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Abstract— Omnidirectional cameras have a wide field of view
and are thus used in many robotic vision tasks. An omnidi-
rectional view may be acquired by a fisheye camera which
provides a full image compared to catadioptric visual sensors
and do not increase the size and the weakness of the imaging
system with respect to perspective cameras. We prove that
the unified model for catadioptric systems can model fisheye
cameras with distortions directly included in its parameters.
This unified projection model consists on a projection onto a
virtual unitary sphere, followed by a perspective projection onto
an image plane. The validity of this assumption is discussed and
compared with other existing models. Calibration and partial
Euclidean reconstruction results help to confirm the validity of
our approach. Finally, an application to the visual servoing of
a mobile robot is presented and experimented.

I. INTRODUCTION

A camera with a large field of view is usefull in many

robotic applications including robot localisation, navigation

and visual servoing. Conventional cameras are generally seen

as perspective tools (pinhole model) which are convenient for

modelisation and algorithmic design. Morever they exhibit

small distorsions and thus acquired images can easily be

interpreted. Unfortunately, conventional cameras suffer from

a restricted field-of-view (Fig.1 (a)). When a larger field of

view is required omnidirectional cameras can be employed

(Fig.1 (b) and (c)). In the literature, several methods have

been proposed to increase the field of view [1]. The first

one consists on using a moving camera or a system made

of multiple cameras. In this case, the omnidirectional view

is computed from a set of images which is generally not

compatible with real time applications. A second solution

consists on combining conventional camera and mirrors. The

obtained sensors are refered to catadioptric imaging system.

Unfortunately, those cameras exhibit generally a large dead

area in the center of the image (Fig.1 (c)) which can be

a huge drawback. Such sensors also have the drawback of

requiring a mirror which significantly increases the size and

the weakness of the imaging system. Note that the resulting

imaging systems have been termed central catadioptric when

a single projection center describes the world-image mapping

[2]. In [3], a projection model valid for the entire class of

central catadioptric camera has been proposed. According to

this generic model, all central catadioptric cameras can be

(a) (b) (c)

Fig. 1. Three images acquired approximately at the same position, with
(a) a 1/4′′ image sensor with a perspective lens (b) the same image sensor
with an Omnitech Robotics ORIFL190-3 fisheye lens with a field of view
of 190˚ and (c) a catadioptric camera.

modelled by a central projection onto a sphere followed by

a central projection onto the image plane.

The last class of cameras with a wide field-of-view are the

dioptric systems (fisheye cameras) [2]. A fisheye camera is an

imaging system combining a fisheye lens and a conventional

camera. Their main advantages with respect to catadioptric

sensors is firstly that they do not exhibit dead area (see Fig.1

(b)) and secondly, a fisheye lens do not increase the size and

the weakness of the imaging system with respect to a conven-

tional camera. However, whereas a unified model exists for

central catadioptric cameras [3], many different models are

used for fisheye cameras. Distortions are generally splitted

into two main components (namely tangential and radial

distortions). Tangential distortions are generally negligible

compared to radial distortions and thus not considered in

this paper.

The radial distortions models for fisheye cameras can be

classified into three main groups. The first group is based on

the pinhole model. A 3D point is first perspectively projected

into the image plane (pinhole model), then, a radial distortion

is applied to the projected point to obtain the distorted image

point. The second category is based on the captured rays.

It consists on defining a mapping between the incidence

ray direction and the distance between the image point and

the image center. The last category is based on the unified

catadioptric camera model. It is motivated by the fact that

similar behaviors have been observed for those sensors (see

Fig.1 (b), (c)). In [4], a 3rd order polynomial model of radial

distortion is applied to the projected point obtained with

the unified model. In [5], the authors propose to extend the
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Fig. 2. Perspective and fisheye imaging process. The perspective image of
a 3D point M is mp and its fisheye image is mf .

unified model to include fisheye camera by substituing the

projection on a sphere by a projection on a quadric surface.

In [6], the division model of radial distortions proposed in

[7] is integrated in the unified model for central catadioptric

cameras.

