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Abstract— In this paper, a discussion on parallel kinematic
machine dynamic control shows that such a control has to be
thought over again. Hence, the well-known computed torque
control approach is revisited and is shown, when it is performed
in the Cartesian space and including a Cartesian space dynamic
model, to be definitely relevant for parallel kinematic machines.
Moreover, it is shown that greater improvements can be
expected with an exteroceptive measure of the end-effector pose.
Finally, experimental results on a complex prototype give a
comparison between a linear single-axis control and a computed
torque control to prove our assertions.

I. I NTRODUCTION

Parallel kinematic machines are spreading in the industry
because of their advantages over serial kinematic machines,
such as stiffness, high load and high speed capacities [1].
Nevertheless, these good dynamic performances are not
always achieved [2]. Indeed, improvements are still neededin
design, modeling, identification and control to take advantage
of parallel kinematic machine performances [3]. In our mind,
the development of adapted control strategies is probably the
field where remains the largest potential for improving the
tracking performances at high speed.

As far as we know, industrial parallel kinematic machines
have in most cases a linear single-axis control. This control
strategy seems to be efficient with regards to its large
presence in machining. However, the dynamic behaviour of
a parallel kinematic machine is strongly nonlinear due to a
dynamic coupling between the kinematic chains linking the
end-effector to the fixed basis, also known as legs. Therefore,
a linear control strategy ensures a good accuracy only at low
speed and in a small part of the workspace [4]. Moreover, the
efficiency is not homogeneous over the workspace since the
dynamic behaviour depends on the end-effector pose [5]. To
take into account this heterogeneity, a restricted workspace
can be defined as a space where stiffness, kinematic and
dynamic properties allow for a good accuracy [1], [6]. In
addition, an optimal path can be computed with regards to the
dynamic behaviour [7]. Therefore, these solutions deal with
the weakness of the linear single-axis control by proposing
a path with restricted speed in a restricted working space,
leading to a suboptimal use of parallel kinematics machine.

However, improving the dynamic performance of a ma-
chine by employing a nonlinear dynamic control, such as
the so-called computed torque control, is a well-known solu-
tion [8]–[10]. These control strategies, including the inverse
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dynamic model of the machine, are widespread for industrial
serial manipulators. However, the latter has never been
employed for industrial parallel kinematic machines whereas
a great improvement in dynamic accuracy and workspace
use could be expected. Indeed, the transposition from serial
robotics to parallel one is not always straight forward. The
small amount of experimental results in the literature proves
the troubles in setting up a dynamic control for a parallel
kinematic machine and obtaining good performances [9],
[10].

Actually, the modeling errors are the main limitation in the
accuracy and stability of a computed torque control [8]. How-
ever, the dynamic modeling of parallel kinematic machines
is quite complex [11]. Therefore, the amount of computation
often imposes simplifications [10], [12]. This leads to non
neglectable modeling errors with regards to accuracy and
stability. These errors can be decreased with a kinematic
and dynamic identification. The kinematic identification es-
sentially reduces the influence of assembly errors [13] while
the dynamic identification reduces the influence of frictions
and internal torques due to assembly errors [14]. In many
cases, the identification is nevertheless not sufficient for
performing a stable and accurate computed torque control.
In these cases, robust techniques are generally employed to
cope with the error influence [10]. Therefore, an industrial
implementation of such control strategy is not relevant since
the understanding and the mastery of robust techniques
require heavy skills and means.

However, in many cases, the inverse dynamic model of
a parallel kinematic machine is written in the joint space
as a function of the joint variables, like a serial kinematic
machine [11]. Nevertheless, since the kinematics are defined
by the end-effector configuration, the dynamics should also
be computed in the Cartesian space (SE3), written as a
function of the end-effector pose and its time derivatives and
mapped into the active joints space [9], [15]. In this case,
the dynamic modeling requires less computation and thus
presents less modeling errors than a joint space modeling.
Nevertheless, the use of a Cartesian space dynamic model is
only relevant with a Cartesian space control as developed in
further words.

