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A major problem in the design of control laws dedicated
to mobile robots appears when the classical hypothesis
of rolling without sliding wheels is violated. It is
generally the case for off-road vehicles as adherence
conditions are often not satisfactory and sliding can
then cease to be negligible. Consequently theoretical
performance is impaired and the vehicle is no longer
accurately controlled.
It is particularly harmful with respect to path tracking
tasks, where a loss of accuracy in rough terrain can
generate a hazardous situation. Previous work based
on the assumption of rolling without sliding has shown
very satisfactory results with respect to that task when
sliding is not preponderant. It has also made it possible
to pinpoint and study the effects of sliding when it
appears to be non-negligible.
To preserve path tracking accuracy with respect to this
phenomenon, a new control law based on an extended
kinematic model (updated on-line via an adaptive
method) is proposed and discussed. Such control is
very efficient when adherence conditions are constant,
but overshoots can appear when an abrupt variation is
recorded (which is especially the case at the beginning/
end of curves due to low level delays and inertial
effects). A model predictive control approach is then
added to limit such transient phases in cases where a
curved path is followed.
The paper is organized as follows: the extended
kinematic model is presented as well as the observation
of unmeasured parameters required to feed it. A non-
linear control law can then be designed and the results

obtained are discussed. Finally, the model predictive
control approach is integrated and the overall control
scheme is presented. The capabilities of the approach
described in this paper are then discussed through full
scale experiments.

Keywords: Adaptive control; mobile robots; model
predictive control; path tracking; sliding effects

1. Introduction

Automated algorithms dedicated to the control of
mobile robots have always been an important issue in
robotics with respect to the potential benefits they
could bring in numerous fields of everyday life. From
the help of indoor robots dedicated to housework,
museum or industrial conveying (see for instance [3]
and [14]) to vehicle driving assistance (e.g. [28]) or the
exploration of hazardous environments (see for
instance [20]), many autonomous applications need
accurate and efficient navigation systems. Such con-
trol algorithms and theoretical principles are closely
linked to the application and available sensors. Many
different kinds of control strategies have thus been
applied and tested for automatic guidance of vehicles.
Some of these approaches are focused on control

without models, such as neural network control
described for instance by [25] applied to an all-terrain
car. However, most control strategies rely on a model,
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particularly the celebrated Ackermann model (the
vehicle is viewed as a bicycle) assuming rolling without
sliding (RWS). Such a model is used for example for
flatness feedback control (detailed in [13] or for
chained system control (see [26]), which are particu-
larly convenient for trajectory tracking in the mobile
robotics field. If the Ackermann model is sufficient for
many applications (especially dealing with indoor
mobile robotics), the RWS condition is not always
satisfactory, in particular with respect to off-road
mobile robots, and leads to inaccurate results (as has
been pointed out for instance in [17]). More detailed
models are then required, the complexity of which
depends on the application (accuracy desired) and on
the kind of control expected to be applied.
The integration of sliding effects can be naturally

achieved by the use of dynamic models of vehicle and
tyre-soil interaction. This is partially done for instance
in [11], but applied to road vehicles, using the cele-
brated Pacejka tyre model. Unfortunately, such
models are highly dependent on their parameters
which, moreover, vary over time in the case of off-road
vehicle control. As a consequence, their on-line esti-
mation appears to be quite unsuitable. Therefore, some
control techniques have been investigated to preserve
accuracy of control without integrating sliding phe-
nomena into the modelling (such as Sliding Mode
Control investigated in [6]). However, they generally
appear to be theoretically oscillating and cannot con-
sequently be applied to high accuracy tasks.
This paper addresses the problem of high accuracy

lateral path tracking of off-road car-like robots, run-
ning on low adherence ground. The objective is to
design a control strategy which allows a tracking
accuracy of � 15 cm to be reached, whatever the
conditions of adherence and whatever the path to be
followed. To obtain such tracking accuracy, an
important problem to be taken into account – in
addition to the sliding effect – is the inevitable delay
between the desired control variable and the actuator
response (due to low level settling time). This delay is
emphasized when the mobile robot to be controlled is
heavy and velocity is important (as vehicle inertia
ceases to be negligible). A time-delay system (see [24]
for an overview of this kind of system and general
possible solutions) must then be considered to prevent
lapses in path tracking accuracy from overshoots
appearing at each abrupt variation in the curvature of
the path to be followed. However, the specifics of the
path tracking task (all the future curvature is known)
allow a predictive principle to be used. This is done for
instance in [33], where a future point attached to the
path to be followed is tracked instead of the closest
point to vehicle position.

The main application targeted in this paper is driver
assistance for farm tasks on agricultural machines
(such as spraying, harvesting, etc.), since they appear
to be tedious for farmers. Automation of driving tasks
in agricultural work has been an important centre of
interest, especially for vehicle manufacturers. Indeed,
such systems are able both to reduce discomfort for
the farmer and to increase precision of work achieved,
which ultimately reduces pollution. As a consequence,
several devices have already been marketed based on
different sensors (camera for [9] or laser in [5]) but
these are more and more focused on global position-
ing system (GPS) (see for instance [19]). Even if recent
developments enable more phenomena to be taken
into account, results do not appear to be satisfactory
when sliding occurs. This is particularly so on slopes
or when the path to be tracked is a curve.
In this paper, a control law dedicated to an off-road

vehicle equipped with a Real Time Kinematic GPS
(RTK-GPS – sensor supplying a position accurate to
within 2 cm) is developed. The control strategy takes
into account not only sliding, but also low level
actuators and vehicle inertia. In the first part, a model
of sliding (derived from a classical dynamic model) is
designed to allow characterization of vehicle lateral
dynamics with respect to a reference path (long-
itudinal motion is not considered in that paper). This
model is compatible with a measurement system based
on a unique sensor (this approach does not permit the
use of a complete dynamic model). As the validity of
such an ‘extended kinematic model’ is confirmed
theoretically and experimentally, a new control law is
defined to correct behaviour of the vehicle when
sliding phenomena are present. Preliminary simula-
tion is then presented and discussed to show the lim-
itations of control methods at the transient moment
(when sliding starts to occur). Predictive controls are
then investigated and applied to limit this kind of
problem. Finally, full scale experiments are discussed
and demonstrate improvements in taking sliding into
account for accurate guidance of vehicles moving
across natural ground. The expected tracking accu-
racy performance of � 15 cm is almost always
respected in experimental conditions.

2. Vehicle Model With Sliding Taken into

Account

2.1. About Dynamic Models

A natural way to take into account sliding phenomena
and vehicle inertia in a description of vehicle beha-
viour, is to investigate dynamic models. As they
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account for manymore components (such as inertia or
pitch angle and so on . . . ) than a kinematic descrip-
tion, they appear to be theoretically more accurate. In
particular, complex description of tyre/ground con-
tact is modeled, which supplies interaction forces to be
applied to the vehicle. As soon as estimations of such
forces are available, classical laws of solid mechanics
can be applied and lead to dynamic models such as
described for example by [21]. Unfortunately tyre
models are linked to numerous variables and para-
meters to be measured or estimated. For example, one
of the most celebrated (Pacejka model) – described in
[2] – depends on more than 10 parameters to be
identified for calculation of lateral forces (and for only
one tyre), which are difficult to measure (such as side
slip angles and longitudinal sliding rate). As an
example of Pacejka formula output, Fig. 1 shows the
general shape of the relation between lateral force and
side slip angle of a tyre.
Such a chart depends on the following parameters/

variables:

� Inertial parameters: inertial moments or matrices,
mass distribution on each tyre, etc.

� Geometric parameters: wheelbase, camber, position
of centre of gravity, etc.

� Vehicle behaviour variable: longitudinal slip, side
slip angle, friction coefficient at tyre/ground con-
tact, etc.

� Tyre parameters (Pacejka for instance), which
depend on tyre configuration (pressure, shape, etc).

