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Abstract

In this paper, a tight coupling between computer vision and paral-
lel robotics is exhibited through the projective line geometry. Indeed,
contrary to the usual methodology where the robot is modeled indepen-
dently from the control law which will be implemented, we take into ac-
count, since the early modeling stage, that vision will be used for con-
trol. Hence, kinematic modeling and projective geometry are fused into
a control-devoted projective kinematic model. Thus, a novel vision-based
kinematic modeling of a Gough-Stewart manipulator is proposed through
the image projection of its cylindrical legs. Using this model, a visual ser-
voing scheme is presented, where the image projection of the non-rigidly
linked legs are servoed, rather than the end-effector pose.

1 Introduction

Parallel mechanisms are such that there exist several kinematic chains (or legs)
between their base and their end-effector. Therefore, they may exhibit a better
repeatability [30] than serial mechanisms but not a better accuracy [38], because
of the large number of links and passive joints. There can be two ways to
compensate for the low accuracy. The first way is to perform a kinematic
calibration of the mechanism and the second one is to use a control law which
is robust to calibration errors.

There exists a large amount of work on the control of parallel mechanisms
(see [29] for a long list of references). In the focus of attention, Cartesian
control is naturally achieved through the use of the inverse differential kinematic
model (abusively called the robot Jacobian since velocities in the Cartesian
space do not form a vector space) which transforms Cartesian velocities into
joint velocities. It is noticeable that the inverse differential kinematic model
of parallel mechanisms does not only depend on the joint configuration (as for
serial mechanisms) but also on the end-effector pose.
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Figure 1: A Gough-Stewart platform.

Consequently, one needs to be able to estimate or measure the latter. As
far as we know, all the effort has been put on the estimation of the end-effector
pose through the forward kinematic model and the joint measurements. How-
ever, this yields much trouble, related to the fact that there is usually no an-
alytic formulation of the forward kinematic model of a parallel mechanism.
Hence, one numerically inverts the inverse kinematic model, which is analyti-
cally defined for most of the parallel mechanisms. However, it is known [28, 16]
that this numerical inversion requires high order polynomial root determination,
with several possible solutions (up to 40 real solutions [10] for a Gough-Stewart
platform [14, 37]). Much of the work is thus devoted to solving this problem
accurately and in real-time (see for instance [39]), or to designing parallel mech-
anisms with analytical forward kinematic model [18, 13]. Alternately, one of
the promising paths lies in the use of the so-called metrological redundancy [6],
which simplifies the kinematic models by introducing additional sensors into the
mechanism and thus yields easier control [26].

Vision being an efficient way of estimating the end-effector pose [9, 21], it is
a good alternative to use it for Cartesian control of parallel mechanisms. It can
be done in three ways.

Vision as a sensor The first one consists in computing the end-effector poses
by vision, then in translating them into joint configurations, through the inverse
kinematic model, and finally servoing in the joint space. This scheme is rather
easy to implement for serial mechanisms provided that inverting the forward
kinematic model can be done satisfactorily. The latter is straightforward for
parallel mechanisms since they usually have an analytical inverse kinematic
model. Similarly, one can consider computer vision as a contact-less redundant
sensor, as already stated in the context of parallel mechanism calibration [5],
and use the simplified models based on the redundant metrology paradigm.

However, such schemes should be used carefully for parallel mechanisms,
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since joint control does not take into account the kinematic closures and may
therefore yield high internal forces [8]. Indeed, a peculiarity of parallel mech-
anisms is that there always exists a joint velocity vector to realize a desired
end-effector Cartesian velocity, but that there may exist configurations where
there does not exist an end-effector Cartesian velocity associated to a given joint
velocity vector. Moreover, there may exist several end-effector poses associated
to a given joint configuration. Hence, a simple joint control may converge to
the wrong end-effector pose, even though it converges to the correct joint con-
figuration.