The motivation of this paper is to develop this discussion
on the dynamic control of parallel kinematic machines. It is
thus originally shown that a Cartesian space control is the
most relevant solution to ensure correct tracking. Experimen-
tal results are proposed to emphasize this discussion. Notice
that the reader is expected to be familiar with kinematic and
dynamic modeling as well as with standard control schemes.
Thus, we can focus only on the analysis of the existing
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Fig. 1. Single-axis control with PID controller and feedforward
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Fig. 2. Joint space Computed Torque Control for serial kinematic machines

schemes. The core of this paper is organized as follows:
Section II is devoted to control, Section III presents the
test-bed, namely the Isoglide-4 T3R1 [16], and its dynamic
modeling and Section IV contains experimental results.

II. DYNAMIC CONTROL OF A PARALLEL MACHINE

As stated above, industrial parallel kinematic machines
use in most cases a linear single-axis control with a linear
feedforward in terms of speed and acceleration (see Figure 1,
where IKM is the Inverse Kinematic Model). However, to
ensure a good accuracy, the workspace and speeds should
be restricted [1], [6], [7].

Indeed, the strongly nonlinear dynamics of a parallel
kinematic machine have to be compensated for to increase
attainable workspace, speed and accuracy. The so-called
computed torque control is a well-know solution for serial
manipulators [8]. It encloses an inverse dynamic model
(IDM) depending on joint positions, speeds and accelerations
(see Figure 2). Notice that̂IKM is a numerical solution
to the inverse kinematic problem, obtained by a numeri-
cal inversion of the closed-form forward kinematic model
and often performed off-line. This control ensures excellent
tracking performances. However, its transposition to parallel
kinematic machines is harder than for the linear single-axis
controller. Let us see why.

Computed torque control of a parallel kinematic machine
met in the literature is generally performed in the joint
space [10]. Nevertheless, in most cases, the inverse dynamic
model of a parallel kinematics machine depends only on
the end-effector pose, velocity and acceleration [9], [15].
Therefore, performing a computed torque control in the joint
space requires transformations from joint space to Cartesian
space. These forward transformations have a closed-form
expression for most serial kinematic machines. However,
the duality between serial and parallel kinematic machine
implies that most parallel kinematic machines have algebraic
inverse kinematic models and numerical forward kinematic
models [17].

Consequently, the presence of on-line computation in-
creases the complexity of the control scheme. We propose
an explicit form of this control to emphasize the inherent
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Fig. 3. Joint space Computed Torque Control for parallel kinematic
machines, explicit form
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Fig. 4. Cartesian space Computed Torque Control for parallel kinematic
machines

complexity of joint space computed torque control (see
Figure 3 where ̂FKM is a numerical solution to the
forward kinematic problem and̂D is the computed for-
ward instantaneous kinematic matrix). Thus, heavy on-line
computation decreases control speed, accuracy and stability.
Consequently, a joint space computed torque control for a
parallel kinematic machine is rarely met alone but with a
robust controller [10].

On the opposite, using a Cartesian space dynamic model
implies using a Cartesian space computed torque control, as
mentioned by Callegari [9]. We propose here a deepest anal-
ysis of this assertion. The Cartesian space computed torque
control is well-known for serial kinematic machines [8].
However, it requires, in this case, more computation than
a joint space computed torque control, since the numerical
inverse instantaneous kinematic matrix is used on-line. It
may lead to a decrease of control speed, accuracy and
stability. Consequently, the Cartesian space computed torque
control of serial kinematic machine is rarely used. On
the opposite, by comparing Figure 3 and Figure 4, which
represents the Cartesian computed torque control for parallel
kinematic machines, it can be noticed that less numerical
transformations are used. Therefore, a more stable and accu-
rate control is performed [18]. Hence, only from the control
scheme analysis, a Cartesian space computed torque control
is relevant for parallel kinematic machines. Nevertheless, we
can point out some additional practical advantages.

