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Abstract
We study an approach for the optimization of spreading performed by centrifugal spreaders

in order to minimize environmental effects due to application errors. Faced with a large

scale problem, we divide the domain of study into subdomains so that each tramline is

individually dealt with. In order to take into account the mechanical limits of the device,

some inequality constraints are introduced. After cost function discretization, we use an

augmented lagrangian algorithm associated with a L-BFGS technique to solve the prob-

lem. Results are presented for parallel and non parallel paths.
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I. INTRODUCTION
Fertilization is a regular agricultural practice which is carried on in order to apply plant nutrients to
satisfy the demand of crops. In most cases, this operation is performed thanks to a centrifugal spreader
because of its low cost and robustness. Unfortunately, by using unsuitable strategy, this practice can
result in ill environmental effects. Indeed, an over application mostly involves an over nitrate en-
richment of surface waters leading to an excessive multiplication of algae which can result in fishes
dying. In the contrary, when under-dosages occur, yield losses can be very important. Therefore,
mineral fertilization is today pointed out as one of the major causes of the pollution of groundwaters
and watercourses. Thus, the new rules imposed by the different governments in North America and
Northern Europe (Bruxelles, 2005), lead us to investigate a new strategy to improve the quality of
the distribution achieved by centrifugal spreaders. This paper presents an approach for optimization
of fertilizer application achieved during spreading. Instead of using the traditional method based on
the best arrangement of the transverse distribution, we consider an optimization method relying on
a spread pattern model developed by (Colin, 1997), (Olieslagers, 1997). Faced with a large scale
problem we decompose the problem by using ”sliding windows” and taking advantage of the symme-
try properties of centrifugal spreading. Simulation results are presented for parallel and non parallel
tramlines.

II. PROBLEM STATEMENT
Spreading regularity is achieved when the actual distributed amount of fertilizers in the field is equal
to the prescribed dose determined by agronomical and pedological reasoning with respect to the crops.
Here, we consider centrifugal spreaders equipped with two spinning discs which eject nutrients along
each tramline in the field. The tractor-spreader combination is commonly tooled up with a GPS an-
tenna, a radar speed sensor, an embedded computer, and an actuator. So, according to the location



and speed of the tractor measured by the two first tools previously mentioned, the computer deter-
mines the actuator adjustments to control the dosage rate. The amount of applied fertilizers currently
called spread pattern, has an irregular distribution shape which is often highlighted by the transverse
distribution curve calculated by summing the amounts along each travel direction illustrated by the
red curve in Figure (1(a)). Because of the spatial distribution heterogeneousness, the tractor follows
back and forth paths to obtain an uniform deposit from transverse distributions summation for each
successive travel shown in Figure (1(b)). As we can notice, transverse distributions play an important
role in the fertilization strategy. Indeed, the device settings relie on their best arrangements according
to the different trajectories that is to say working widths. The working width is a concept widely
used in the fertilization community today and corresponds to the distance between two consecutive
overlapping lines. Furthermore, when overlapping is optimal, these lines stand for symmetry axes
that make two successive transverse distribution coincide. This variable is also linked to the applied
mass flow rate during spreading determined by the mathematical relationm = (Q∗ ×W × S)/600
wherem is the mass flow rate (kg/min),Q∗ the prescribed dose (kg/Ha),W the working width (m)
andS the speed of tractor (km/h). With this relation, we reason as if nutrients were homogeneously
distributed by the machine onto a rectangular area which length is equal to the wished working width.
In this case, we don’t take into account the actual occurring phenomenon. Indeed, the true fertilizers
global deposit in the field is due to spread pattern overlappings, and then is the result of the heteroge-
neous spatial distribution accumulation at each position of the spreader. Therefore, this practice can
give satisfying results with regularly spaced parallel travel direction but is quickly inefficient when
geometrical singularities are met in the field (end of field, irregularly spaced parallel paths, start and
end of spreading) and then can produce local application errors as illustrated in Figure (2). Then, we
can have over-dosage that can reach +80% and sub-dosage equivalent to -85%. Since the spreading
strategy is traditionally based on the best arrangement of transverse distributions, some works were
led to find appropriate trajectories with respect to these ones (Dillonet coll., 2003). Unfortunately,
this strategy is unsuitable when tramlines are already fixed by others agricultural practices like sow-
ing. Therefore, it is important to know how best arrange the shape and the placement of the true
distributions, that is to say spread patterns, during spreading with respect to the imposed geometrical
constraints in the field. This adjustment should be continuously performed for each GPS position of
the machine by changing its settings. Then, in this paper, we focus on a method which computes
optimal parameters that permit to obtain best spread patterns arrangement in the presence of imposed
paths. Moreover, this study deals with only optimization along the trajectories in the field and not on
the boundaries of this one.