In this paper, we show that the unified model for catadioptric

cameras via a spherical projection is equivalent to a pinhole-

based and to a captured rays-based models with radial

distortions and thus that it can be directly employed to model

fisheye cameras. As a consequence, all existing algorithms

for catadioptric cameras (calibration, visual servoing, . . . ) are

also usefull for fisheye cameras. In Section II, the existing

models for fisheye cameras are detailled. Then, the proposed

model is presented in Section III and validated in Section IV

through comparison with several existing models, experimen-

tal results of calibration, and partial Euclidean reconstruction.

Finally, the Section V reports experimental results in the

context of mobile robot vision-based navigation.

II. FISHEYE CAMERA MODELS

Let Fc and Fi be the frames attached to the camera with

origin C located at the projection center and to the image

plane with origin I located at the principal point respectively.

Let M be a 3D point of coordinates M = (X Y Z)T

with respect to the frame Fc. The perpective image and

the fisheye image coordinates with respect to Fi of M are

mp = (xp yp)
T and mf = (xf yf )T respectively. The

distance between the principal axis and the image point

is denoted by r, the angle between the incoming ray and

the principal axis by θ and the angle between the X-axis

and m by α (refer to Figure 2) . The subscripts p, f and

c denote respectively perspective, fisheye and catadioptric

cameras. For a perspective camera, given the focal length f ,

rp satisfies:

rp(θ) = f tan θ (1)

For a fisheye camera, radial distortions have to be taken

into account. Many models of radial distortions exist but they

have all to respect the two following fundamental constraints

:

Constraint 1: the ray arriving along the principle axis is

not deformed: rf (0) = 0.

Constraint 2: the radius rf (k) is monotonically increas-

ing for k > 0.

r1
f (rp) = rpL(rp, n)

r2
f (rp) =

rp

L(rp, n)

r3
f (rp) =

rp

1 + k1r2
p

r4
f (rp) = rp

L1(rp, n1)

L2(rp, n2)

r5
f (rp) = s log(1 + λrp)

TABLE I

Pinhole-based models

r1
f (θ) = fθ

r2
f (θ) = 2f tan

„

θ

2

«

r3
f (θ) = f sin θ

r4
f (θ) = f sin

„

θ

2

«

r5
f (θ) = f(k1θ + k2θ3 + · · · + knθ2(n−1)+1)

TABLE II

Captured rays-based models

Let us now describe the two models’ families classically

employed.

A. Pinhole-based models

The first model is based on the pinhole projection. The

coordinates of the image point mf can be obtained thanks to

a mapping T1 linking the fisheye and the perspective radii:

rp −→
T1

rf

As the equation (1) is not defined for θ = π/2, the models

based on the pinhole projection are not defined too.

The mapping T1 may be defined by several ways as detailed

in Table I. In [8], radial distortions are described by a

polynomial model r1
f (rp) where: L(rp, n) = 1 + k1r

2
p +

k2r
4
p + ...+knr2n

p . ki, (i = 1, 2, ..n) are the n parameters of

the model. In practice, this model fits to lenses with small

distortions but many parameters are needed for lenses with

larger distortions. The division model r2
f (rp) suggested in

[7] allows to handle high distortion with few parameters.

This model may be used with only one parameter r3
f (rp)

[7]. A rational model r4
f (rp) is proposed in [9] with n1 +n2

parameters. A logarithmic mapping r5
f (rp) is used in [10].

B. Captured rays-based models

The second group of models is based on the captured rays.

It consists on defining a mapping T2 between the fisheye

radius and the incidence angle:

θ −→
T2

rf
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For perspective cameras, Equation (1) maps the incidence

angle θ to the radius r thanks to the focal length f . For

fisheye cameras, this mapping is no more valid. In the sequel,

we briefly review T2-mappings proposed to take into account

distortions (see Table II).