Firstly, trajectories are most often planned in the Cartesian
space. Thus, a Cartesian space control is more natural since
the control is performed directly in the task space. In addi-
tion, the desired trajectory is not transformed with the inverse
kinematic model, which can present errors. Consequently,
the reference trajectory is not biased by the modeling or
identification errors. Furthermore, the Cartesian space isthe
state space of most parallel kinematic machine since the
latter are completely defined by their end-effector pose [19].
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Therefore, a Cartesian space control is a state feedback
control, which is known to ensure a better accuracy and
robustness than a control without a state feedback.

Secondly, a better end-effector trajectory tracking is en-
sured with a Cartesian space control than a joint space
one. Indeed, one joint variable configuration leads to several
end-effector poses [20]. In the worst cases, a disturbance
on joint trajectory can thus shift the end-effector position
without changing joint configuration. This can happen es-
pecially in the neighborhood of singularities (assembling
mode changing trajectory [21]) or cups points (non-singular
posture changing trajectory [22]). This change of the end-
effector pose is not observed by a joint space control whereas
a Cartesian space one is able to do so (see Figure 5).
Consequently, the Cartesian space control tries to bring
back the end-effector pose to its reference or fails when
the singularity can not be crossed again. On the contrary,
a converging joint space control can not tell whether the
Cartesian reference tracking fails or not.

Last but not least, even on planned path dealing with
kinematic and dynamic constraints, the joint position errors
are independent from each other when using a joint space
control. Therefore, the constraint can not be ensured and
two types of defects may appear: uncontrolled parasite end-
effector moves or internal torques on the contrary if these
moves are impossible, thus degrading passive joints. Like
two-arm robot control, Cartesian space control can minimize,
or cancel in the best cases, internal torques [23]. Indeed,
the regulated errors, which are end-effector pose errors, are
naturally compatible with the end-effector moves.

Consequently, Cartesian space control is particularly rel-
evant for parallel kinematic machines. Nevertheless, the
presence of the forward kinematics in the feedback loop
can reduce the improvement of a Cartesian space control
over a joint space one. In the general case, this numerical
transformation can disturb the feedback loop thus leading
to stability, accuracy and speed losses and thus imposing
a robust control [12]. In the author opinion, this issue
could be improved by using performant forward kinematics
resolution methods [24] or metrological redundancy which
simplifies the forward kinematics [25]. Of course, the ability
of employing these methods at high rate should be tested.
Anyhow, the forward kinematics of some parallel kinematic
machines have a closed-form expression, like in the Isoglide-
4 T3R1 case [16]. Thus, the estimation of the end-effector
pose is reliable and stable and a Cartesian space control could

Fig. 6. Global view of the Isoglide-4 T3R1

be used.
However, a kinematic model is always biased by the

unavoidable geometrical and assembly errors contrary to a
direct measure using simpler physics, such as optics. As far
as we know, the means to measure an object pose (Cartesian
position and orientation) are rare. For example, a laser tracker
is an accurate sensor (about 20µm for recent sensors) but
not fast enough (20m.s−2 maximal object acceleration) [26],
[27]. To our knowledge, this sensor has not been integrated in
a control scheme but it is only used for calibration [27]. On
the opposite, the computer vision is a well known solution
for robot control [28]. However, the accuracy and speed are
generally quite low. Nevertheless, the technological advances
allows for a fast and accurate vision-based control in a near
future [29], [30].

III. A PPLICATION ON THE ISOGLIDE-4 T3R1

A. Presentation of the test-bed

To validate the above discussion, we propose to apply the
Cartesian space dynamic modeling and computed torque con-
trol to the Isoglide-4 T3R1. This parallel kinematic machine
is a fully-isotropic one with decoupled motion (see Figure 6
and [16]). It is a four degrees of freedom machine with three
translations and one rotation. This machine is designed for
high speed machining. Hence, stiffness requirements impose
an important weight: 31kg per leg and 14kg for the end-
effector.