Visual servoing Second, vision can be additionally used to perform visual
servoing [11]. Indeed, instead of measuring the end-effector pose and convert
it into joint values, one could think of using this measure directly for control.
Recall that there exist many visual servoing techniques ranging from position-
based visual servoing (PBVS) [27] (when the pose measurement is explicit) to
image-based visual servoing (IBVS) [11] (when it is made implicit by using only
image measurements). Most applications embed the vision system onto the
end-effector to position the latter with respect to a rigid object whose accurate
position is unknown, but one can also find applications with a fixed camera
observing the end-effector [15]. The interested reader is referred to [7] for a
thorough and up-to-date state-of-the-art.

Visual servoing techniques are very effective since they close the control loop
over the vision sensor. This yields a high robustness to disturbances as well as
to calibration errors. Indeed, these errors only appear in a Jacobian matrix but
not in the regulated error.

Essentially, visual servoing techniques generate a Cartesian desired velocity
which is converted into joint velocities by the robot inverse differential kine-
matic model. Hence, one can translate such techniques to parallel mechanisms,
as in [20, 19, 17] (for parallel robots with a reduced number of degrees of free-
dom), by observation of the robot end-effector and the use of standard kinematic
models. It is rather easier than in the serial case, since the inverse differential
kinematic model of a parallel mechanism is usually analytical. Moreover, for
parallel mechanisms, since the joint velocities are filtered through the inverse
differential kinematic model, they are admissible, in the sense that they do not
generate internal forces. More precisely, this is only true in the ideal case. How-
ever, if the estimated inverse differential kinematic model used for control is
close enough to the actual one, the joint velocities will be closely admissible, in
the sense that they do not generate high internal forces. The only difficulty for
end-effector visual servoing of a parallel mechanism would come from the depen-
dency of the inverse differential kinematic model to the Cartesian pose, which
would need be estimated, but, as stated above, vision can also do that [9, 21] !
Notice that this point pleads for PBVS rather than IBVS of parallel mechanisms,
which is effectively the choice made in [20, 19, 17].

From the above discussion, we thus highly recommend to use visual servoing
for parallel mechanism control.
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A novel approach However, the previous two ways consist solely in a sim-
ple adaptation of now classical control schemes, which, although probably very
efficient, are not very innovative. Moreover, the direct application of visual ser-
voing techniques assumes implicitly that the robot inverse differential kinematic
model is given and that it is calibrated. Therefore, modeling, identification and
control have small interaction with each other. Indeed, the model is usually
defined for control using proprioceptive sensing only and does not foresee the
use of vision for control, then identification and control are defined later on with
the constraints imposed by the model (Figure 2). This is useful for modularity
but this might not be efficient in terms of accuracy as well as of experimental
set-up time.

Kinematic
Model

Control

Projective
Geometry

Identification

Tracking

Metrology

time

Figure 2: Usual cascade from modeling to vision-based control.

On the opposite, a unified framework for modeling, identification and con-
trol, apart from being definitely more satisfying for the mind, would certainly
open a path to higher efficiency. Indeed, instead of having identification and
control being driven by the initial modeling stage, one could have a model tak-
ing into account the use of vision for control and hence for identification. To
do so, it is necessary to fuse robot kinematics and projective geometry into a
projective kinematic model (Figure 3). Thus, we propose a novel third way to
use vision, which gathers the advantages of redundant metrology and of visual
servoing and avoids most of their drawbacks.

Identification

Projective
Kinematic

Model

Control

Metrology Tracking

time

Figure 3: Simplified cascade from modeling to vision-based control using a
projective kinematic model.

Moreover, observing the end-effector of a parallel mechanism by vision may
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be incompatible with its application. For instance, it is not wise to imagine
observing the end-effector of a machining tool. On the opposite, it should not
be a problem to observe the legs of the mechanism, even in such extreme cases.
Thereby one would turn vision from an exteroceptive sensor to a somewhat
more proprioceptive sensor. This brings us back to the redundant metrology
paradigm.