The f-theta mapping or equiangular or equidistance pro-

jection r1
f (θ) proposed in [11] , is suitable for cameras

with limited distortions. The stereographic projection r2
f (θ)

proposed in [12] preserves circularity and thus project 3D

local symmetries onto 2D local symmetries. The orthogonal

or sine law projection r3
f (θ) is described in [13]. In [14], the

equisolid angle projection function r4
f (θ) is proposed. The

polynomial function r5
f (θ) proposed in [15] allow to improve

the accuracy of a polynomial model at the cost of increasing

the number of parameters.

III. MODELING FISHEYE CAMERA VIA A PROJECTION ON

A SPHERE

In this section, first the unified model is detailled. Then,

the equivalence of this model to distortion-based models

(pinhole-based and captured rays-based models) is demon-

strated.

A. World-image mapping

As outlined previously the unified projection model con-

sists on a projection onto a virtual unitary sphere, followed

by a perspective projection onto an image plane. This virtual

unitary sphere is centered in the principal effective view point

and the image plane is attached to the perspective camera.

Let Fc and Fm be the frames attached to the conventional

camera and to the unitary sphere respectively. In the sequel,

we suppose that Fc and Fm are related by a simple transla-

tion along the Z-axis (Fc and Fm have the same orientation

as depicted in Figure 3). The origins C and M of Fc and Fm

will be termed optical center and principal projection center

respectively. The optical center C has coordinates [0 0 −ξ]T

with respect to Fm and the image plane is orthogonal to the

Z-axis and it is located at a distance Z = fc from C.

Let X be a 3D point with coordinates X = [X Y Z]T

with respect to Fm. The world point X is projected in

the image plane into the point of homogeneous coordinates

m = [x y 1]T . The image formation process can be split into

three steps (Fig.3):

- First step: The 3D world point X is first projected

on the unit sphere surface into a point of coordinates Xm

in Fm: Xm = X/ρ where ρ = ‖X‖ =
√

X2 + Y 2 + Z2.

The projective ray Xm passes through the principal projection

center M and the world point X .

- Second step: The point Xm lying on the unitary

sphere is then perspectively projected on the normalized

image plane Z = 1 − ξ. This projection is a point of

homogeneous coordinates x = [xT 1]T = f(X) (where

x = [x y]T ):

x = f(X) =

[
X

Z + ξρ

Y

Z + ξρ
1

]⊤
(2)

Fig. 3. Unified model for catadioptric camera.

Note that, setting ξ = 0, the general projection model

becomes the well known pinhole model. We will see in the

sequel that ξ can be seen as a parameter which allows to

control the amount of radial distortions.

- Third step: Finally the point of homogeneous coordi-

nates m in the image plane is obtained after a plane-to-plane

collineation K of the 2D projective point of coordinates x:

m = Kx (3)

The matrix K can be written as K = KpM where the matrix

Kp contains the perspective camera intrinsic parameters, and

the diagonal matrix M links the frame attached to the unitary

sphere to the camera frame Fm. In the sequel, we assume that

the intrinsic matrix is given by: K =

0
@

fc 0 0

0 fc 0

0 0 1

1
A where

fc > 0. When a pinhole camera is considered fc will be

chosen as fc = fp and when a fisheye camera is considered

as fc = ff . The perspective projection mp of the 3D point

X is obtained setting ξ = 0:
{

xp = fpX/Z
yp = fpY/Z

(4)

We will now show that the model whose final results is

given by Equation (3) is equivalent to pinhole-based model

or captured rays-based model.

B. Equivalence to pinhole-based model

By extracting the values of X and Y in (2) and (4),

elevating squarely and then taking the square root, we obtain:

Z + ξρ

ff

√
x2

f + y2
f

︸ ︷︷ ︸
rf

=
Z

fp

√
x2

p + y2
p

︸ ︷︷ ︸
rp

(5)

Noticing that Z > 0, we can write: ρ =

Z

√(
X
Z

)2
+

(
Y
Z

)2
+ 1. Thanks to (4), we thus have

the relation:

ρ =
Z

fp

√
r2
p + f2

p (6)

Then, from (5) we deduce:

rf = rf (rp) =
ff
fp

rp

1+ξ

s
r2

p

f2
p

+1

(7)
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Equation (7) is a T1-mapping linking the perspective radius

rp and the fisheye radius rf . It can be easily verified that

Constraint 1 is respected. Furthermore, since ff , fp and ξ
are positive, Constraint 2 is respected too.