(a) (b)

Figure 1: Centrifugal spreading characteristics: (a) Spread pattern and its tranverse distribution – (b)
Fertilization strategy based on transverse distribution summation.



(a) Prescribed dose
map obtained from
agronomical consid-
erations.

(b) Actual dose map
obtained by applying
the fertilization method
based on best arrange-
ment of transverse dis-
tribution.

(c) Application errors map
calculated from the differ-
ence between the prescribed
dose map and actual dose
map.

Figure 2: Application errors resulting from the reasoning based on the best transverse distribution
investigation and not on spread patterns overlappings.

III. COST FUNCTION AND OPTIMIZATION METHOD
In order to formalize a suitable optimization criterion, it is necessary to define at first the parameters
used for the spread pattern model. So, we consider the field as a polygonal domainΩ in R2 and
s : (0, T ) −→ R2 a path inΩ that is to says(t) = (s1(t), s2(t)) ∈ R2. s(t) is assumed to be
rectilinear. The mass flow rates at timet for the spinning disc on the right and the left of the spreader
are respectively the functionsm : (0, T ) −→ R andd : (0, T ) −→ R. The spread pattern shown in
Figure 1(a) is in most cases described by its medium radiusr(x, s(t)) and medium angleθ(x, s(t)).
r(x, s(t)), varying with the speed of disc, is assumed to be the distance between the pointx and
s(t), while θ(x, s(t)), modifiable the fertilizers dropping point on the disc, corresponds to the angle

between
−−−→
s(t)x ands(t). To simplify notations, we will considerr(x, t) andθ(x, t) instead ofr(x, s(t))

andθ(x, s(t)). Besides, we consider the following functionsρ andξ, the medium radius concerning
respectively the disc on the right and the left of the device, defined byρ : (0, T ) −→ R+, and
ξ : (0, T ) −→ R+. Moreover, let us assume the functionsϕ : (0, T ) −→ R, the medium angle
concerning the right spinning disc, andψ : (0, T ) −→ R, the medium angle concerning the left
spinning disc.
According to (Colin, 1997), the spatial distribution pattern for the right and left spinning disc, at time
t, are respectively given by the functionsqr : Ω× (0, T ) −→ R andql : Ω× (0, T ) −→ R defined by:

qr(x,m(t), ρ(t), ϕ(t)) = τ · exp
(
−(r(x, t)− ρ(t))2

2σ2
r

)
· exp

(
−(θ(x, t)− ϕ(t))2

2σ2
θ

)
(1)

ql(x, d(t), ξ(t), ψ(t)) = κ · exp
(
−(r(x, t)− ξ(t))2

2σ2
r

)
· exp

(
−(θ(x, t)− ψ(t))2

2σ2
θ

)
(2)

with τ =
m(t)

2πσrσθ

and κ =
d(t)

2πσrσθ

In (1) and (2),σr andσθ are known parameters and stand for the standard deviations concerning
respectively the medium radius and the medium angle. If we defineM(t) = (m(t), d(t)) ∈ R2,
R(t) = (ρ(t), ξ(t)) ∈ R2 andΦ(t) = (ϕ(t), ψ(t)) ∈ R2, the distribution pattern is then obtained by
the functionqtot : Ω× (0, T ) −→ R defined by:

qtot(x,M(t), R(t),Φ(t)) = qr(x,m(t), ρ(t), ϕ(t)) + ql(x, d(t), ξ(t), ψ(t)) (3)



From this model, the actual distributed doseQ during the interval of time(0, T ) for a single tramline
is given by the functionQ : Ω× (0, T ) −→ R defined by:

Q(x,M,R,Φ) =

∫ T

0

qtot(x,M(t), R(t),Φ(t))dt (4)

For our problem, the objective is to reduce harmful fertilization effects by minimizing application
error that is to say the difference between actual and desired dose for all points in the field. Then, we
have to compute the optimal functionsM ,R andΦ, which minimize the functional:

F (M,R,Φ) =

∫
Ω

[Q(x,M,R,Φ)−Q∗]2dx (5)

whereQ∗ is the prescribed dose. It is well known that (5) cannot be analytically calculated. Thus, we
use an approximative integration method. So, let us divide interval(0, T ) into n elements with equal
lengthδ = T

n
so thattj = jδ, j = 0, 1, ..., n, with t0 = 0 andtn = T . Then, we defineMj = M(tj),

Rj = R(tj), Φj = Φ(tj) and

M =

 M0
...
Mn

 , R =

 R0
...
Rn

 , Φ =

 Φ0
...

