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Abstract: In this paper, a tight coupling between computer vision and parallel
robotics is exhibited through the projective line geometry. Indeed, contrary to the
usual methodology where the robot is modeled independently from the control law
which will be implemented, we take into account, since the early modeling stage,
that vision will be used for control. Hence, kinematic modeling and projective
geometry are fused into a control-devoted projective kinematic model. Thus,
a novel vision-based kinematic modeling of a Gough-Stewart manipulator is
proposed through the image projection of its cylindrical legs. Using this model, a
visual servoing scheme is presented, where the image projection of the non-rigidly
linked legs are servoed, rather than the end-effector pose. Copyright c©2006 IFAC
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1. INTRODUCTION

There exists a large amount of work on the control
of parallel mechanisms 1 . In the focus of attention,
Cartesian control is naturally achieved through
the use of the inverse differential kinematic model
which transforms Cartesian velocities into admis-
sible joint velocities, taking into account the kine-
matic closures and avoiding to generate high in-
ternal forces (Dasgupta and Mruthyunjaya, 1998).
It is noticeable that the inverse differential kine-
matic model of parallel mechanisms does not only
depend on the joint configuration (as for serial
mechanisms) but also on the end-effector pose.

Consequently, one needs to be able to estimate
or measure the latter. As far as we know, all

1 See http://www-sop.inria.fr/coprin/equipe/merlet

for a long list of references.

Fig. 1. A Gough-Stewart platform.

the effort has been put on the estimation of
the end-effector pose through the forward kine-
matic model and the joint measurements. How-
ever, this yields much trouble, related to the fact
that there is usually no closed-form solution to
the forward kinematic problem for parallel mech-
anisms. Hence, one numerically inverts the inverse
kinematic model, which is analytically defined for
most of the parallel mechanisms. However, it is
known (Merlet, 1990; Husty, 1996) that this nu-



merical inversion requires high order polynomial
root determination, with several possible solutions
(up to 40 real solutions (Dietmaier, 1998) for
a Gough-Stewart platform (Gough and White-
hall, 1962; Stewart, 1965)). Much of the work
is thus devoted to solving this problem accu-
rately and in real-time (see for instance (Zhao and
Peng, 2000)), or to designing parallel mechanisms
with analytical forward kinematic model (Kim
and Tsai, 2002; Gogu, 2004). Alternately, one of
the promising paths lies in the use of the so-
called metrological redundancy (Baron and Ange-
les, 1998), which simplifies the kinematic models
by introducing additional sensors into the mech-
anism and thus yields easier control (Marquet,
2002).

Vision being an efficient way of estimating the
end-effector pose, it is a good alternative to use
it for Cartesian control of parallel mechanisms. It
can be done in two appropriate manners. The first
one consists in measuring the end-effector pose
by vision, and then performing 3D pose visual
servoing (Martinet et al., 1996) as in (Koreichi et
al., 1998; Kino et al., 1999; Kallio et al., 2000)
(for parallel robots with a reduced number of
degrees of freedom). However, this approach con-
sists solely in a simple adaptation of now classical
control schemes, which, although efficient, are not
very innovative. Moreover, the direct application
of visual servoing techniques assumes implicitly
that the robot inverse differential kinematic model
is given and that it is calibrated. Therefore, mod-
eling, identification and control have small in-
teraction with each other. Indeed, the model is
usually defined for control using proprioceptive
sensing only and does not foresee the use of vision
for control, then identification and control are
defined later on with the constraints imposed by
the model. This is useful for modularity but this
might not be efficient in terms of accuracy as well
as of experimental set-up time.

On the opposite, a second approach was intro-
duced in (Andreff et al., 2005), where modeling,
identification and control are performed knowing
in advance that vision will be used at control time.
To do so, the legs of the mechanism are servoed
rather than its end-effector pose, which is useful in
some practical cases. For instance, it is not wise to
imagine observing the end-effector of a machining
tool. On the opposite, it should not be a problem
to observe the legs of the mechanism, even in such
extreme cases.

In that method, the legs orientation were cho-
sen as visual primitives and control was derived
based on their reconstruction from the image.
Although this reconstruction step consists only
in computing the intersection of the two cylinder
edges in the image, it might not be very accurate

for intrinsically geometrical reasons. Indeed, if a
leg is parallel to the image, its edges will appear
as parallel lines in the image and their intersection
will lie at the infinite. Thus, in a close case to this
one, the reconstruction will not be highly accurate
and will impair the control.