C. Equivalence to captured rays-based model

Using the expressions of x and y given in (2) and noticing

that Z + ξρ > 0, we can write:

rf =
√

x2
f + y2

f =
ff

Z + ξρ

√
X2 + Y 2

Given that tan θ =
√

X2+Y 2

Z
, from the previous equation we

deduce:

rf =
ff

1 + ξ ρ
Z

tan θ (8)

Noticing that ρ can be written as a function of tan θ and Z:

ρ = Z
√

tan2 θ + 1, Equation (8) can be rewritten:

rf = rf (θ) =
ff tan θ

1+ξ
√

tan2 θ+1
(9)

Equation (9) is clearly a T2-mapping linking the radius rf

and the incidence angle θ. Once again, it can be easily

verified that Constraints 1 and 2 are respected as ff and

ξ are positive scalars. Note that as usual with captured rays-

based model, our model is not valid when θ = π/2.

The unified model has been shown to be theoretically equiv-

alent to the mappings T1 and T2 which implies that it can

be used to model fisheye cameras. In the next section, the

validition of the model is experimentally demonstrated.

IV. VALIDATION

In order to validate the proposed model, firstly, the pa-

rameters ff and ξ corresponding to the Omnitech Robotics

ORIFL190-3 are computed from the captured rays model

provided by the camera producer and the model (9). Sec-

ondly, we show that our model is able to fit almost all

existing fisheye cameras as seen in Fig.5 and Fig.6. We

then calibrate our camera using the method designed for

central catadioptric cameras proposed in [4]. The obtained

intrinsic parameters are finally exploited for partial Euclidean

reconstruction.

Let us first define the cost functions we will use

in the sequel for non-linear least square optimizations:

C(θ) =
∑

j ‖rourmodel
f (θj) − ri

f (θj)‖ and C(rp) =∑
j ‖rourmodel

f (rpj ) − ri
f (rpj )‖.

A. Fitting the producer data

The data of the captured ray model provided by the

producer of the ORIFL190-3 of Omnitech Robotics are given

as a curve representing the function r = r(θ) (see Fig.4). In

order to estimate the parameters ξ and ff of the model (9),

a set of points on the producer curve is used (rprovider(θi))
and min

ξ,ff

C(θ) is solved. The parameters ff and ξ have been

estimated respectively at 4.823 mm and 2.933 with a residual

r = 4.10−4. As it can be seen in Fig.4, the proposed model

fit well with the producer’s data.

θ (dg)

r(
θ
) 

(m
)

fθ

Unified model
Provider

Fig. 4. The model (9) plotted in plain line fits well with the producer data
(crosses).

B. Equivalence with the existing models

First, let us compare the proposed model with different

T1-mappings (pinhole-based models). Let us consider the

models r1
f (rp), r3

f (rp) and r5
f (rp) (refer to Table I) whose

parameters have been chosen aleatory. In order to estimate

the parameters ff , fp and ξ (model (7)), we use a set of

points ri
f (rpj ) and we solve min

ξ,ff ,fp

C(rp). As it can be

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

r  (m)
p

r 
  

  
  

 (
m

)
f(r

p
)

r
p
*[1−r

p

2
/300]

unified model

r
p
/(1+r

p

2
/100)

unified model

log(1+r
p
)

unified model

3*r_p /(1+.2*\sqrt{1+r_p^2})

unified model

Fig. 5. Equivalence with pinhole-based models.
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0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

θ (rad)

r(
θ
) 

(m
)

θ

unified model

2*tan(θ/2)

unified model

sin(θ)

unified model

sin(θ/2)

unified model

.85*θ+.05*θ
3

unified model

Fig. 6. Equivalence with captured rays-based models.

seen on Fig.5, almost all the tested T1-mappings can be

approximated by the proposed model.