Parallel mechanisms are most often designed with slim and rectilinear legs.
Thus, one is inclined to consider them as straight lines as it was done for their
kinematic analysis [30, 16] or kinematic calibration [5, 34, 33, 35]. Therefore,
the line geometry [31, 36] is certainly the heart of the unification, all the more
as line geometry is widely used in kinematic analysis [22, 32] and computer
vision [12] and has already been used for visual servoing [23, 1, 24].

Previous work on kinematic calibration [34, 33, 35] already considered vision
as a way to deliver contact-less metrological redundancy. However, to the ex-
ception of [35], the models that were calibrated remain classical. Indeed, vision
was only used for sensing and neither modeling nor control was questioned from
the vision point of view. A first step in this direction was made in [2] were vi-
sion was used already at the modeling stage in order to derive a visual servoing
scheme based on the observation of a Gough-Stewart parallel robot [14, 37]. In
that method, the legs orientation were chosen as visual primitives and control
was derived based on their reconstruction from the image. Although this recon-
struction step consists only in computing the intersection of the two cylinder
edges in the image, it might not be very accurate for intrinsically geometrical
reasons. Indeed, if a leg is parallel to the image, its edges will appear as parallel
lines in the image and their intersection will lie at the infinite. Thus, in a close
case to this one, the reconstruction will not be highly accurate and will impair
the control.

In practice, this case is rapidly encountered. Indeed, since tracking lines in
the image might be hard in the presence of camera distortion, one would chose a
rather long focal lens (6 mm is here a long focal). Then, to observe all the legs in
the image, one would place the camera at some distance from the manipulator
(say, 1 m away from a desktop Gough-Stewart manipulator). In such an easy to
set-up case, the cylinder edges appear nearly parallel in the image and control
becomes unstable.

Consequently, following the original idea and the common habit in visual
servoing to derive control laws as close as possible to the image space, we propose
in this paper to servo the leg edges rather than the leg orientation.

The outline of the paper is as follows. Section 2 recalls the model used
for lines, then uses it to express the Gough-Stewart platform kinematics in
the (static) camera frame and finally, recalls some useful geometric properties
associated to the fact that most parallel mechanisms have cylindrical legs. Sec-
tion 3 introduces, under the cylindrical legs assumption, the novel control law,
expressed in the image and using the apparent edges of the legs as visual prim-
itives for control. Section 4 presents simulation results validating the approach
and the first ever experimental results of visual servoing using legs observation
in its two variants: the already published leg orientation-based control and the

5



novel edge-based control.

2 Modeling

2.1 Line modeling

A line L in space, expressed in the camera frame, is defined by its Binormalized
Plücker coordinates [1]:

L ≡ (cu, cn, cn) (1)

where cu is the unit vector giving the spatial orientation of the line, cn is the
unit vector defining the so-called interpretation plane of line L and cn is a non-
negative scalar. The latter are defined by cncn = cP × cu where cP is any
point on the line. Notice that, using this notation, the well-known (normalized)
Plücker coordinates [31, 32] are the couple (cu, cncn) .

The projection of such a line in the image plane, expressed in the camera
frame, has for characteristic equation:

cnT cp = 0 (2)

where cp are the coordinates in the camera frame of a point in the image plane,
lying on the line.

With the intrinsic parameters K, one can obtain the line equation in pixel
coordinates pn from:

pnT pp = 0 (3)

Indeed, replacing pp by Kcp in this expression yields:

pnTKcp = 0 (4)

By identification of (2) and (4), one obtains

pn =
K−T cn
‖K−T cn‖ (5)

cn =
KT pn

‖KT pn‖ (6)

Notice that for numerical reasons, one should use normalized pixel coordi-
nates. Namely, let us define the pixel frame by its origin located at the image
center (i.e. the intersection of the image diagonals) and such that the pixel
coordinates vary approximately between -1 and +1, according to the choice of
the normalizing factor, which can be the image horizontal dimension in pixels,
or its vertical dimension, or its diagonal.
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2.2 Vision-based kinematics of an hexapod

Consider the hexapod in Figure 1. It has 6 cylindrical legs of varying length
qi, i ∈ 1..6, attached to the base by spherical joints located in points Ai and to
the moving platform (end-effector) by spherical joints located in points Bi.