Φn

 .
Thus, by using the trapezoidal rule, (4) can be approximated by:

Q(x,M ,R,Φ) = δ

(
χ+

n−1∑
i=1

qtot(x,Mi, Ri,Φi

)
(6)

with χ =
qtot(x,M0, R0,Φ0) + qtot(x,Mn, Rn,Φn)

2
(7)

The functional to be minimized is then given as:

F (M ,R,Φ) =

∫
Ω

[Q(x,M ,R,Φ)−Q∗]2dx (8)

In order to take into account the mechanical limits of the device and not to untimely solicit actuators,
the functionsM , R, andΦ and their time derivative are subject to bound constraints. Then, the set of
constraints is defined as:

S =
{
(M ,R,Φ) ∈ R6(n+1)|Mmin ≤M ≤Mmax, Rmin ≤ R ≤ Rmax, Φmin ≤ Φ ≤ Φmax,

|Mi+1 −Mi| ≤ αδ, |Ri+1 −Ri| ≤ αδ, |Φi+1 − Φi| ≤ βδ}

whereα, β andγ are known parameters. Therefore, we obtain the nonlinear programming problem
(P) given by:

(P) min
(M ,R,Φ)∈S

F (M ,R,Φ) (9)

S is a bounded closed set, then it is a compact set inR6(n+1). Thus, according to the Weierstrass
theorem, the problem(P) has at least one local minimum. In most cases, there exist several tramlines
and the actual distributed dose for all trajectories is then obtained by the summation of the applied
dose for eachk indexed path:

Q(x,M,R,Φ) =
w∑

k=1

∫ tkf

tki

q(x,M(tk), R(tk),Φ(tk))dt (10)



wherew is the number of paths and the trajectoriessk(t) are defined in the interval(tki , t
k
f ). If we

assume thatMk
j = M(tkj ), R

k
j = R(tkj ) andΦk

j = Φ(tkj ), we can use the same discretization scheme
as before. For practical reasons, like the prescribed dose map in Figure (2), the domainΩ is 1 m-
gridded. In order to lose informations as little as possible, at least 2 samples per mesh must be
computed. Thus, if we take the example of a farmland with only 3 tramlines 100 m long, 3600
variables should be considered. It is then clear that we cannot directly solve the problem for the entire
field. Faced with this difficulty, we decompose the problem(P) into sub-problems in order to deal
with each trajectory individually. Given that the arable land containsw tramlines,Ω is at first divided
intow subdomains. We use the following notations:

K1 = {k ∈ N| 1 ≤ k ≤ w} , L2 = {l ∈ N| ∀z ≥ 2 ∈ N, 2 ≤ l ≤ z} ,
K2 = {k ∈ N| 1 ≤ k ≤ w − 1} , Ω =

⋃
k∈K1

Ωk,
K3 = {k ∈ N| 2 ≤ k ≤ w} , Ωk =

⋃
l∈L1

Ωk
l ,

L1 = {l ∈ N| ∀z ≥ 2 ∈ N, 1 ≤ l ≤ z} ,

and the following definitions:
– Ωk ∈ R2 is thekth subdomain ofΩ, – Ωk

l ∈ R2 is thelth subdomain ofΩk.
The subdomainsΩk are defined so that:

– ∂Ωk ∩ Ωk+1 = sk+1(t), ∀ k ∈ K2 and∀t ∈ (tk+1
i , tk+1

f ),
– ∂Ωk ∩ Ωk−1 = sk−1(t), ∀ k ∈ K3 and∀t ∈ (tk−1

i , tk−1
f ).

To make easier to understand the spatial decomposition, the figure (3) illustrates the example of three
parallel tramlines in a domainΩ with a rectangular geometry.

Figure 3: Rectangular domainΩ divided into 9 subdomainsΩk
l , 1 ≤ l ≤ 3, 1 ≤ k ≤ 3.

From this decomposition, if the vectorsM k
l , Rk

l , Φk
l are assumed to be respectively the restriction

of M , R andΦ in Ωk
l , we can also defineSk

l as the restriction ofS in the same subdomain. Thus,
by considering the symmetry properties of spreading exposed in the sectionII , we can then solve the
problem(P) by defining a new formulation(P ′) of this one given by:

(P ′)

{
min

∑z
l=1

∑w
k=1 J

k
l (x,M k

l ,R
k
l ,Φ

k
l )