The main advantage of the Isoglide-4 T3R1, as far as
control is concerned, is to have a closed-form expression of
the forward kinematic and instantaneous kinematic models:





Xe = q1 − X0

Ye = q2 − Y0

Ze = q3 − Z0

sinθ = q4−q3+δZ
L

(1)



and

D(X) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 −

1
Lcosθ

1
Lcosθ


 (2)

where X = [Xe Ye Ze θ]T is the end-effector pose,
X0, Y0, Z0 and δZ are constant parameters depending on
the actuators position in the reference frame andL is one
dimension of the end-effector.

Khalil’s method [31] is preferred over the classical Carte-
sian space dynamic modeling [9], [15] since this approach
is easy to implement and ensures the known advantages of a
Newton-Euler method in a control context. In the Isoglide-4
T3R1 case, Khalil’s method leads to a closed-form inverse
dynamic model depending only on the end-effector pose and
time derivatives. For conciseness concern, the expressionof
the obtained model is not given here.

This test-bed is well suited to the validation of the ap-
proach, since its weight prevents us from neglecting the
dynamics. Moreover, its straightforward kinematic models
allow for using a Cartesian control easily and compensate
for the technological lack of reliable and accurate high-speed
sensor of the end-effector pose.

IV. EXPERIMENTAL RESULTS

A. Dynamic identification

In order to fit the inverse dynamic model to the real dy-
namics of the machine and ensure the best performances for
computed torque control, dynamic identification was realized
(see Table I). The method and notations used here were
proposed by Gúegan [32]. Results lead to an observation
matrix condition number of 355.56 which is relatively good.
Inertia parameters (MXR3, ZZR3, ZZR2, Mt, MR1) are
identified with a standard deviation from 0.40% to 1.29%,
friction terms (Fsi andFvi) from 1.07% to 6.34%. Let us
remark that some parameters describing the end-effector can
not be identified because the end-effector is lighter than the
legs, thus having a little influence on dynamics. Anyhow, the
good results of the identification process allows for ensuring
a stable and accurate computed torque control.

B. Dynamic control

The Isoglide-4 T3R1 is designed to be controlled either
in joint space or in Cartesian space thanks to the kinematic
decoupling. Consequently, we first propose a comparison be-
tween linear single-axis control and computed torque control
in joint space.

To achieve this comparison, the end-effector trajectory is
measured with a512×512 camera as exteroceptive measure
running at 250Hz. This provides us with a measure of the real
end-effector trajectory instead of a model biased estimation.
A comparison between the camera and a laser interferometer
is performed (see Figure 8) showing that the camera has an
average accuracy of 26µm and validating further results.

Both control schemes have the same gain tuning with same
cut-off frequency (ωc) of 5Hz. Nevertheless, derivative gain

Parameter CAD values Identified values Units σ(%)

MXR3 3.235 5.054 kg.m 0.42
ZZR3 1.787 2.443 kg.m2 1.29
ZZR2 6.429 8.420 kg.m2 0.54

Mt 45.011 39.513 kg 0.62
MR1 31.4380 39.999 kg 0.40

MP XP 2.059 0 kg.m

Y YP 0.411 0 kg.m

Mcomp3 45.011 49.180 kg 0.50
Mcomp4 31.4380 41.005 kg 0.39

Fs1 10.907 N 2.76
Fs2 25.558 N 1.25
Fs3 21.044 N 1.71
Fs4 28.980 N 1.07
Fv1 36.108 N.s.m−1 3.81
Fv2 89.419 N.s.m−1 2.45
Fv3 35.211 N.s.m−1 6.34
Fv4 64.793 N.s.m−1 3.10

Observation matrix condition number: 355.56
Number of samples: 65404

TABLE I

Dynamic identification results

(a) Calibration pattern and inter-
ferometer mounted on the end-
effector

(b) Camera and laser

Fig. 7. Straightness measure with an high speed camera and a laser
interferometer