Rather than using the standard scalar inverse kinematic model of such an
hexapod given by

∀i ∈ 1..6, q2
i =
−−−→
AiBi

T−−−→AiBi (7)

expressing that qi is the length of vector
−−−→
AiBi, it is preferable for the subsequent

derivation to use the vector form, introduced as the vision-based kinematics of
the hexapod expressed in the camera frame in [2]:

qi
cui = cRe

eBi + cte − cAi (8)

where cui is the spatial orientation or the ith leg. From the inverse kinematic
model, one easily obtains the differential inverse kinematic model:

q̇ = cJinvc
cτc (9)

cJinvc = −



cuT1 (cA1×cu1)T

...
...

cuT6 (cA6×cu6)T


 (10)

where cτc is the Cartesian velocity of the camera frame, considered as attached
to the base frame and moving with respect to a fixed end-effector, expressed
in itself and cui, i = 1..6 are the unit vectors giving the pointing direction of
each leg in the camera frame. Under the assumption that the legs are cylinders,
those vectors can be easily detected as the intersection of the two cylinder edges
in the image plane.

2.3 Cylindrical leg observation

It was shown in [4] that the edges of the ith cylindrical leg of the hexapod are
given, in the camera frame, by

cn1
i = − cos θi

chi − sin θi
cui × chi (11)

cn2
i = + cos θi

chi − sin θi
cui × chi (12)

where cos θi =
√
ch2
i −R2/chi, sin θi = R/chi and (cui,

chi,
chi) are the Bi-

normalized Plücker coordinates of the ith cylinder axis and R is the cylinder
radius.

It was also shown that the leg orientation, expressed in the camera frame,
is given by

cui =
cn1
i × cn2

i

‖cn1
i × cn2

i ‖
(13)

Notice that the geometric interpretation of this result is that cui is, up to a
scale factor, the vanishing point of the two image edges, i.e. their intersection
point in the image.
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Let us remark now that each cylinder edge is a line in space, with Binor-
malized Plücker expressed in the camera frame (cui,

cnji ,
cnji ). Moreover, the

attachment point Ai is lying on the cylinder axis at distance R from the edge.
Consequently, a cylinder edge is entirely defined by the following constraints,
expressed here in the camera frame, although valid in any frame:

cAT
i
cnji = −R (14)

cnji
T cnji = 1 (15)

cuTi
cnji = 0 (16)

3 Edge-based visual servoing

In the following subsection, the i subscript denoting the leg number was removed
for clarity sake.

3.1 Interaction matrix

The interaction matrix NT relating the Cartesian velocity cτc to the time deriva-
tive of the cylinder edges cṅj , expressed in the pixel frame:

cṅj = NT cτc (17)

can be decomposed into the product of three matrices:

NT = pJc
hJuM

T (18)

From right to left, the first one is the interaction matrix associated to the
leg orientation, it thus relates the time derivative of a leg orientation to cτc.
The second transforms leg orientation velocities into leg edge velocities both
expressed in the camera frame. Finally, the third one is associated to the camera-
to-pixel change of frame. Below, the expression of the leg orientation interaction
matrix is first recalled then the last two matrices are derived.