In practice, this case is rapidly encountered. In-
deed, since tracking lines in the image might be
hard in the presence of camera distortion, one
would chose a rather long focal lens (6 mm is
here a long focal). Then, to observe all the legs in
the image, one would place the camera at some
distance from the manipulator (say, 1 m away
from a desktop Gough-Stewart manipulator). In
such an easy to set-up case, the cylinder edges
appear nearly parallel in the image and control
becomes unstable.

Consequently, following the original idea of visu-
ally servoing the legs and the common habit in
visual servoing to derive control laws as close as
possible to the image space, we propose in this
paper to servo the leg edges rather than the leg
orientation.

The outline of the paper is as follows. Section 2
recalls the model used for lines, then uses it to
express the Gough-Stewart platform kinematics in
the (static) camera frame and finally, recalls some
useful geometric properties associated to the fact
that most parallel mechanisms have cylindrical
legs. Section 3 introduces, under the cylindrical
legs assumption, the novel control law, expressed
in the image and using the apparent edges of the
legs as visual primitives for control. Section 4
presents the first ever experimental results of
visual servoing using legs observation in its two
variants: the already published leg orientation-
based control and the novel edge-based control.

2. MODELING

2.1 Line modeling

A line L in space, expressed in the camera frame,
is defined by its binormalized Plücker coordi-
nates (Andreff et al., 2002):

L ≡ (cu, cn, cn) (1)

where cu is the unit vector giving the spatial
orientation of the line, cn is the unit vector
defining the so-called interpretation plane of line
L and cn is a non-negative scalar. The latter are
defined by cncn = cP× cu where cP is any point
on the line. Notice that, using this notation, the
well-known Plücker coordinates (Plücker, 1865)
are the couple (cu, cncn) .

The projection of such a line in the image plane,
expressed in the camera frame, has for character-
istic equation:



cnT cp = 0 (2)

where cp are the coordinates in the camera frame
of any point in the image plane, lying on the line.

With the intrinsic parameters K, one can easily
obtain the conversion from the line equation in the
camera frame cn to the same in pixel coordinates
pn and vice-versa:

pn =
K−T cn

‖K−T cn‖
(3)

cn =
KT pn

‖KT pn‖
(4)

Notice that for numerical reasons, one should use
normalized pixel coordinates. Namely, let us de-
fine the pixel frame by its origin located at the
image center (i.e. the intersection of the image di-
agonals) and such that the pixel coordinates vary
approximately between -1 and +1, by dividing
them by, say, the image horizontal dimension in
pixels.

2.2 Vision-based kinematics of an hexapod

Consider the hexapod in Figure 1. It has 6 cylin-
drical legs of varying length qi, i ∈ 1..6, attached
to the base by spherical joints located in points
Ai and to the moving platform (end-effector) by
spherical joints located in points Bi.

Rather than using the standard scalar inverse
kinematic model of such an hexapod given by

∀i ∈ 1..6, q2
i =

−−−→
AiBi

T−−−→AiBi (5)

expressing that qi is the length of vector
−−−→
AiBi,

it is preferable for the subsequent derivation to
use the vector form, introduced as the vision-based
kinematics of the hexapod expressed in the camera
frame in (Andreff et al., 2005):

qi
cui = cRe

eBi + cte −
cAi (6)

where cui is the spatial orientation of the ith
leg. From the inverse kinematic model, one easily
obtains the differential inverse kinematic model:

q̇ = cJinv
c

cτc (7)

cJinv
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where cτc is the Cartesian velocity of the camera
frame, considered as attached to the base frame
and moving with respect to a fixed end-effector,
and cui, i = 1..6 are the unit vectors giving
the pointing direction of each leg in the camera
frame. Under the assumption that the legs are
cylinders, those vectors can be easily detected as
the intersection of the two cylinder edges in the
image plane.

2.3 Cylindrical leg observation

Let us remark now that each cylinder edge is a
line in space, with binormalized Plücker expressed
in the camera frame (cui,

cn
j
i ,

cn
j
i ). Moreover, the

attachment point Ai is lying on the cylinder axis
at distance R from the edge. Consequently, a
cylinder edge is entirely defined by the following
constraints, expressed here in the camera frame:

cAT
i

cn
j
i =−R (9)

cn
j
i
T cn

j
i = 1 (10)

cuT
i

cn
j
i = 0 (11)

3. EDGE-BASED VISUAL SERVOING

In the following subsection, the i subscript denot-
ing the leg number was removed for clarity sake.