(a) Deviation on Y-axis (b) Error between laser interferom-
eter and camera measures

Fig. 8. Comparison between laser interferometer and camera



Fig. 9. Comparison between single-axis and CTC controller measured with
an high speed camera on a 100mm XY square

PID CTC

Left edge 0.733mm 0.154mm

Right edge 2.255mm 0.330mm

Bottom edge 3.318mm 0.443mm

Top edge 3.143mm 0.293mm

TABLE II

Measured straightness error on square segment with an high speed camera

in the single-axis controller can not be set at the theoretical
value because the linear actuators we use do not cope with
noise, even filtered. Figure 9 shows a comparison between
single-axis and computed torque controls. The reference
trajectory is a simple 100mm square in the XY frame.
A fifth degree path generation with a 3m.s−2 maximal
acceleration is used. The trajectory is executed segment by
segment.

According to Figure 9, computed torque control in the
joint space achieves an accurate tracking while the single-
axis can not. Numerically, the straightness error are divided
by 7 for X-axis displacement and 10 for Y-axis displacement
(see Table II). Furthermore, there is no overshoot at the
end of travel with the computed torque control (see Figure
10). Thus, using computed torque control instead of a linear
single-axis control improves tracking, even in the joint space.
Indeed, due to heavy inertia, the dynamic coupling between
legs is not neglectable even at 3m.s−2. Consequently, the
dynamic behaviour of the machine should be compensated
for to improve accuracy.

At the moment, we are not able to propose experiments
on a control with a direct measure of the end-effector pose.
Nevertheless, we propose a simulation to compare a joint
space computed torque control, a Cartesian space computed
torque control using the forward kinematics and one using
a direct measure of the end-effector pose. Realistic noise

Fig. 10. Tracking error on X axis measured with an high speed camera
on a 100mm square

Fig. 11. Orientation tracking error with a computed torque control in the
joint and the Cartesian space, with Forward Kinematics and direct measure

is applied. The joint sensors have a 1µm accuracy. The
direct measure has a 50µm and 0.001rad accuracy. The
geometrical errors are fixed to 50µm and the dynamic
parameters errors to 10%. In the Isoglide-4 T3R1 case, the
geometrical errors have a great influence on the orientation
estimation (see Eq 1). Consequently, the comparison is
achieved on a 30◦ rotation of the end-effector. According
to the Figure 11, the improvement between joint space and
Cartesian space control with the forward kinematics is small
since the Cartesian and joint reference are in a very close
relation (see Eq 1). On the opposite, the use of a direct
measure greatly improves the tracking even with a less
accurate end-effector pose sensor than the joint one (50µm

against 1µm). Indeed, the orientation measure leads to a
better compensation of the dynamics since the measure is
closer to the real orientation than the estimated one.

On the whole, these simulation and experiment results
show three major points. First, using computed torque con-
trol instead of a linear single-axis control improves accu-
racy especially on heavy parallel kinematic machines like
the Isoglide-4 T3R1. Second, the Cartesian space control
improves the Cartesian reference tracking. Third, a direct



measure of the end-effector pose, instead of an estimation
with the Forward Kinematics, leads to better tracking since
the geometrical errors have no influence on the feeback.

V. CONCLUSION

In this paper a discussion on parallel kinematic machine
dynamic control was proposed. It showed that performing a
computed torque control in the Cartesian space is relevant
for parallel kinematic machine. According to the presented
results, this control improves accuracy by compensating
for the dynamic behaviour of the machine. However, there
are two limitations. First, the dynamic model included in
control has to depend on the end-effector. Second, the end-
effector pose and velocity are needed. Generally, the latter are
estimated with numerical models. It results in a lack of ac-
curacy, computation time and reliability of the estimation. A
first solution is metrological redundancy with proprioceptive
measures to reduce the complexity of forward models and
the number of solutions. However, accurate modeling and
identification are still required. A second solution is a direct
end-effector pose measure, with a laser tracker or vision for
instance, which seems more promisefull
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