3.1.1 Leg orientation interaction matrix

The control proposed in [2] servoed the geodesic error between the current and
desired legs orientation (cu × cu∗) and thus introduced the interaction matrix
associated to a leg orientation cu:

cu̇ = MT cτc (19)

MT = −1

q

(
I3 − cucuT

) [
I3 −[cA + qcu]×

]
(20)
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3.1.2 Edge velocity in the camera frame

Let us first derive the time derivative of a cylinder edge, expressed in the camera
frame, and under the kinematic constraint that the cylinder is attached to the
base by a spherical or universal joint located in A. To do so, let us differentiate
the constraints (14)-(16):

cṅjTA = 0 (21)
cṅjT cnj = 0 (22)

cṅjT cu + cnjT cu̇ = 0 (23)

From (22) and the fact that (u, n, u × n) form an orthonormal basis [1], one
can state:

cṅj = αcu + βcu× cnj (24)

Inserting this expression into (21) and (23) yields

α = −cnjT cu̇ , β =
cAT cu

cAT (cu× cnj)
cnjT cu̇ (25)

Consequently, one obtains the relationship between the time derivative of
a leg edge, expressed in the camera frame, and the time derivative of the leg
orientation

cṅj = hJu
cu̇ (= hJuM

T cτc) (26)

hJu =

(
cAT cu

cAT (cu× cnj)
(cu× cnj)− cu

)
cnjT (27)

3.1.3 Image line velocity in pixel coordinates

Let us now derive the Jacobian associated to the change of frame, where the
time derivative of an image line is expressed, from the camera frame to the pixel
frame. Note that this paragraph holds for any image line, not only for cylinder
edges.

Rewriting (5) as
pn = µ(cn)K−T cn (28)

we can differentiate the latter with time:

pṅ =
dµ(cn)

dt
K−T cn + µ(cn)K−T cṅ (29)

Taking into account again that pn is a unit vector (22), one gets

(
dµ(cn)

dt
K−T cn

)T
pn + µ(cn)pnTK−T cṅ = 0 (30)

Using (5) again, this simplifies into

dµ(cn)

dt
= −µ(cn)2pnTK−T cṅ (31)
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Inserting this result in (29) yields

pṅ =
(
−K−T cnTµ(cn)2pnT + µ(cn)I3

)
K−T cṅ (32)

which simplifies into

pṅ = µ(cn)
(
I3 − pnpnT

)
K−T cṅ (33)

Introducing (6) in (28) proves that

µ(cn) = ‖KT pn‖ (34)

from which we finally obtain the relationship between the time derivative of a
line, expressed in the image frame, and the same expressed in the camera frame

pṅ = pJc
cṅ (= pJc

hJuM
T cτc) (35)

pJc = ‖KT pn‖
(
I3 − pnpnT

)
K−T (36)

thus proving (18).

3.2 Control

Since we want to drive the unit vectors associated to the leg edges to their
desired values, we choose to servo the geodesic errors

ei,j = pnji × pnj∗i , j = 1..2, i = 1..6 (37)

the time derivative of which is

ėi,j = LTi,j
pṅji (38)

LTi,j = −[pnj∗i ]×NT
i,j (39)

where i = 1..6 denotes the legs and j = 1..2 the edges.
Now, the standard method applies: we stack each individual errors in a single

over-constrained vector e and each associated individual interaction matrices
LTi,j into a compound one LT and impose a first-order convergence to e. This
yields the following pseudo-control vector cτc

cτc = −λLT e (40)

which is fed to the actuators through the vision-based differential inverse kine-
matic model (10) to deliver the final control signal

q̇ = −λcJinvc LTe (41)

Notice that this control makes use of the detected edges in the image, the
joint values, the intrinsic parameters and the attachment points of the legs
onto the base expressed in the camera frame. However, notice that neither the
attachment points of the legs onto the mobile platform nor the radius of the
legs are used here explicitly, which reduces the number of kinematic parameters
to be calibrated. We strongly suspect that, if needed, we can also get rid of the
joint values as in [3] by using their median value, but this is not the matter of
this paper.
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Figure 4: Composition of the desired (black) and initial (white) configurations.