Let us now compare the proposed model with some T2-

mappings (captured rays-based models) assuming f = 1:
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(a) Translation
t/‖t‖ (m) 0.843 -0.334 0.422
et/‖et‖ (m) 0.841 -0.344 0.417

ΘT (dg) 0.917

(b) Rotation
uθ (dg) 0 -40.00 0
fuθ (dg) 0.206 -39.4 -3.20

ΘR (dg) 3.20

(c) Conjugated translation and rotation
t/‖t‖ (m) 0.688 0 0.726 uθ (dg) 0 -20.00 0

et/‖et‖ (m) 0.673 -0.015 0.740 fuθ (dg) 0.470 -21.77 -0.006

ΘT (dg) 1.21 ΘR (dg) 1.831

TABLE III

Computation of the displacement: translation (a), rotation (b) and rotation

and translation (c). The rotation is represented by uθ (rotation axis u and

angle θ expressed in degree).

ri
f (θ) (i = 1, 2, 3, 4, 5, refer to Table II). In order to estimate

the parameters ff and ξ of the model, we use a set of points

ri
f (θk) and we solve min

ξ,ff

C(θ). Results are plotted in Fig.6.

Once again, the proposed model is able to approximate

almost all the tested transformations T2 and thus almost all

the fisheye cameras.

C. Camera calibration

An important advantage of the proposed model is that

existing algorithms designed for central catadioptric cameras

can directly be used with fisheye cameras. As an example,

our camera is calibrated with the Matlab toolbox provided

by Mei [4]. The complete intrinsic parameters matrix is

given by: K =

0
@

fu 0 u0

0 fv v0

0 0 1

1
A and the unknown parameters

fu, fv, u0, v0 and ξ have been estimated to:
{

fu = 870.60 px

fv = 868.34 px

{
u0 = 327.37 px

v0 = 231.87 px
ξ = 2.916

The computed parameter ξ agree the value estimated from

the provider’s data in Section IV-A (ξ = 2.933).

As we will see in the sequel, the calibration results are

compatible with robotic applications.

D. Scaled Euclidean reconstruction from fisheye views

In this section, the proposed model is exploited to en-

able a partial Euclidean reconstruction by decoupling the

interaction between translation and rotation components of

a homography matrix. In order to show the validity of the

spherical model for fisheye cameras, the results are compared

with the real displacements.

Let X be a 3D point with coordinates X = [X Y Z ]
T

in a camera frame F and X
∗ = [X∗ Y ∗ Z∗ ]

T
in a cam-

era frame F∗. The motion between F and F∗ is com-

posed of a rotation R and a translation t expressed in

the camera frame F . Let x be: x =
[
x
T 1

1+ξη

]T

where:

η =
−γ − ξ(x2 + y2)

ξ2(x2 + y2) − 1
γ =

√
1 + (1 − ξ2)(x2 + y2)

Then a relation between the two views (refer to [16]) exists:

x ∝ Hπx
∗

Hπ is the Euclidean homography matrix related to the

plane (π), function of the camera displacement and of the

Fig. 7. Control strategy using the homography matrix: the control consists
on regulating the lateral error y and the angular error θ to zero.

plane coordinates in F∗. Note that the camera has to be

calibrated to estimate x from the corresponding image points.

From the Hπ-matrix, the camera motions parameters (the

rotation matrix R and the scaled translation t = ‖t‖) can be

estimated.

In the reported experiments, three camera displacements

have been considered: translation t (Tab.III (a)), rotation R

(Tab.III (b)), rotation and translation (R, t) (Tab.III (c)).

These displacements are estimated by using the images

acquired by the ORIFL190-3 fisheye camera (calibrated as

explained in Section IV-C) at the initial and final positions

by decomposing the homography matrix (rotation matrix R̃

and normalized translation t̃/‖̃t‖). The following errors were

then computed:

• rotational error: rotation angle ΘR of the matrix RR̃
−1

• translational error: angle ΘT between the normalized

vectors t/‖t‖ and t̃/‖̃t‖
As observed in Table III, displacements are well estimated.