If some of these variables can be directly measured,
parameters of tyre/ground interaction models have to
be identified. This is feasible for applications dedi-
cated to cars running on roads (as is done e.g. in [7]),
as the nature of the contact does not change
significantly. Unfortunately, for off-road applications
such as those considered in this paper, these parameters

vary with respect to adherence properties. Even with
tyre/ground interaction models dedicated to off-road
vehicles (such as described in [32] or in [12]), on-line
estimation of parameters is necessary for the path
tracking control application. An important and
expensive measurement system is then required, which
appears to be hardly practicable.
Approaches based on a complete dynamic model as

described for instance in [31] or in [10] appear to be
unsuitable with respect to path tracking tasks for off-
road vehicles. On the other hand, the use of kinematic
models for vehicle control is a convenient and robust
approach, which should be preserved as far as possi-
ble. As an on-line estimation of some parameters is
required for the dynamic model to account for sliding,
it seems more relevant to design parameters which can
be introduced into a kinematic approach. In this
paper, an extended kinematic model is so designed as
to provide an accurate description of vehicle beha-
viour even in the presence of sliding. Control based on
such an approach is expected to be more relevant and
robust with respect to all-terrain vehicles.

2.2. Extended Kinematic Modeling

2.2.1. Description of Rolling Without Sliding

As our simplified model taking sliding into account
takes place on the classical model in rolling without
sliding conditions, let us first consider the celebrated
Ackermann model. In this approach, the vehicle is
reduced to a bicycle shape (as shown in Fig. 2), where
the front axle (and similarly the rear axle), which is
composed of two wheels, is considered as a single
wheel. As the goal of the application is trajectory
tracking, description of vehicle evolution is performed

20 15 10 5 0 5 10 15 20
–6000

–4000

–2000

0

2000

4000

6000

Side slip angle (°)

La
te

ra
l f

or
ce

 (
N

)

Fig. 1. Relation between lateral forces and side slip angle.

Fig. 2. Classical kinematic model parameters.
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with respect to the path to be followed supposedly
known to our application (previously computed or
stored from a previous run). The absolute state of the
vehicle (X and Y position and absolute heading, sup-
plied by system measurement – GPS output) is then
turned into a relative position (curvilinear abscissa,
lateral deviation and heading deviation). Parameters
and notations used in this model are listed below:

� C is the path to be followed.
� O is the centre of the vehicle’s virtual rear wheel.-
This is the point to be explicitly controlled.

� M is the point on C which is the closest to O.
M is assumed to be unique, which is realistic when

the vehicle remains quite close to C.

� s is the curvilinear coordinate of point M along C,
and c(s) denotes the curvature of C at that point.

� y and ~�� are respectively lateral and angular devia-
tion of the vehicle with respect to the reference path
C (see Fig. 2).

� � is the virtual front wheel steering angle and the
unique control variable.

� v is the vehicle’s linear velocity, considered here as a
parameter, whose value may be time-varying during
the travel of the vehicle. v is assumed to be correctly
measured on-line by an appropriate sensor.

� L is the vehicle wheelbase.

With these notations, and assuming in this case that
the two virtual wheels (front and rear) of the vehicle
are under rolling without sliding conditions, classical
system (1) can be calculated:

_ss ¼ v cosð~��Þ
1� cðsÞy

_yy ¼ v sinð~��Þ
_~��~�� ¼ v

tanð�Þ
L

� cðsÞ cosð~��Þ
1� cðsÞ y

" #

8>>>>><
>>>>>:

ð1Þ

Using this model, a control law without sliding
incorporated had been designed in [30] based on
chained system theory (detailed in [26]). Represented
by Eq. (2), it yields satisfactory results (tracking error
remains within a range of � 15 cm) for trajectory
tracking on ground with good adherence properties
(such as asphalt). Behaviour can be tuned by the two
gains Kp and Kd, consistent with a PD controller.

�ðy,~��Þ ¼ arctan L
cos3 ~��

ð1� ycðsÞÞ2
ð�Kdð1� ycðsÞÞ tan ~��

" 

�Kpyþ cðsÞð1� ycðsÞÞ tan2 ~��Þ þ
cðsÞ cos ~��
1� ycðsÞ

#!

ð2Þ

2.2.2. Sliding Model Description

In this paper, the previousmodel is extendedwith some
parameters derived from dynamical models. Indeed, in
tyre modelling – as can be seen in [2] or in [31] – lateral
forces (longitudinal control is not considered in this
paper) are calculated mainly with respect to an
important dynamic variable: The side slip angle. As
shown in Fig. 3(a), the actual speed vector recorded on
a tyre is different from the theoretical one, given by
tyre’s orientation. The difference between this latter
direction and the direction of the actual speed vector is
hereafter called ‘side slip angle’ and designated �P.
This angle is mainly responsible for lateral forces and
in a dynamic description makes the vehicle turn. This
side slip angle is generated both by tyre deformation
(corresponding to the linear part of Fig. 1) – the phe-
nomenon is then called pseudo sliding – or by the
actual sliding of the tyre on the ground (corresponding
to the non-linear part of Fig. 1).
This tyre behaviour can then be introduced into the

classical model shown in Fig. 2 and enables the evo-
lution of the vehicle to be calculated using the actual
direction of speed vectors. Figure 3(b) defines the new
model under consideration, where side slip angles are
considered on the bicycle model, one for the front
wheel (designated �FP) and one for the rear wheel
(designated �RP ). Similar parameters are used by
Ackermann in [1] to take account of wind effects on
car dynamics.

2.2.3. Kinematic Equations of Movement

A new kinematic model accounting for sliding can
then be defined. Notations introduced in Fig. 2 are
extended with sliding parameters defined by Fig. 3.
The directions of speed vectors used for kinematic
calculation then account for sliding parameters �FP and
�RP . This new bicycle model is then consistent with a
kinematic model of a vehicle with two steering axles
under conditions of rolling without sliding: The front
steering angle is �Front ¼ � þ �FP and the rear one is
�Rear ¼ �RP . The equations of motion of such vehicles
can be calculated in a classical way (see for instance

(a) (b)

Fig. 3. Sliding parameters to be used in extended kinematic model.
(a) Tyre behaviour, (b) Vehicle behaviour.
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[18]). The resulting extended kinematic model
accounting for sliding proposed in this paper can then
be shown to be:

_ss¼ vcosð
~��þ�RP Þ

1� cðsÞy
_yy¼ vsinð~��þ�RP Þ
_~��~��¼ v cos�RP

tanð�þ�FPÞ� tan�RP
L

� cðsÞcosð
~��þ�RP Þ

1� cðsÞy

" #

8>>>>>><
>>>>>>:

ð3Þ

Naturally, equations of this model are not linear.
Nevertheless, as has been pointed out previously, the
system (3) looks like a model for a vehicle with two
steering axles under conditions of rolling without slid-
ing. Such a consideration is very interesting for the
control to be designed on this model, as control of such
mobile robots iswell knownand transformation into an
almost linear form (chained system) can be achieved.
These results are applied hereafter to the design of the
control law associated to model (3). Finally, it can be
verified that the classical kinematic model for a vehicle
in pure rolling conditions can be deduced from (3): by
applying null sliding parameters ð�FP ¼ 0,�RP ¼ 0Þ, the
extended kinematic model does indeed become (1).
To use such an extended model, and to achieve the

comparison with an actual vehicle, the state variables
(s, y, ~��) must be measured, but the two sliding para-
meters ð�FP,�RP Þ must be evaluated too. The vehicle
used for experimental applications must then be
equipped with suitable sensors for convenient access
to estimates of variables and model parameters.

3. Parameter Observation

3.1. Experimental Context

The vehicle used for experimentation is an Ares 640
tractor lent by theGermanmanufacturer CLAAS,with
whom a research partnership has been concluded. It is
shown in Fig. 4. The hydraulic drive has been modified
to enable automatic steering. To achieve closed loop
control of the low level part (steering angle �), an angle
sensor has been installed to measure actual steering
angle. This low level closed loop ensures convergence of
actual steering angle towards the angle desired, sup-
plied by the control law and sent to the actuator.
The only exteroceptive sensor used to ensure trajec-

tory trackingof this farm tractor is a real timekinematic
GPS (RTKGPS), which supplies position information
with � 2 cm accuracy. Use of this material enables
direct measurement of state variables (s, y), while
vehicle heading (and therefore angular deviation ~��) is

estimated via a Kalman filter. Consequently, all
variables of the state vector are available. Furthermore,
the RTK GPS supplies also the antenna velocity, con-
sidered as a satisfactory measure of the vehicle linear
velocity v introduced in the previous section.