4 Results

4.1 Experimental set-up

Experiments were performed on a commercial DeltaLab hexapod, such that

bA2k = Rb

(
cos(k π3 +α)

sin(k π3 +α)
0

)
, bA2k+1 = Rb

(
cos(k π3−α)

sin(k π3−α)
0

)
, eB2k = Re

(
cos(k π3 +β)

sin(k π3 +β)
0

)
,

eB2k+1 = Re

(
cos(k π3−β)

sin(k π3−β)
0

)
, k ∈ {0, 1, 2} with Rb = 270mm, α = 4.25◦, Re =

195mm, β = 5.885◦ and the legs range are [345mm, 485mm].
The robot is observed by a IEEE 1394 digital Sony camera with 4.8mm

focal length, placed in front of it. Figure 4 (left) presents a schematic view
of the initial (solid line) and desired (dotted line) configurations of the robot,
while Figure 4 (right) is obtained by merging the (video inverted) view from
the camera of the robot in the initial configuration and the view in the de-
sired configuration. The initial configuration yields equal leg lengths (375mm)
whereas in the desired configuration the two legs in the back are extended by
an additional 100mm.

To show the robustness of the approach, we deliberately placed ourselves
in a difficult configuration: approximate calibration of the robot and camera,
camera placed 70cm away from the robot base center, two legs close to be in a
frontal parallel configuration.

4.2 Simulation

Here, we compare the behaviors of orientation-based control and edge-based
control in the perfect noise-free case, where calibration is perfect and the cam-
era is placed so that it preserves the vertical symmetry observed in Figure 4
(right). Of course, in both cases, the controlled errors converge exponentially
to zero. It shall be mentioned that the non-controlled errors (i.e. orientation
errors in edge-based control and edge errors in orientation-based control) also
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Figure 5: Spatial trajectory (side-view of the platform) of the end-effector under
orientation-based control (left) and under edge-based control (right).

converge exponentially to zero, although with a slightly different rate. For sake
of conciseness, these results are not displayed here, since they are somehow
included in the experimental results below.

Nevertheless, it is worth to have a look at the spatial trajectory of the
end-effector under both controls. Indeed, the symmetry is preserved by both
control: the end-effector moves in the vertical plane passing through the robot
base center and the center of projection. However, as seen in Figure 5, the
trajectory in this plane is rectilinear in the case of orientation-based control
while edge-based control yields a slightly bent trajectory.

4.3 Experiments

The experimental robot has an analog joint position-controller that we inter-
faced with Linux-RTAI. Joint velocity control is emulated through this position-
controller with an approximate1 20ms sampling period. Frame grabbing, line
tracking and numerical computation are performed using ViSP, an open C++
library for visual servoing [25].

It also has to be noticed that the mechanism presents high frictious distur-
bances that have not yet been compensated for since friction seems to depend
non trivially on the robot configuration. Hence, to overcome these disturbances,
we implemented the visual servoing control with an adaptive gain, function of
the controlled error norm: low at init, high near convergence.

We display for both controls the evolution of both the controlled and non-
controlled errors: in Figure 6 for orientation-based control and in Figure 7 for
edge-based control. The exponential behavior is found again, yet disturbed by
friction and distorted by the adaptive gain strategy.

It is noticeable (Figure 6) that the orientation error signal is extremely noisy,
as expected. Thus, orientation-based control tries its best to servo it to zero,

1This part is not yet running under RTAI, but only under standard Linux.
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Figure 6: Behavior of orientation-based control: Evolution of the controlled
leg orientation errors (left) and of the non-controlled edge errors (right) with
respect to time.
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Figure 7: Behavior of edge-based control: Evolution of the non-controlled leg
orientation errors (left) and of the controlled leg edge errors (right) with respect
to time.
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Figure 8: Comparison of the behavior of orientation-based (solid line) and edge-
based control (dotted line): evolution of the norm of the legs orientation error
(left) and of the edges error (right) with respect to time.

but does not succeed in bringing the robot to the desired configuration since
the edge errors do not reach zero. On the opposite (Figure 7), edge-based
control succeeds (the edges are almost aligned on their reference) even though
the orientation signal is noisy and biased. Figure 8 presents a complementary
view of this behavior by displaying the evolution of both the controlled and
non controlled error norms: the orientation signal is very noisy and converges
equally poorly in both controls (left) while the edge signal is much cleaner and
converges only in edge-based control.