3.1 Interaction matrix

The interaction matrix NT relating the Cartesian
velocity cτc to the time derivative of the cylinder
edges cṅj , expressed in the pixel frame:

cṅj = NT cτc (12)

can be decomposed into the product of three
matrices:

NT = pJc
hJuM

T (13)

From right to left, the first one is the interaction
matrix associated to the leg orientation, it thus
relates the time derivative of a leg orientation to
cτc. The second transforms leg orientation veloci-
ties into leg edge velocities both expressed in the
camera frame. Finally, the third one is associated
to the camera-to-pixel change of frame. Below,
the expression of the leg orientation interaction
matrix is first recalled then the last two matrices
are derived.

3.1.1. Leg orientation interaction matrix The
control proposed in (Andreff et al., 2005) servoed
the geodesic error between the current and desired
legs orientation (cu×cu∗) and thus introduced the
interaction matrix associated to a leg orientation:

cu̇ = MT cτc (14)

MT =−
1

q

(

I3 −
cucuT

) [

I3 −[cA + qcu]×
]

(15)

3.1.2. Edge velocity in the camera frame Let us
first derive the time derivative of a cylinder edge,
expressed in the camera frame, and under the
kinematic constraint that the cylinder is attached
to the base by a spherical or universal joint located
in A. To do so, let us differentiate (9)-(11):



cṅjT A = 0 (16)
cṅjT cnj = 0 (17)

cṅjT cu + cnjT cu̇ = 0 (18)

From (17) and the fact that (u, n, u× n) form an
orthonormal basis (Andreff et al., 2002), one can
state:

cṅj = αcu + βcu × cnj (19)

Inserting this expression into (16) and (18) yields

α = −cnjT cu̇ , β =
cAT cu

cAT (cu × cnj)
cnjT cu̇

(20)

Consequently, one obtains the relationship be-
tween the time derivative of a leg edge, expressed
in the camera frame, and the time derivative of
the leg orientation

cṅj = hJu
cu̇ (= hJuM

T cτc) (21)

hJu =−

(

I3 −
(cu × cnj)cAT

cAT (cu × cnj)

)

cucnjT (22)

3.1.3. Image line velocity in pixel coordinates
Let us now derive the Jacobian associated to the
change of frame, where the time derivative of an
image line is expressed, from the camera frame to
the pixel frame. Note that this paragraph holds
for any image line, not only for cylinder edges.

Rewriting (3) as

pn = µ(cn)K−T cn (23)

we can differentiate the latter with time:

pṅ =
dµ(cn)

dt
K−T cn + µ(cn)K−T cṅ (24)

Taking into account again that pn is a unit vector
(17), one gets

(

dµ(cn)

dt
K−T cn

)T

pn + µ(cn)pnT K−T cṅ = 0

(25)
Using (3) again, this simplifies into

dµ(cn)

dt
= −µ(cn)2pnT K−T cṅ (26)

Inserting this result in (24) yields

pṅ =
(

−K−T cnT µ(cn)2pnT + µ(cn)I3

)

K−T cṅ

(27)
which simplifies into

pṅ = µ(cn)
(

I3 −
pnpnT

)

K−T cṅ (28)

Introducing (4) in (23) proves that

µ(cn) = ‖KT pn‖ (29)

from which we finally obtain the relationship
between the time derivative of a line, expressed
in the image frame, and the same expressed in
the camera frame

pṅ = pJc
cṅ (= pJc

hJuM
T cτc) (30)

pJc = ‖KT pn‖
(

I3 −
pnpnT

)

K−T (31)

3.2 Control

Since we want to drive the unit vectors associated
to the leg edges to their desired values, we choose
to servo the geodesic errors

ei,j = pn
j
i ×

pn
j∗
i , j = 1..2, i = 1..6 (32)

whose time derivatives are

ėi,j = LT
i,j

pṅ
j
i (33)

LT
i,j =−[pnj∗

i ]×NT
i,j (34)

where i = 1..6 denotes the legs and j = 1..2 the
edges.

Now, the standard visual servoing method applies:
we stack each individual errors in a single over-
constrained vector e and each associated individ-
ual interaction matrices LT

i,j into a compound one

LT and impose a first-order convergence to e. This
yields the following pseudo-control vector cτc

cτc = −λL̂T e (35)

which is fed to the actuators through the vision-
based differential inverse kinematic model (8) to
deliver the final control signal

q̇ = −λc ˆJinv
cL̂T

+
e (36)

where the ˆ means estimated.

Notice that this control makes use of the detected
edges in the image, the joint values, the intrinsic
parameters and the attachment points of the legs
onto the base expressed in the camera frame. How-
ever, notice that neither the attachment points of
the legs onto the mobile platform nor the radius of
the legs are used here explicitly, which reduces the
number of kinematic parameters to be calibrated.