3.2. Direct Measurement of Sliding

On the contrary, the sliding parameters defined in
the previous section cannot be directly measured.
However, considering the last two equations of model
(3) and the information supplied by the sensors, it can
be observed that using numerical derivation of mea-
sured variables ðy,~��Þ, two equations are then available
to provide these two unknowns. This 2-dimensional
system can be resolved, and finally ð�RP ,�FPÞ can be
calculated via Eq. (4):

�RP ¼ arcsin
_yy

v

	 

� ~��

�FP ¼ arctan
L

v cos�RP

_��þ tan�RP

	 

� �

8>><
>>: ð4Þ

Even if such sliding estimation leads to acceptable
values with respect to expected precision (see for
instance [16]), this method is subject to important
limitations: firstly, introduction of numeric derivation
ð _yy, _��Þ of measured variables leads to a very noisy
signal. Secondly, delays present in heading signal
generate bias in sliding estimation. To overcome these
problems, a more convenient on-line sliding estima-
tion based on observer theory has been designed.

3.3. Duality Between Control and Observation

One possible way of evaluating unmeasured variables
or parameters of a model is to use an observation
algorithm, as described for instance in [4]. It is
achieved e.g. with respect to mobile robots in [8] for

Fig. 4. Vehicle used for experimentation.
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velocity estimation or in [27] for estimation of side slip
angles. In these two references, observers are based on
a dynamic vehicle model for passenger car applica-
tions. Moreover, more and different kinds of sensors
are used than for our application (off-road vehicles).
For both the observers cited, unmeasured data are
variables included in the state vector. More precisely,
vehicle model can be written as eq. (5).

_XX ¼ fðX,uÞ
Y ¼ hðXÞ

	
ð5Þ

For such a system, X is a state vector with a
dimension n, while Y is the output with a dimensionm
such as m	 n. u is a control vector, and finally f and h
are functions, which can be non-linear. Considering
this system, a classical observer can be defined by
eq. (6), where X̂X is the observed state vector.

_̂
XX̂XX ¼ fðX̂X,uÞ þ �ðY� hðX̂XÞÞ ð6Þ

On the assumption of observability, an error function
is introduced to make estimated output converge
with measured output using unmeasured variables.
Unknown variables thus calculated are then assumed
to be consistent with the actual values. In [27], several
kinds of function for � have been tested. Use of such
equations could be transposed to our model if sliding
parameters were in the state vector X, which is not the
case in the formalism of our model (3). It could not be
rewritten under such a form, since the derivations of

these sliding parameters ( _��
F

P and _��
R

P) are unknown.
Thus, assuming that the observation problem can

be viewed as a dual control problem (which is gen-
erally assumed in the literature), observation of sliding
parameters is henceforth transposed to a control
problem.According to a control description, model (3)
is viewed as a process to be controlled with respect to
sliding parameters, in order that the state vector
converges with measured variables. The following
notations and equivalences with respect to control
theory are then achieved:

� u ¼ �RP ,�
F
P

� �
is viewed as control vector of pro-

cess (3).
� �: Steering angle. In the following equations, � is
viewed as a measured parameter supplied by the
angle sensor fitted on the vehicle steering actuator.

� X̂X ¼ ½ŷy, ~̂��~���: the state of the observer. In this case, it
constitutes the state vector to be controlled.

� �XX ¼ ½�yy,�~��~���: the measured vector (output of sensor).
This vector is the desired position for the process.

The observer can be synthesized under a classical
control approach. The objective is to make state
vector X̂X (observed state) converge with the target

value �XX (measured state) using the control variables
½�RP ,�FP�.
Figure 5 depicts the global algorithm principle,

where two loops are running simultaneously. First,
the observer loop (at the bottom of the figure) receives

input of the measured state vector �XX ¼ �yy,
�~��~��

h i
, which is

introduced as the desired state to be reached by

observed state X̂X ¼ ŷy, ~̂��~��
h i

. This loop provides estima-
tion of sliding parameters, which is injected into the
model, and will be used in the vehicle control loop
with sliding incorporated (at the top of Fig. 5, and
detailed later in this paper). All required parameters
and variables are then available for control design.

3.4. Observer Design

3.4.1. System Formalism

Model (3), with no equation for curvilinear abscissa
evolution, is rewritten into a non-linear state repre-
sentation given by (7):

_̂
XX̂XX ¼ fðX̂X,uÞ ð7Þ

where f is defined by (3) and is recalled in (8):

fðX̂X,uÞ ¼

f1 ¼ v sinð ~̂��~��þ �RPÞ

f2 ¼ v cos�RP
tanð� þ �FPÞ � tan�RP

L

�

�cðsÞ cosð
~̂��~��þ �RPÞ

1� cðsÞŷy

#

8>>>>>><
>>>>>>:

ð8Þ

To control system (7) with respect to sliding para-
meters, let us linearize this state equation with respect
to ‘control vector’ u around zero (no sliding), as side
slip angles are close within a few degrees. This leads to
eq. (9):

_̂
XX̂XX ¼ fðX̂X,0Þ þ BðX̂XÞu ð9Þ

Fig. 5. Main controller and observer loops.
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withBðX̂XÞdenotingthederivationof f ðX̂X,uÞwithrespect
to control u (sliding parameters), defined by (10)

BðX̂XÞ ¼ @f

@u
ðX̂X,0Þ

¼
v cos ~̂��~�� 0

v
cðsÞ sin ~̂��~��

1� cðsÞŷy�
v

L

v

L
1þ tan2 �
� �

2
64

3
75
ð10Þ

According to definition (10), matrix BðX̂XÞ is inver-
tible under the condition: ~�� 6¼ �

2 ½��, which is the case
during tracking if initialization is achieved correctly.
Convergence of X̂X to �XX is ensured if and only if error

tends towards zero (hereafter called " and defined by
� ¼ X̂X� �XX). As a consequence, an equation defining
error dynamics _�� must be found. However, it requires
derivation of �XX (measured state vector), which is not
analytically available. Indeed, analytical derivation of
�XX defined by (11) cannot be resolved, since the sliding
parameters are not estimated yet. Therefore, relation
(11) cannot be introduced into the desired error
dynamics equation.

_�XX�XX ¼ f ð �XX,uÞ ð11Þ

A first solution can be to consider a quasi-static
evolution of the measured signal (i.e. _�XX�XX ¼ 0), which
leads to an equation of error equal to state eq. (9):
_�� ¼ _̂

XX̂XX. Unfortunately, such an assumption is not valid
since the evolution of observed state X̂X cannot be
faster than the evolution of measured state �XX. As a
consequence, sliding estimation is slightly delayed and
therefore an overall control law that relies on such
estimation can be unstable.
To overcome this problem, evolution of the mea-

sured state vector is introduced into the error equation
using its numerical derivation defined by (12), where T
is the sampling period.

_�XX�XX
M

¼

�yy½k� � �yy½k�1�
T

�~��~��½k� � �~��~��½k�1�
T

8>><
>>: ð12Þ

The measured state vector can then be introduced
into the error evolution equation. Impact of noise
generated by numeric derivation is less important than
for eq. (4), since the settling time of the observer will
naturally smooth this noisy signal. Error dynamics
can then be defined by Eq. (13):

_�� ¼ fðX̂X,0Þ � _�XX�XX
M
þ BðX̂XÞu ð13Þ

3.4.2. Observer Equations

The objective of the observer is to make the error "
tend towards zero. This can be ensured by introduc-
ing a Hurwitz matrix K and imposing the following
condition:

_�� ¼ K  � ð14Þ

On the assumption that matrix BðX̂XÞ is invertible,
which is true in practical cases (see definition (10)),
condition (14) can be ensured by the control law (15)
with respect to sliding parameters.

u ¼ BðX̂XÞ�1 K  �� fðX̂X,0Þ þ _�XX�XX
M� �

ð15Þ

Relation (15) is an equation for the estimation of
sliding parameters, which can be used instead of
Eq. (4). The dynamics of convergence for error " can
be tuned by the choice of matrix K, which defines
settling time for the observed state. This makes it
possible to act on two points which are important for
our application:

� Confidence in each measured variable: choice of
matrix K allows each settling time to be tuned sepa-
rately for state variables y (lateral deviation) and ~��
(angular deviation).As a result, a longer settling time
can be chosen for less certain measured variables. In
our case, heading measured by GPS (and then
angular deviation) is derived from a Kalman filter,
which may not always be relevant. The choice to be
made on matrix K will then reduce settling time
relative tomeasured lateral deviation with respect to
settling time relative to measured angular deviation.
Relevance of sliding parameters is then expected to
be improved, quite independently of the time delay
present on vehicle heading estimation.