The reason for such a behavior is, as stated in the early introduction, that
noise is appearing in the servoed error in orientation-based control while it only
appears in the interaction matrix in edge-based control.

5 Conclusion

We extended previous results concerning (PBVS-like) leg orientation-based con-
trol of a Gough-Stewart to an (IBVS-like) edge-based visual servoing scheme.
It benefits from the advantages of the orientation-based visual servoing of the
Gough-Stewart legs: reduced calibration parameters set, low dependence on the
joint values and ability to servo the robot even though the end-effector is not
visible. However, we improved the practical robustness (although it still has to
be proven theoretically) by servoing the legs in the image: almost all the cal-
ibration parameters (intrinsic parameters of the camera and base points) and
numerical errors remain located in the interaction matrix.

To do so, we took advantage of a common use of line geometry in kinemat-
ics, vision and visual servoing. This allows for an optimal modeling of Gough-
Stewart parallel robots, provided that vision is used at control time. This mod-
eling was established under the hypothesis that the camera is calibrating, but
this result might be extendable to the use of an uncalibrated camera. Nev-
ertheless, this extension is not necessary since the control is done in the very

14



projective space associated to image lines, while the reconstructed or calibrated
Euclidean terms only appear in the interaction matrix where extreme accuracy
is not required.

However, self-occlusions of the mechanism with respect to a single camera
are still a matter of study, although the observation of edges should simplify the
problem since the two edges of a given leg are seldom hidden simultaneously.
A way to overcome the occlusion problem is to turn oneself to multi-camera
perception systems.

Acknowledgment

This study was jointly funded by CPER Auvergne 2003-2005 program and by
the CNRS-ROBEA program through the MP2 project. The authors warmly
thank Eric Marchand for providing them with an early version of ViSP.

References

[1] N. Andreff, B. Espiau, and R. Horaud. Visual servoing from lines. Int.
Journal of Robotics Research, 21(8):679–700, August 2002.

[2] N. Andreff, A. Marchadier, and P. Martinet. Vision-based control of a
Gough-Stewart parallel mechanism using legs observation. In Proc. Int.
Conf. Robotics and Automation (ICRA’05), pages 2546–2551, Barcelona,
Spain, May 2005.

[3] N. Andreff and P. Martinet. Visual servoing of a Gough-Stewart parallel
robot without proprioceptive sensors. In Fifth International Workshop on
Robot Motion and Control (RoMoCo’05), Dymaczewo, Poland, June 23-25
2005.

[4] N. Andreff and P. Martinet. Visually servoing a gough-stewart parallel
robot allows for reduced and linear kinematic calibration. In Proc. Int.
Conf. on Informatics in Control, Automation and Robotics (ICINCO’05),
volume 3, pages 119–124, Barcelona, Spain, September 14–17 2005.

[5] N. Andreff, P. Renaud, P. Martinet, and F. Pierrot. Vision-based kinematic
calibration of an H4 parallel mechanism: practical accuracies. Industrial
Robot: An international journal, 31(3):273–283, May 2004.

[6] L. Baron and J. Angeles. The on-line direct kinematics of parallel manip-
ulators under joint-sensor redundancy. In Advances in Robot Kinematics,
pages 126–137. Kluwer Academic Publishers, 1998.

[7] H.I. Christensen and P. Corke, editors. Int. Journal of Robotics Research
– Special Issue on Visual Servoing, volume 22, October 2003.

15



[8] B. Dasgupta and T.S. Mruthyunjaya. Force redundancy in parallel manip-
ulators: theoretical and practical issues. Mech. Mach. Theory, 33(6):727–
742, 1998.

[9] D. DeMenthon and L. Davis. Model-based object pose in 25 lines of code.
Int. Journal on Cmputer Vision, 15(1/2):123–141, June 1995.

[10] P. Dietmaier. The Stewart-Gough platform of general geometry can have
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