When a translation is executed, an error of less than 1˚ is

observed. The error between the computed rotation and

the executed rotation is around 3˚. During a rotation and

translation displacement, the obtained errors are less than

2˚.

V. APPLICATION TO VISUAL SERVOING

To experiment our model in a robotic context, we extend

the vision-based navigation framework for nonholonomic

mobile robot presented in [17] with a perspective camera and

in [18] with central cameras to fisheye cameras. Principles

of the navigation framework are briefly presented in V-A.

Experimental results with a catadioptric camera can be found

in [18]. Experiments with the fisheye camera are presented

in Section V-B.

A. Vision based navigation

The framework consists on two successive steps. During

an off-line learning step, the robot performs paths which are

sampled and stored as a set of ordered key images acquired

by the embedded fisheye camera. The set of visual paths can

be interpreted as a visual memory of the environment. In the

second step, the robot is controlled by a vision-based control

law along a visual route which joins the current image to the

target image in the visual memory.

To design the controller, the key images of the reference
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Fig. 8. Navigation task: evolution of the lateral (in m) and the angular
(in rad) errors and of the control input (angular speed in deg/s). The key
images I∗j , {j = 1, 2, 3, 4} are successively reached.

visual route are considered as consecutive checkpoint to

reach in the sensor space. The robot is thus controlled from

the image Ii to the next image of the visual route Ii+1. The

control problem can be formulated as a path following to

guide the nonholonomic mobile robot along the visual route.

Let us note Fi = (Oi,Xi,Yi,Zi) and Fi+1 =
(Oi+1,Xi+1,Yi+1,Zi+1) the frames attached to the robot

when Ii and Ii+1 were stored and Fc = (Oc,Xc,Yc,Zc) a

frame attached to the robot in its current location. Figure 7 il-

lustrates this setup. The control vector of the considered cart-

like robot is u = [V, ω]T where V is the longitudinal velocity

along the axle Yc of Fc, and ω is the rotational velocity

around Zc. Consider the straight line Γ = (Oi+1,Yi+1)
(see Figure 7). The control strategy consists in guiding Ic

to Ii+1 by regulating asymptotically the axle Yc on Γ. The

control objective is achieved if Yc is regulated to Γ before

the origin of Fc reaches the origin of Fi+1. Let θ be the

angle (around the axle Z) between Fc and Fi+1 and y the

distance between Oc and Γ. We use the asymptotically stable

guidance control law proposed in [17]:

ω(y, θ) = −V cos3 θKpy − |V cos3 θ|Kd tan θ

where Kp and Kd are two positive gains which set the

performances of the control law. The lateral and angular

deviations (y and θ) to regulate can be obtained through

partial Euclidean reconstructions as described in Section IV-

D.

B. Experimentations

The proposed framework is implemented on a standard

PC which controls a Pioneer 2 robot. A fisheye camera is

embedded on the robot. A learning stage has been conducted

off-line and images have been memorized. Four key views

have been selected to drive the robot from its initial configu-

ration to the desired one. For this experiments, the positions

of five patterns are memorized and then tracked. The control

is realized using the homography matrix from the projection

of the patterns onto the equivalence sphere. The longitudinal

velocity of the robot is set to V = 0.1 m/s. The results

of the experimentation (Fig.8) show that the lateral and the

angular errors are regulated to zero before reaching a key

image. Once again, this experimentation demonstrates that

the proposed model is suitable for such a task.

VI. CONCLUSION

The unified model for central catadioptric systems is able

to model almost all the fisheye cameras in the context of

robotic applications. This result allows to directly employe

all existing algorithms designed for central catadioptric cam-

eras. Calibration and structure from motion results as well

as a vision-based navigation application have confirmed the

validity of our approach. Future work will be devoted to

adequately combine fisheye with other cameras (perspective,

catadioptric) for navigation tasks.
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