� Noise level on estimated sliding parameters: observer
settling time permits smoothing of the observed state
with respect to that measured. Consequently, con-
trol variables calculated (i.e. estimated sliding) are
smoothed in the same way. This effect is limited,
however, as settling time must be sufficient to pre-
serve adequate convergence.

3.5. Validation of Observer and Extended Model

3.5.1. Vehicle Behaviour Under Control with Sliding
Neglected

To demonstrate the capabilities of both model (3) and
estimation algorithm (15), let us introduce the results
of path tracking obtained under control law (2), when

Off-road Mobile Robots Path Tracking 7



sliding phenomena are neglected. This will make it
possible to show the effect of sliding phenomena with
respect to the tracking task (referenced to the path to
be followed) and to compare actual results with model
output. First, let us consider a reference path, during
the following of which sliding will inevitably appear.
Shown in Fig. 6, it consists of two straight lines
separated by a significant curve (half turn) executed
on an even field (damp soil, with low adherence
properties). The tracking task is performed at an
almost constant speed of 9 km.H� 1.
The effect of sliding can be viewed in Fig. 7, where

the actual tracking error during path following is
shown by a black solid line, with respect to the cur-
vilinear abscissa. It may be observed that during the
half turn (between curvilinear abscissa 25 m to about
50 m), control law (2) is not able to make the vehicle
reach a null lateral deviation: non-negligible sliding
effects observed during the curve make the vehicle
converge towards an almost constant tracking error of
about 30 cm (which is out of the acceptable range
expected by the farmer). A significant overshoot of
70 cm is also recorded at beginning of the curve
(at curvilinear abscissa 33 m).

The lateral deviation resulting from a simulation
using the same control law (2) and using the model
without sliding (1) is also shown in this figure by a blue
dotted line. This simulation incorporates the low level
properties (steering actuator), which explains the
overshoots observed at the beginning and end of
the curve (when steering angle as to change). During
the curve, the model that neglects sliding supplies an
almost null lateral deviation, while actual lateral
deviation is close to 30 cm. As a consequence, lateral
deviation observed for actual vehicles cannot be
characterized by model (1), on which the classical
control law is based. Logically, control law (2) is not
able to deal with this phenomenon, which explains the
loss of accuracy during the curve.

3.5.2. Convergence of Observer

During experiments, the matrix K (which determines
the convergence rate of the observer) was set to:

K ¼ �1:4 0
0 �0:8

� �
ð16Þ

These values have been experimentally determined
to ensure good observer convergence with satisfactory
smoothing of sliding parameters and independence of
sliding estimation with respect to the delay recorded
on vehicle heading. The observed lateral deviation (ŷy)
obtained with such settings during above discussed
experiments is shown by a green dotted line in Fig. 7.
It can be seen that this signal accurately fits the

actual deviation recorded during path following. This
demonstrates the validity of the observer (described
by Eq. (15)) with respect to the objective defined
(convergence of observer state with measured state).
The algorithm is then able to calculate relevant values
for sliding parameters to ensure a null error of
observation.

3.5.3. Capabilities of Model and Observer

The relevance of estimated parameters with respect to
the model (3) can now be checked. Validation is
achieved using a simulation based on model (3) (with
sliding incorporated) submitted to control law (2)
(without sliding incorporated). Simulation results
must be superposed on the actual results if the
extended kinematic model appears to be adapted to
the characterization of vehicle behaviour.
In Fig. 8, results of simulations are compared to

actual lateral deviation (still shown as a black solid
line). Simulated lateral deviation with the extended
model including observer input is shown by a red
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dash-dotted line. The simulation is very close to the
actual lateral deviation, and consequently provides a
suitable characterization of vehicle behaviour in pre-
sence of sliding. The model with estimation algorithm
appears to be relevant and constitutes an accurate tool.

4. Control Without Prediction

In this section, a control principle and associated
equations are developed. As a consequence, only the
theoretical capabilities are demonstrated (experi-
mental tests are presented at the end of paper).

4.1. Chained System Transformation

In this paper, control is based on the extended kine-
matic model defined by (3), where sliding undergone
by the vehicle is integrated as parametric variables.
These sliding parameters (i.e. �FP and �RP ) are estimated
on-line using observer method (15), as described ear-
lier in this paper. As has been done in previous work
(see for instance [15] and [30], in which another model
for sliding is proposed), a complete adaptive scheme

can be designed to steer a vehicle in sliding conditions,
and then enables tracking accuracy to be preserved
even in sliding conditions.
Another approach is here favoured, in view of the

similarity of model (3) with classical mobile robots

models. Indeed, as has been pointed out, model (3) is
consistent with the model of a mobile robot with two
steering axles moving without sliding. Such a model is
known to be transformable into a three dimensional
state chained system form with two inputs (see [26]):

_aa1 ¼ m1

_aa2 ¼ a3m1

_aa3 ¼ m2

8<
: ð17Þ

with A¼ (a1, a2, a3)
T and M¼ (m1, m2)

T respectively
the state and the control vector. In order to reveal that
the major part of system (17) is linear, let us replace
time derivation by derivation with respect to the first
state variable a1. On the assumption that m1 6¼ 0, the
following notation can be used:

d

da1
ai ¼ a0i and m3 ¼

m2

m1
ð18Þ

Under these notations, system (17) can be rewritten as
follows:

a01 ¼ 1
a02 ¼ a3

a03 ¼ m3 ¼
m2

m1

8><
>: ð19Þ

The last 2 equations of system (19) constitute a
linear system.
As pointed out in [26], conversion of system (3) into

chained forms (17) and (19) can be achieved by
introducing the state transformation (20) and the
control transformation (21).

�ðs,y,~��Þ ¼ s,y, tanð~��þ �RP Þ½1� cðsÞy�
� �T ð20Þ

Mðs,y,~��,�,vÞ ¼ ðm1,m2ÞT ð21Þ

with

According to system (17), auxiliary control m2 con-
sists in the time derivative of a3. Therefore, in view of
Eq. (20), an explicit expression of m2 requires the
derivation of the rear sliding parameter, which is not
available analytically. As �RP is a noisy signal, the use
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m1 ¼
v cosð~��þ �RP Þ
1� cðsÞy

m2 ¼ �cðsÞv sin ~��þ �RP
� �

tan ~��þ �RP
� �

þ v
1� cðsÞy

cos2ð~��þ �RP Þ
cos�RP

tanð� þ �FPÞ � tan�RP
L

� ��

� cðsÞ cosð
~��þ �RPÞ

1� cðsÞy

#

8>>>>>>>><
>>>>>>>>:

ð22Þ
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of its numeric derivation does not appear to be very
tractable. As a consequence, the expression (22) has
been obtained under the assumption that rear sliding
parameter �RP is slow-varying ð ddt�RP � 0Þ.
The conditions of existence and inversion of trans-

formations (20) and (21) are: y 6¼ 1
cðsÞ (model singu-

larity), v 6¼ 0 (satisfied in the applications considered
here) and ð~��þ �RP Þ 6¼ �

2 ½�� (which is always true in
practice, when path tracking is properly initialized).

4.2. Control Law Design

As we are able to turn the kinematic vehicle model
into linear form (19), a control law achieving path
tracking can be easily designed. Indeed, a natural
expression to make the vehicle tend to a null lateral
deviation is:

m3 ¼ �Kda3 � Kpa2 ðKp,KdÞ 2 <þ2 ð23Þ

since injecting (23) into system (19) leads to:

a
00

2 þ Kda
0
2 þ Kpa2 ¼ 0 ð24Þ

Differential Eq. (24) implies convergence to zero of
the two variables a2 and a3. On one hand, the con-
vergence of a2 ensures convergence of lateral deviation
y. Path tracking is then achieved by the vehicle. On the
other hand, a3! 0 is equivalent to ð~��þ �RPÞ ! 0,
which ensures that vehicle heading will compensate the
effect of sliding due to rear side slip angle (the vehicle
moves crabwise). Sliding due to the front side slip angle
will be compensated directly by steering angle, as
described by the steering control law expression (25).
In expression (24), the two gains (Kp, Kd) are con-

sistent with gains used in a PD controller. As error
dynamics is expressed with respect to a1, which is
equal to the curvilinear abscissa s, these two gains do
not specify a settling time, but a settling distance, so
that the capabilities of this control law are theoreti-
cally independent of vehicle velocity v.
Finally, inversion of the transformation (21) yields

an analytic expression for the control law (injecting
(23) in (18) and (22)):

� ¼ arctan

	
L

cos�RP

�
CðsÞ cos

~��2



þ A
cos3 ~��2

2

�

þ tan�RP



� �FP

with

~��2 ¼ ~��þ �RP

 ¼ 1� cðsÞy
A ¼ �Kd
 tan ~��2 � Kpyþ cðsÞ
 tan2 ~��2

8<
:

ð25Þ

Eq. (25) constitutes calculation of the steering angle to
be sent to the actuator. It can be verified that apply-
ing null sliding parameters ð�FP,�RP Þ ¼ ð0,0Þ supplies
expression (2), which constitutes the previous control
law without sliding incorporated, described in [29].
Both control laws (25) and (2) are calculated under the
experimental assumption that the terms attached to
curvature derivation are negligible.

