make the detection of the peeks
belonging to the platform legs easier.

be used in a visual-servo scheme of the platform effectqf, .onciusion of this paragraph, the method we propose

position as described above. allows an automatic detection of legs limbs in images.
No initialization of the algorithm by the user is required.
Furthermore, the legs detection in image does not depend on

. . . .. their velocity. In practice, our method take less ttadm
Whatever visual servoing technique used, the spatiotem- y- 1N p 5

poral tracking of the visual information is the key of itsuSIng a simple computer. It is then very adequate to high

success. This problem has been extensively studied in tﬁgeed task. In the next paragraph, the legs projection will b

. L : used to compute their orientation in the camera frame.
case of perspective projection. In the literature, few gake
conqerned with the tracking prob!em in c_:atad!optric SENSOB - Egimation of the legs orientation and their related inter-
For instance Barreto [4] dealt with straight lines traCk'n%ction matrix
by contour-to-point tracker. [9] gave methods to obtairt fas
extraction and estimation algorithms of line for catadimpt ~ Assume now that the points belonging to legs limbs
image. Then, they explained how classical edge-trackirlg image have been extracted using the method described
algorithms can be adapted to catadioptric sensors. Rgeenth the above paragraph. The corresponding points in the
a model based line tracking is given in [8]. Unfortunately,”orma”ze‘j plane can then be obtained using the inverse of
this kind of methods requires a good initialization of linethe transformation given by equation (4). Once the later are
projection in image. This initialization is often done man-computed, the perpendicular vector to the interpretatiang
ually. Furthermore, the line projection in each new imag&an be computed by two ways:
is determined by iterative method from its last position to « The conics parameter$ defined in (10) can be com-
its current position. Those methods suppose thus that the puted using a linear minimization. Frof, it is indeed
motion of the line projection in image is small enough to possible to compute the perpendicular vector to the
ensure the convergence. Parallel robots are supposed able interpretation plane using (11).
to realize a large displacement in a limited period of time. « The camera has been calibrated. The point projections
Thus, the motion of the legs projection in image could on the sphere defined by the unified camera model are

A. Fast and automatic detection of the platform legs in
images



the form[ A +¢ “u]« and as a gain. Considering the order of
magnitude ofA; andg;, one can neglect small errors on the
joint offsets. Moreover, since the joint are prismatic ie&sy

to measure their offsets manually with millimetric accytac
This is also sufficient to ensure that the gain is accurate
enough. Now, to totally determine the interaction matrices
value, only the value of the attachment poimts have to

be computed. In [2], a calibration procedure was proposed,
using leg observation. The proposed method determine in
first step the pointd\; expressed in the camera frame, then
expressed in the basis frame. Finally, the other kinematic
parameters can be deduced. This method can be combined
(a) with the automatic legs detection to make it more practical.
The pointsA; can also be determined manually. In the next
paragraph, a manually estimation of them will be enough to
ensure convergence.

C. Example of an experimental result

In the following experiment, we give an example of an
omnidirectional visual-servo of the Gough-Stewart platfo
The initial and desired configurations of the platform are
given respectively on Figures 5.a and 5.b. The correspgndin
image are given respectively on 5.c and 5.d. In 5.d, both
initial and desired positions of the legs limbs in image are
given. In fact, in this experiment, the leg lengths are alnros
their minimal possible values at the initial position. \\hiin
desired position, the leg lengths are in their maximal v&lue
Finally, 6.a gives the behaviors of the feature error scgiare
el e. From this Figure we note that this error decrease to

(d) (e) 0. A similar behavior of the velocities is also obtained on
Fig. 4. Automatic detection of legs in image: (a) detectiaimgple, (b) Figure 6.b. Furthermore, from Figure 6.c, we note the good

mono-dimensional signal along the defined circle, (c) tumali on circle  behavior of the legs length to their desired values.
after thresholding, (d) the derivative of the obtained algdter thresholding,

(e) the derivative of the obtained signal without threshmjd V. CONCLUSIONS AND FUTURE WORKS

(b) (©)

A novel approach was proposed for controlling a parallel
([jobot using an omnidirectional camera. The use of omni-
Igirectional camera allowed us to enlarge the field of view.
pretation plane of the legs limbs can be determined bndeed, clcl)mpzzr(?[d t% Class'fﬁl c?]mlera,l ttr;e orr|1n|d|rec_:ttr|10n?l

linear solution using equation (7). amera allowed fo observe the whole piatiorm fegs withou

i i any occlusion. The visibility constraint is ensured whatev

In practice, the second method gives more robust resulls Wifhe effector position. Furthermore, the legs positionshwit
respect to noise.. This was expected since the first meth?é’spect to the image plane made their detection by a fully
uses a non minimal parameters number (five parametef§iomatic method very easy. No initialization of the legs
instead of only two independent ones). Indeed it estimates t,,,sjtions in image is required. Furthermore, the proposed
five parameters of each conic using a linear method. Whilg ;omatic detection method is very simple to implement and
the second one uses a minimal parameters number in a linegj time expensive. Then, it is very suitable for high speed
optimization. Then, the later is used in the following of oUkask  Now, As the visibility constraint is ensured, future
experiment. Once the perpendicular vectors to the two l§gorks will be devoted to prove the global convergence of
limbs are computed, the corresponding leg orientations cgfe system. We are also interested to extend the results we

obtained from the point coordinates in the normalize
plane and (5). The perpendicular vector to the inte

be computed from (13). _ _obtain in this work to a new parallel robot namely T3R1
Now, as the legs orientation are estimated, the numerical
values of their related interaction matrices have also to be REFERENCES

determined to close the control loop. From equa“‘?” (28)[1] N. Andreff, T. Dallej, and P. Martinet. Image-based \abservoing
we note that the later depend on the leg orientation, the  of a gough-stewart parallel manipulator using leg obsamat Inter-
attachment pointsA; expressed in the camera frame, the _ national Journal of Robotics Research, 26(7):677-687, 2007.

. . . . 2] N. Andreff and P. Martinet. Unifying kinematic modelinglentifica-
articulation valueg; and the Iegs orientation vector them- tion and control of a gough-stewart parallel robot into dorishased
selves. The joint valueg; appear two times in (28): under framework. |EEE Transactions on Robotics, 22(6):1077-1086, 2006.



120

@)

0 20 40 60 80 100 120

(b)

20 40 60 80 100 120

(©)

Fig. 6. Experimental results: (a) errors behavior, (b) eitles, (c) Leg
lengths behavior
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