4. RESULTS

The experimental robot has an analog joint
position-controller that we interfaced with Linux-
RTAI. Joint velocity control is emulated through
this position-controller with an approximate 2

20ms sampling period. Frame grabbing, line track-
ing and numerical computation are performed us-
ing ViSP, an open C++ library for visual servo-
ing (Marchand et al., 2005).

It also has to be noticed that the mechanism
presents high frictious disturbances that have not
yet been compensated for since friction seems to

2 This part is not yet running under RTAI, but only under

standard Linux.
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Fig. 2. Composition of the desired (black) and
initial (white) configurations.
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Fig. 3. Behavior of orientation-based control: Evo-
lution of the controlled leg orientation errors
(left) and of the non-controlled edge errors
(right) with respect to time.

depend non trivially on the robot configuration.
Hence, to overcome these disturbances, we imple-
mented the visual servoing control with an adap-
tive gain, function of the controlled error norm:
low at init, high near convergence.

The robot is observed by a camera with 4.8mm
focal length, placed in front of it. Figure 2 (left)
presents a schematic view of the initial (solid
line) and desired (dotted line) configurations of
the robot, while Figure 2 (right) is obtained by
merging the (video inverted) view from the cam-
era of the robot in the initial configuration and
the view in the desired configuration. The initial
configuration yields equal leg lengths (375mm)
whereas in the desired configuration the two legs
in the back are extended by an additional 100mm.

To show the robustness of the approach, we de-
liberately placed ourselves in a difficult configu-
ration: approximate calibration of the robot and
camera, camera placed 70cm away from the robot
base center, two legs close to be in a frontal par-
allel configuration.

We display for both controls the evolution of both
the controlled and non-controlled errors: in Fig-
ure 3 for orientation-based control and in Figure 4
for edge-based control. The desired exponential
behavior is obtained, yet disturbed by friction and
distorted by the adaptive gain strategy.

It is noticeable (Figure 3) that the orientation
error signal is extremely noisy, as expected. Thus,
orientation-based control tries its best to servo
it to zero, but does not succeed in bringing the
robot to the desired configuration since the edge
errors do not reach zero. On the opposite (Fig-
ure 4), edge-based control succeeds (the edges are
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Fig. 4. Behavior of edge-based control: Evolution
of the non-controlled leg orientation errors
(left) and of the controlled leg edge errors
(right) with respect to time.
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Fig. 5. Comparison of the behavior of orientation-
based (solid line) and edge-based control
(dotted line): evolution of the norm of the
legs orientation error (left) and of the edges
error (right) with respect to time.

almost aligned on their reference) even though the
orientation signal is noisy and biased. Figure 5
presents a complementary view of this behavior
by displaying the evolution of both the controlled
and non controlled error norms: the orientation
signal is very noisy and converges equally poorly
in both controls (left) while the edge signal is
much cleaner and converges only in edge-based
control.

The reason for such a behavior is, as stated in the
early introduction, that noise is appearing in the
servoed error in orientation-based control while it
only appears in the interaction matrix in edge-
based control.

5. CONCLUSION

We extended previous results concerning (PBVS-
like) leg orientation-based control of a Gough-
Stewart to an (IBVS-like) edge-based visual servo-
ing scheme. It benefits from the advantages of the
orientation-based visual servoing of the Gough-
Stewart legs: reduced calibration parameters set,
low dependence on the joint values and ability to
servo the robot even though the end-effector is
not visible. However, we improved the practical
robustness (although it still has to be proven
theoretically) by servoing the legs in the image:
almost all the calibration parameters (intrinsic
parameters of the camera and base points) and
numerical errors remain located in the interaction
matrix.



To do so, we took advantage of a common use
of line geometry in kinematics, vision and visual
servoing. This allows for an optimal modeling
of Gough-Stewart parallel robots, provided that
vision is used at control time. This modeling
was established under the hypothesis that the
camera is calibrated, but this result might be
extendable to the use of an uncalibrated camera.
Nevertheless, this extension is not necessary since
the control is done in the very projective space
associated to image lines, while the reconstructed
or calibrated Euclidean terms only appear in the
interaction matrix where extreme accuracy is not
required.

However, self-occlusions of the mechanism with
respect to a single camera are still a matter of
study, although the observation of edges should
simplify the problem since the two edges of a given
leg are seldom hidden simultaneously. A way to
overcome the occlusion problem is to turn oneself
to multi-camera perception systems.
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l’apport de la redondance en robotique par-
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