4.3. Theoretical Results

As the new control law accounting for sliding effects
has been designed previously, its theoretical behaviour
(convergence to zero when sliding occurs) is checked
under simulation and compared to the behaviour
obtained with control law (3) which does not account
for sliding.
Simulation results deal with the theoretical path to

be followed defined in Fig. 9. It is composed of two
straight lines linked by a perfect arc of a circle. A
curvature step is then introduced at the beginning/end
of the circle, which is not compatible with the actuator
features (low level properties do not allow the vehicle
to follow a curvature step perfectly). Therefore, in
order to be more realistic, the simulator takes into
account the low level properties of the steering angle
actuator: the control applied on the simulated vehicle
is linked to the calculated steering angle by a pure
delay of 200ms and a classical second order process
with a settling time of 400ms and a first overshoot of
10%. Sliding parameters are simulated during the
curve by defining a proportional relation between side
slip angles and steering angle. Finally, during simu-
lation, the vehicle is running at a constant speed of
9 km.H� 1.
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For both control laws, the same gain values are
entered, i.e. (KP,Kd)¼ (0.09,0.6). The lateral deviation
obtained with control (25) (when sliding parameters
are estimated by the observer defined by (15)) is shown
by a red dashed line on Fig. 10, and compared to the
tracking error obtained with control law (2), still
shown in black solid line.
According to simulation results, the classical control

law (without sliding incorporated) makes the vehicle
tend towards a constant lateral deviation during the
curve (stabilization around 28 cm), while, as expected
with regard to Eq. (24), the control law (25) with sliding
incorporated causes the vehicle to converge exactly to a
null lateral deviation. Thus the model based control
strategy as defined by (25) and with on-line observer
algorithm input appears to be theoretically a suitable
way to preserve tracking accuracy from sliding effects,
at least when sliding conditions are constant.
As the simulator takes low level properties into

account, Fig. 10 shows overshoots on lateral deviation
using control law (25) as soon as sliding appears
or disappears (transient phases). These overshoots
(linked in simulation to low level response) are ampli-
fied in full scale experiments, mainly due to dynamic
phenomena and especially to delay induced by vehicle
inertia which is not yet taken into account. A solution
for delay compensation is presented in the next section.

5. Predictive Control

As abrupt variations of curvature are responsible for
transient phases and considering that we know in
advance the exact shape of the path to be followed,
one way to limit these transient phases is to use a
predictive action. Indeed, using such information, it is
possible to send a control value to the actuator a
moment before the curve appears. Then, the steering
angle actually applied to the vehicle when the curve
starts could correspond to the desired one and could

prevent overshoots due to delays. In this paper, model
predictive control is developed.

5.1. Separation of Control Law

Since angular and lateral deviations and especially
sliding parameters cannot be anticipated, prediction
has to be applied only with respect to curvature. To
identify the contribution of curvature in control law
(25), let us first assume that the vehicle follows the
reference path perfectly. Considering this case and
assuming rolling without sliding conditions (since the
values of sliding parameters cannot be predicted), the
curvature defined by the steering angle of the vehicle
has to be equal to the path curvature. This geometrical
condition can be analytically described (applying null
deviations and sliding in (25)) as:

tan � ¼ LcðsÞ ð26Þ

This consideration reveals a separation into the control
law expression. Eq. (25) can be rewritten as follows:

� ¼ arctanðuþ vÞ � �FP

with

u ¼ L

cos�RP
cðsÞ cos

~��2



v ¼ L

cos�RP
A
cos3 ~��2

2

þ tan �RP

8>>><
>>>:

ð27Þ

which can be rewritten under the more convenient
expression (28) using the geometrical relation (29):

� ¼ �Traj þ �Deviation

�Traj ¼ arctanðuÞ

�Deviation ¼ arctan

�
v

1þ uvþ u2

�
� �FP

8<
: ð28Þ

arctanðaþ bÞ ¼ arctanðaÞþ arctan
b

1þ abþ a2

� �
ð29Þ

Expression of control law (25) under the presenta-
tion (28) constitutes the desired separation of the
control law into two additive terms, which play two
different roles, as detailed below:

� �Deviation: Null term when deviations and sliding are
equal to zero. This term mainly depends on sliding
parameters ð�RP ,�FPÞ and deviations ðy,~��2Þ to ensure
the convergence of the latter ones to 0. As these
variables and parameters cannot be anticipated,
this additive term will not be introduced into the
predictive algorithm.
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� �Traj: Non-null term when deviations and sliding are
equal to zero. This term mainly depends on refer-
ence path properties, and ensures path-following
condition defined by (26). As the future curvature
of the path to be followed is known (attached to the
reference path), the future objective attached to this
term can be calculated. Model predictive control of
this term will be achieved.

5.2. Prediction Algorithm

As soon as the step of control law separation is
achieved, the prediction algorithm detailed below is
applied to term �Traj to produce the new term �PredTraj . As
detailed in Fig. 11, the new control law to be sent to
the steering actuator is the addition of �Deviation (which
remains unchanged) and predictive term �PredTraj . The
Model Predictive Control principle, defined in [23]
and applied in [22], forms the basis on which predic-
tion is developed in this section, since the future cur-
vature is known and a model of the actuator is
available.

5.2.1. Prediction Principle

The description of predictive functional control (also
called model predictive control) requires the definition
of the variables shown in Fig. 12 and detailed below:

� �C: Control variable sent to the actuator. In the
current case of a separate control, this variable is
only the trajectory part �Traj of the control law,
defined by (28) and (29).

� �R: Measured steering angle. This is the output of
low level process resulting from the action of con-
trol �C, which is only the trajectory part of the
control actually applied. As we cannot separate the
measured steering angle into two parts, actual
response to �C is approximated by the relation (30),
where �M½n� is the n

th measurement of steering angle
supplied by the sensor.

�R½n� ¼ �M½n� � �Deviation½n� ð30Þ

� H: Horizon of prediction. It is the constant time in
the future, which will be used to determine the
control value to be applied in the present (iteration
n) to reach the future objective �Obj as well as pos-
sible. In the remainder of this paper, the integer nH
is the iteration number attached to the horizon of
prediction H: nH defines the number of coincidence
points used in prediction algorithm.

� �obj: Known future objective. It represents the future
desired process output value. In the present case, this
variable is linked to the future curvature of the
reference path by the relation: �Obj¼ arctan
(L.c (sþHs)), whereHs is the Horizon of prediction
in the curvilinear abscissa associated to H.

� �Ref: Desired reference shape to be followed by �R to
reach the future objective �Obj. This variable deter-
mines the desired shape of the process output to
converge to �Obj. Classically, a first order such as
relation (31) is chosen, where i2 ½0;nH� and 
2 ½0;1½
is a parameter tuning the convergence speed of
reference trajectory.

�Obj½nþi� � �Ref½nþi� ¼ 
i �Obj½n� � �R½n�

� �
ð31Þ

In the current case, only the objective at the moment
nH is used for reference path calculation and is con-
sidered as constant all along the horizon of prediction.
The reference path is then defined as follows:

�Ref½nþi� ¼ �Obj½nþnH� � 
i �Obj½nþnH� � �R½n�

� �
ð32Þ

� �̂�
R
: Predicted output of process. This variable

describes the evolution of the future process output
computed from the identified process model (see
next section).

Under these notations, the goal of MPC is to find on
the horizon of prediction H, the control set
�C(n, . . . , nþ nH) which minimizes deviation between

predicted output �̂�
R
and the desired trajectory �Ref

chosen to reach the final objective �Obj½nþH�. A criterion

Fig. 11. Application of prediction to control expression.
Fig. 12. Notations and general description of PFC.
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to be minimized can then be defined. It is shown
graphically in Fig. 13, and the mathematical expres-
sion of this criterion, hereafter called D, is defined by
Eq. (33):

DðnÞ ¼ �nH
i¼0 �̂�R½nþi� � �Ref½nþi�

� �2
ð33Þ

In Eq. (33), the number of coincidence points used
for criterion calculation, and consequently for mini-
mization, is equal to the number of iterations required
to meet the horizon of prediction. For example, if the
horizon is set to 0.9 s, 10 iterations are required, and
finally 10 coincidence points are defined.

5.2.2. Low Level Model

As calculation of the criterion (and consequently its
minimization) requires the prediction of the output of
process during the horizon of prediction, a model for
the low level actuator must be available. Experiments
enable the actuator response to a control input to be
measured and an identification establishes that it can
be described as second order. As control runs in dis-
crete time, the low level model can be described by
model (34):

X�
½n� ¼ FX�

½n�1� þ K�C½n�1�

Y�
½n� ¼ CX�

½n�

(

with X�
½n� ¼

�R½n�

�R½n�1�

�C½n�1�

2
664

3
775, F ¼

b1 b2 a2

1 0 0

0 0 0

2
64

3
75,

K ¼
a1

0

1

2
64

3
75, Y�

½n� ¼ �R½n�, C ¼ 1 0 0½ �

ð34Þ

Model (34) is consistent with the classical form of a
discrete second order system. According to experi-
mental tests, the numerical parameters shown in (35)
can be deduced, with respect to the sampling time
T¼ 0.1 s (10 Hz):

a1 ¼ 0:1237 b1 ¼ 1:2155

a2 ¼ 0:0934 b2 ¼ �0:4326
ð35Þ

Response of the actuator to a step input can be
characterized by the following properties:

� Settling time: 0.5 s
� First overshoot: 3%

Actual response to a classical shape of control input
which can be recorded during experiments is presented
in Fig. 14.
Here, apuredelay ispresent,but is taken intoaccount

by extending the horizon of prediction. Currently, only
the delay due to the actuator process is integrated into
the model (34)–(35). However, the influence of other
phenomena (filters and vehicle inertia) can be practi-
cally reduced by extending the horizon of predictionH
and tuning the parameter 
 used in Eq. (33).

5.2.3. Prediction Term Calculation

As a process model is available and knowing the
future objective �Obj derived from (26), minimization
of criterion (33) can be developed:

5.2.3.1. Future control structuration. First of all, as
future control minimizing D(n) has to be found, a
structure composed of base functions must be defined

Fig. 13. Visualization of criterion to be minimized.
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to build it. At a given moment i2 ½0;nH� in the future, a
control can be defined, such as:

�C½nþi� ¼ �nB
k¼1�kðnÞ�

C
BkðiÞ ð36Þ

In equation (36), �CBk is kth base function chosen,
which is time-dependent. The degree nB of the base set
and the shape of base functions �CBk, k2 ½0..nB� depend
on the application and on the desired evolution
of the future objective. Moreover, as the control
which will finally be applied is the first one, i.e.
�C½n� ¼ �nB

k¼1�ðnÞ�CBkð0Þ, the set of base functionsmust be
different from 0 when i¼ 0. A classical choice of base
functions is �CBkðiÞ ¼ ik�1, since the first one (i.e. k¼ 0)
is amply different from 0when i¼ 0. Such a structure is
chosen in this paper. In the present case, the degree of
the base set is limited to 1 (i.e. nB¼ 1), as discussed in
section C. The structure is then finally defined by:

�C½n� ¼ �1ðnÞ:1 ð37Þ

The goal of the minimization problem is now to find
the coefficient �(n)¼�1(n), which will minimize the
criterion D(n).

5.2.3.2. Process response. Let us now separate the
process response into a free response L�̂�

R
(due to the

contribution from previous states and control) and a

forced oneF�̂�
R
(resulting from the applied control �C).

Process output can be rewritten as:

�̂�
R

½nþi� ¼L �̂�
R

½nþi� þF �̂�
R

½nþi� ð38Þ

On one hand, free response can be easily obtained
by recurrence using model (34):

L�̂�
R

½nþi� ¼ C:Fi:X�
½n� ð39Þ

On the other hand, the forced response can be
defined as follows:

F�̂�
R

½nþi� ¼ �ðnÞ�̂�RBðiÞ ð40Þ

where �̂�
R

B denotes the forced response to the control �
C
B

and can be explicitly calculated using recurrence
equations (34).

5.2.3.3. Minimization of the criterion: Inserting (39),
(40) into (38) and injecting the latter into definition of

criterion (33), the expression of D(n) becomes:

DðnÞ ¼ �nH
i¼0 �ðnÞ�̂�RBðiÞ þ C:Fi:X�

½n� � �Ref½nþi�

n o2
ð41Þ

In expression (41), the unknown variable to
be determined is �(n). Let us introduce
dðnþ iÞ ¼ �Ref½nþi� � C:Fi:X�

½n�. Relation (41) can then be
written as:

DðnÞ ¼ �nH
i¼0 �ðnÞ�̂�RBðiÞ � dðnþ iÞ
n o2

ð42Þ

Minimization of the criterion can now be obtained
by canceling the gradient @D@�,which leads to the relation:

�nH
i¼0 2 �ðnÞ�̂�RBðiÞ � dðnþ iÞ

� �
�̂�RBðiÞ ¼ 0 ð43Þ

which is equivalent to:

�ðnÞ �nH
i¼0 �̂�RBðiÞ
� �2� �

� �nH
i¼0 dðnþ iÞ�̂�RBðiÞ
� �

¼ 0

ð44Þ

As �nH
i¼0 �̂�RBðiÞ
� �2

is non-null, because it is the sum
of positive or null terms with the condition �̂�

R

Bð0Þ 6¼ 0,
�(n) can be deduced. Finally, considering that the
control to be applied is the first term of the control set
(i.e. i¼ 0), according to Eq. (37) the value of the
control in the present case is given by:

�PredTraj ¼ �C½n� ¼ �ðnÞ ð45Þ

Lastly, the expression of the trajectory part incor-
porating prediction to be applied in the control law is
given by (46):

�PredTraj ¼
�nH
i¼0 dðnþ iÞ�̂�RBðiÞ
� �
�nH
i¼0 �̂�RBðiÞ
� �2 ð46Þ

It may be observed that for calculation, the denomi-
nator is invariant and can be calculated off-line. The
same remark can be made about the calculation of

each �̂�
R

BðiÞ, i2 ½0, . . . ,nH�.

5.2.3.4. Global control law expression.Using the result
of the criterion minimization presented by (46), the
separation equation defined by Eq. (28) and according
to the algorithm shown in Fig. 11, we have access to
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the whole control law with sliding incorporated and
using prediction on the reference path curvature:

� ¼ arctan
v

1þ uvþ u2

� �
� �FP

þ
�nH
i¼0 dðnþ iÞ�̂�RBðiÞ
� �
�nH
i¼0 �̂�RBðiÞ
� �2

with

u ¼ L

cos�RP
cðsÞ cos

~��2



v ¼ L

cos�RP
A
cos3 ~��2

2

þ tan�RP

~��2 ¼ ~��þ �RP

 ¼ 1� cðsÞy
A ¼ �Kd
 tan ~��2 � Kpyþ cðsÞ
 tan2 ~��2

8>>>>>>>>>>><
>>>>>>>>>>>:

ð47Þ

5.3. Theoretical Results with Prediction

5.3.1. Low Level Response with Prediction Algorithm

As a result for predictive algorithm studies (only

concerning �PredTraj ), let us consider the same objective

evolution �Obj as described in Fig. 14. Control �C

defined by (46) – considering that �Deviation is then
null – with an horizon of prediction of 0.3 s and a
parameter 
 equal to 0.3 is applied on process model
(34) instead of objective �Obj. The results are presented
in Fig. 15 by a black dotted line.
It may be observed that using the prediction algo-

rithm, process output fits the desired objective instead

of lagging behind. In this algorithm, at each sample
period, a constant objective �Obj is applied all along
the horizon of prediction and the control structure is
of degree one, i.e. nB¼ 1. These facts make the quality
of the prediction algorithm sensitive to the choice of
the horizon of prediction: If H is too long, control
starts too early. This problem could have been elimi-
nated by using actual objectives at each coincidence
time and by applying a control structure of degree
two, i.e. nB¼ 2. However, this configuration requires
an accurate model for the vehicle response to a
steering sequence (in our case, only the actuator is
accurately modelled). In contrast, the choice of a
degree one in control structure and a constant objec-
tive along the horizon of prediction constitute a means
of opposing delays due to other phenomena than low
level properties, precisely by increasing the horizon of
prediction H.

5.3.2. Path Tracking using the Prediction Component

As the objective is to reduce the overshoots observed
at each beginning/end of curve under control law (25)
(cf Fig. 10), let us apply the whole algorithm described
by Fig. 11 for vehicle path tracking in the same con-
ditions and on the same trajectory as for the simula-
tion described in Section 4.3. The results of the
simulations are reported in Fig. 16.
In addition to the lateral deviation obtained when

relying on the classical control law (in solid black line)
and on control law (25) (in dashed red line), the path-
following result using the algorithm with the predicted
trajectory term �PredTraj is shown by a dotted green line.
The parameters for the prediction are H¼ 0.5 s and

¼ 0.2. The gains used for the deviation part �Deviation
remain unchanged for all three control laws, i.e.
Kp¼ 0.09 and Kd¼ 0.6.
It may be observed that the overshoots present at

each curvature modification (at iterations 50 and 300)
are considerably reduced. They are not eliminated, but
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it is important to notice that the theoretical path to be
followed, shown in Fig. 9, cannot be perfectly fol-
lowed. Indeed, because of its construction (the circle is
linked to two straight lines), a curvature step appears.
Since simulated low level cannot accommodate a step
in steering angle, overshoots have to be present at each
step of curvature.
An important point is that, while curvature on the

reference path is constant, the prediction applied on
�PredTraj does not disturb the convergence of control law
term �Deviation, which controls the deviations with
respect to the path to be followed and compensates
effects of sliding. Indeed, after a settling time of about
50 iterations, lateral deviation when using the con-
trol law defined by (47) converges perfectly in theory
to zero, in the same way as when control law (25)
was used.
This can be more precisely observed in Fig. 17,

which shows values of steering angles sent to the
actuator of the simulated vehicle. The broken red line
represents the result of the Eq. (25) (control with
sliding incorporated but without prediction) while the
dotted green line shows the result of Eq. (47) (control
with sliding incorporated and prediction). As expec-
ted, the control law with prediction initiates reaction
before curvature appears and the values of both con-
trol laws during curve remain absolutely unchanged.
A breakdown of the evolution of the control incor-
porating prediction is presented to show both influ-
ences of �PredTraj (blue dotted line) and of �Deviation (blue
dashed line). When following the path shown in Fig. 9,
it is clear that the contribution of the trajectory part is
more important than that of the deviation part.
In theory, the benefit of predictive strategy at

abrupt curvature evolutions is very satisfactory and
the same correction capabilities with respect to devi-
ations and sliding parameters are conserved. In prac-
tical cases, as described below, similar results can be
obtained only if the horizon of prediction is increased
(as vehicle inertia increases delay in vehicle reaction).
Moreover, in addition to reduction of overshoots, the
prediction algorithm has to bring a further benefit in

full scale experiments: as the steering wheels will begin
to turn before the actual appearance of a curve, they
will turn more slowly, and consequently sliding will
appear more gradually. This fact favours the hypoth-
esis of slow-varying slidingparameters and thenegative
effect of filters on sliding estimation will be reduced.

5.4. Overall Scheme of Control

The complete control law defined by (47), with input
from observer Eq. (15), constitutes the new control
strategy applied instead of Eq. (2). It can be illustrated
by the scheme shown in Fig. 18.
The overall control algorithm can be separated into

two main loops, one for the observer, and one for
effective control (as in Fig. 5). Input into these loops
are tracking errors (lateral and angular), extracted by
comparison between measured position and orienta-
tion and the geometry of the reference path. The
observer loop checks the sliding parameters to ensure
convergence between the observed and measured
states. As sliding is then estimated, the control loop is
in possession of all the necessary data and the calcu-
lation of control law (25) based on the extended
kinematic model, with input from the observer, can be
achieved. This control equation is nevertheless sepa-
rated into two additive terms, namely �Deviation and
�Traj defined by Eqs. (27) and (28). Then, using the
future configuration of the path to be followed and a
model of the low level actuator, the prediction algo-
rithm summarized by Eq. (46) converts �Traj to �PredTraj .
Prediction output is added to the deviation part
�Deviation in order to obtain the final control law to be
applied to the vehicle.
This algorithm constitutes on one hand an

observer-based control strategy, derived to access the
unmeasured variables required for an accurate con-
trol calculation. The extended vehicle model is then
on-line adapted to actual behaviour by using observed

Fig. 18. Complete scheme of control strategy.
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sliding parameters. On the other hand, a Model Pre-
dictive Control is partially applied to the control law
to guard the process against inevitable delays which
appear during actual experiments due to actuators
and non-modeled dynamics.

6. Experimental Results

6.1. Application on an Actual Vehicle

The control strategy defined in this paper is applied on
an actual tractor (presented in Section 3.1) for tra-
jectory tracking on fields. The parameter settings cited
below are those actually used for all experimental tests
presented in this paper:

6.1.1. Control Law Gains

Gain tuning for the new control law defined in this
paper is the same as for the control law with sliding
ignored. This ensures about the same dynamics as
when sliding does not occur (i.e. a settling distance of
15 m without any overshoot). Comparison of the
capabilities of all control laws can then be achieved,
since differences in performance are not linked to a
modification of the theoretical vehicle response.

Kp ¼ 0:09
Kd ¼ 0:6

	
ð48Þ

6.1.2. Observer

The Hurwitz matrix K, which defines the convergence
time of observed to measured states is the same as the
one defined by (16). It ensures convergence times of
2.1 s for observed lateral deviation and 3.8 s for
observed angular deviation. Reminder of the defini-
tion of the K matrix:

K ¼ �1:4 0
0 �0:8

� �
ð49Þ

6.1.3. Predictive Control

The parameters of predictive control that are tunable
are the horizon of prediction H and the parameter 

specifying the convergence rate of the reference tra-
jectory for the low level process. These two parameters
have been chosen as follows:

H ¼ 1 s

 ¼ 0:2

	
ð50Þ

As only the low level model is theoretically entered
for the calculation of the prediction term, the horizon
of prediction chosen for actual experiments is higher
than the theoretical one. This choice is expected to
compensate for the neglected delays due to dynamics
(and especially for neglected vehicle inertia).

6.2. Results on a Slope

The first case encountered in agricultural tasks, where
the sliding phenomenon is very harmful to tracking
accuracy, is the following of a straight line on a slope.
Generally, the straight line to be followed is perpen-
dicular to the slope. Gravity and low adherence pro-
perties lead then to an approximately constant lateral
deviation which could be considerable. Hereafter,
tests have been carried out on a wet field with an
inclination of about 15%. On such terrain, tracking
error under control (2) (with sliding ignored), shown
by a solid black line in Fig. 19, climbs up to about 1 m.
In the same figure, results of path-tracking carried

out at the same speed of about 8 Km.H� 1 using
control (47) are represented by a red dashed dotted
line. As can be observed, the algorithm incorporating
sliding makes it possible to keep the tracking error
much closer to zero and often within the acceptance
range of � 15 cm. Indeed, the lateral deviation is
inside this acceptance range during 75% of tracking
time. This value increases to 90% if the range is
extended to � 20 cm. As a comparison, results with
sliding neglected show that the tracking error is never
within an acceptable range of � 15 cm during the
entire tracking time (except at initial time, but this is
not significant).
Such results constitute a considerable improvement,

very close to the farmer’s expectations. The isolated
instances of inaccuracy which can be observed around
curvilinear abscissa 18, 34, and 44 m are due to abrupt
variations of adherence properties and slope values.
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They can be observed on the tracking relying on
control law (2) as well, as lateral deviation evolves
very quickly (e.g. from 60 cm to 1 m just before cur-
vilinear abscissa 34 m). Because prediction is devel-
oped on variations attached to an abrupt modification
of curvature, it cannot predict variations due to
adherence properties or slope.
The numerical comparison proposed in Table 1

confirms the significant improvement when following a
straight line on a slope. Statistical data from the lateral
deviation signal have been extracted (mean, standard
deviation and maximum range of deviation, and finally
the percentage of time inside the acceptance range of
� 15 cm). We can notice that the mean value of the
tracking error is much closer to zero. Themean value of
7 cm that is recorded is essentially due to the isolated
overshoots, as can be verified by the standard deviation
value, which is under 10 cm for the new control law.
This shows that variability in the tracking error signal
is greatly reduced with control law (47). This fact is
emphasized by the maximum error value which is
reduced by more than 60%.
To go further in the analysis of the algorithm, the

last line of Table 1 presents properties of tracking
error signal when using the new control (47), but with
sliding parameters estimated via direct calculation (i.e.
Eq. (4)). This signal is also shown by a dotted blue line
in Fig. 19.
This underlines the importance of the sliding esti-

mation algorithm and the capabilities of the observer
proposed in this paper. It can be seen that when direct
calculation is used, tracking results oscillate much
more and accuracy is much less than when using
the observer. This follows from the numeric time
derivation required in (4) and from the already men-
tioned lack of confidence in the heading signal.
As a conclusion, accuracy of tracking is very close

to farm task requirements in this first case of harsh
conditions of mobility. The occasional deviations
recorded are then very difficult to compensate, as such
very rapid variations of adherence conditions cannot
be anticipated.

6.3. Results Relative to Curved Path

on Even Ground

The second case of path-tracking where sliding has a
very negative effect on accuracy is the following of a
curved path on an even ground. The reference tra-
jectory used for the actual experiments has been
shown in Fig. 6. As already observed previously, a
control law without sliding incorporated cannot
achieve satisfactory tracking. This is again displayed in
solid black line in Fig. 20: During the curved part of
the path, i.e. between curvilinear abscissa 28m to 55m,
a large lateral deviation can be noticed.
On the same figure, path-tracking results relying on

control law (47) are shown by a red dashed dotted line.
During the curve, lateral deviation stays very close
to zero, instead of permitting a significant deviation,
and remains fairly constant. Moreover, overshoots
at each transient phase (beginning/end of curve, at
28 and 55 m) can be considered as non-existent,
demonstrating the effectiveness of predictive action
introduced in Section 5. Accuracy of path tracking is
then independent of the shape of the curve to be
followed.
This can be corroborated by the numerical prop-

erties of the lateral error signal presented in Table 2
(with the same values inserted as before). Tracking
error remains within an acceptance range of � 15 cm
during 95% of tracking time and reaches 99% for
� 20 cm. When relying on the control law without
sliding incorporated, acceptance ranges � 15 and
� 20 cm are only met during 48 and 54% of tracking
time (since tracking error is close to zero only outside
the curved zone). Moreover, when relying on the
algorithm presented in this paper, the tracking per-
formance is well centred around the objective of null
tracking error: mean value is close to null (� 1 cm}
against 20 cm for classical control), and variability is
very limited (standard deviation of only 5 cm).
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Table 1. Numerical comparison of tracking error

Mean
(cm)

Std.
dev.
(cm)

Max.
dev.
(cm)

in � 15 cm
(%)

Without sliding (2) 72 26 114 4
With sliding and
obs. (47)þ (15)

7 9 28 75

With sliding without
obs. (47)þ (4)

� 7 19 55 56
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Such results are a little bit better than in the slope
case as abrupt variations of sliding are here essentially
due to curvature modification and can be compen-
sated via the prediction algorithm (which is not
efficient in the slope case). However, reduction of
overshoots linked to the prediction algorithm is con-
solidated by the use of the observer. This can be seen
by comparing the results with those obtained when the
same control law is used, but sliding parameters are
estimated by Eq. (4), cf. blue dotted line in Fig. 20.
Even if mean values of lateral deviation with

observer and direct calculation are the same (in both
cases tracking error is centered around null value), the
variability obtained with direct calculation is much
greater (standard deviation is twice that recorded with
the use of the observer). This can indeed be explained
by investigating transient phases at modification of
curvature. Even if prediction is successful in greatly
reducing overshoots, delays already pointed out in the
slope case reduce the performance of a control law
relying on direct calculation (4).
As a conclusion, in the case of path following on

even ground, when sliding is essentially induced by the
geometry of the trajectory, the algorithm proposed is
particularly suitable: the prediction algorithm, asso-
ciated with a control incorporating sliding via an
observer, is here completely efficient, in contrast to
the slope case. The tracking algorithm is able to pre-
serve performance whatever the path to be followed
and adherence properties. As can be observed, accu-
racy of tracking is almost independent of sliding and
practically always in the acceptance range required for
agricultural tasks.

7. Conclusion and Future Work

The overall algorithm presented in this paper shows a
high accuracy solution to achieve path-tracking for
mobile robots in all-terrain conditions (independent
of the shape of the path to be followed and of the
adherence properties of the ground on which the

vehicle runs). The main negative phenomena which
are compensated by the control proposed in this paper
are sliding effects and the different delays due to low
level actuators and vehicle inertial effects.
As the rolling without sliding assumption cannot be

used, an extended kinematic model has been designed,
ensuring an accurate description of vehicle evolution
including lateral sliding effects, and preserving the
advantage of the kinematic approach. The only two
variables in this extended new model which cannot be
directly measured are the sliding parameters. An
observer method is developed to supply the model on-
line with relevant estimates.
Since this extended kinematic model presents simi-

larities with classical mobile robot models, a non-
linear control law can be calculated relying on chained
system theory. The capabilities of such control are
satisfactory when sliding parameters vary slowly, but
are limited by the inevitable delays due to both the
steering angle actuator and vehicle inertia. As a result,
overshoots appear as soon as a significant variation of
curvature must be followed. Even if it only appears in
isolation, such a phenomenon is not acceptable, as the
tracking error recorded in such cases (e.g. when the
vehicle is entering/leaving a curve) can reach quite
significant values.
A model predictive control principle has so been

developed relying both on reference path geometry
and on the available low-level model. It is adapted to
the control law with sliding incorporated and enables
both anticipation of approaching curvature and
compensation for sliding phenomena. The predictive
principle is not yet transferred to slope anticipation, as
there is no sensor measuring slope integrated into the
process. Nevertheless, variations of sliding parameters
induced by slope modifications are less abrupt than
those generated by curvature changes.
Finally, the capabilities of such an algorithm are

demonstrated by full scale experiments on a farm
tractor. The application is assistance for drivers of
agricultural machineries, inevitably subjected to slid-
ing phenomena, in view of their mass (which may vary
according to the implement fitted), and the ground on
which they move. The results of the path tracking
control law presented in this paper show that tracking
accuracy can be preserved whatever the path to be
followed and whatever the adherence properties of the
ground: the overall algorithm almost always keeps the
tracking error within an acceptance range of � 15 cm,
with a very limited variability, meeting then the
expectations of farmers. Nevertheless, some points can
be improved, essentially with respect to path following
on slope, where residual overshoots are still present.

Table 2. Numerical comparison of tracking error

Mean
(cm)

Std.
dev.
(cm)

Max.
dev.
(cm)

in � 15 cm
(%)

Without sliding 20 25 70 48
With sliding and
obs. (47)þ (15)

� 1 5 20 95

With sliding without
obs. (47)þ (4)

� 1 10 25 84
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As pointed out in slope experiments, abrupt varia-
tions of sliding conditions on such fields can degrade
path tracking accuracy in certain instances, mainly
because the observation algorithm is submitted to
inevitable delays. Extension of estimation to include
the high gain principle is therefore under develop-
ment, to enable observer settling time to adapt to the
evolution rate of the measured state. Moreover, as
sliding parameters integrated into the extended kine-
matic model are compatible with a dynamic approach
(they are side slip angles), a dynamic model can
be used for observer design. The observer can then
react faster and other phenomena can be taken into
account.
The use of a partially dynamic model is also under

investigation for the predictive part. Indeed, vehicle
inertia is expected to be integrated into the model used
for the predictive algorithm. Prediction will then be
based on a more suitable model, so that accuracy can
be improved.
Finally, the guidance law presented in this paper

relies exclusively on a single RTK-GPS sensor. The
results are satisfactory, but although such sensors are
becoming cheaper all the time, they are still quite
expensive. Extension of the guidance law so that it can
rely on several low cost sensors is under study. As a
general rule, future work will deal with the addition of
sensors and dynamic effects (via partial dynamic
models) in order to conserve acceptable accuracy
while at the same time reducing costs.
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