(M k
l ,R

k
l ,Φ

k
l ) ∈ Sk

l , (l, k) ∈ L1 ×K1

(11)

with

Jk
l (x,M k

l ,R
k
l ,Φ

k
l ) =

∫
Ωk

l

[Qk
l −Q∗]2dx (12)



whereQk
l stands for the applied dose in the subdomainΩk

l . Then, solving the problem(P ′) is equiv-
alent to optimize the distributed dose in each subdomainΩk

l , called ”window”, by taking into ac-
count not only the dose already applied in the domainsΩk

l−1 andΩk−1
l , but also the future distributed

amounts inΩk+1
l predicted so that they respect the previously exposed symmetry relations. Therefore,

the notion of ”sliding windows” can be explained by the fact of optimizing fertilization accuracy by
solving in a sequential way the problem(P).
Given that the problem(P ′) is an optimization problem subject to inequality constraints, minimizing
the functionalJk

l for (l, k) ∈ L1 ×K1 is equivalent to consider the following problem:

Pineq


min Jk

l (M k
l ,R

k
l ,Φ

k
l )

minj ≤ hj(M
k
l ,R

k
l ,Φ

k
l ) ≤ maxj,

j = 1, 2, ...6× dim(M k
l )− 1

(13)

wherehj denotes thejth double inequality,minj andmaxj its lower and upper bound. To avoid
to deal with the problem which consists in looking for saturated constraints, we use an augmented
lagrangian algorithm which permits to penalize severely unacceptable solutions (Bertsekas, 1982).
Thus, let us assume:

Pr



minX∈Sk
l
Jk

l (X) +
∑

j

cj(hj(X), λj, rj)

X =
�
Mk

l , Rk
l ,Φk

l

�
∈ Sk

l

λj ∈ R
rj ∈ R
j = 1, 2, ...6× dim(M k

l )− 1

(14)

whereλj is thej th lagrange multiplier,rj thej th penalty coefficient andcj defined by:

cj(hj(X), λj, rj) =


λj(hj(X)−maxj) +

rj

2
(hj(X)−maxj)

2 if Z(hj(X), λj,maxj) > 0
λj(hj(X)−minj) +

rj

2
(hj(X)−minj)

2 if Z(hj(X), λj,minj) < 0

− λ2
j

2rj
otherwise

with Z(hj(X), λj, b(hj)) = λj + rj(hj(X) − b(hj) andb(hj) the bounds onhj. Faced with a cost
function and gradient which evaluations present a high computational time, we choose to apply a L-
BFGS algorithm shown to be efficient in this case (Byrdet coll., 1994). Then, we obtain the following
algorithm:
Step 0: k = 1, l = 1,X in S1

1 ,
Step 1: if l ≤ z, minimizeJk

l by using the augmented lagrangian algorithm associated with the L-
BFGS minimization technique, otherwise gotoStep 3,
Step 2: l← l + 1, gotoStep 1
Step 3: k ← k + 1,X in Sk

1 , gotoStep 1.

IV. RESULTS
In this study, we only interest in rectangular domain. Nowadays, even in the cases where uniform rate
application are considered, over and under-application are often observed within farmlands. So, here
we define a constant prescribed dose fixed at 100 Kg/Ha. The speed of tractor commonly evolving
around 10 Km/h, we use this average value for the machine displacement velocity. We consider two
scenarios: the case of three parallel tramlines with a working width equal to 24 m and the case of



two consecutive 24 m spaced parallel paths preceded by an other presenting a travel direction shift.
In the first case, the domainΩ is defined byΩ = (−24, 24) × (0, 44). We choosez = 4, w = 3
and thus divide the domain into 12 windows. According to the discretization technique, we obtain
dim(Mk

l ) = 81 for l = 1, 2, 3, 4 andk = 1, 2, 3. The number of variables is then 486 per window.
After optimization with Matlab environment, we obtain in figure (4(a)) an absolute error inferior to
0.1%, wich is very satisfying. Since we study the case of 3 tramlines and because of the symmetry
properties previously explained, we choose to present only the parameters for the outward path which
is between the two other trajectories. By observing the optimal parameters in figure (4(b)), we can
notice some oscillations for the medium radius and the medium angle. This phenomenon can be
explained if we make reference to the natural circular movement which is achieved when trying to
uniformly paint a surface with a circular brush. Furthermore, the mass flow rate has a mean closed to
20 Kg/min wich is the value found by applying the relationm = (Q∗×W×S)/600. So, the computed
values for the other parameters are coherent with the actual ones determined by the manufacturers
settings.
For the second case,Ω = (−22, 24)×(0, 15) and 3 windows are considered(w = 3, z = 1). By using
the same discretization techniques,vk

l = 79 for l = 1 andk = 1, 2, 3. The total number of variables
per window raises then 474. The non parallel tramline has an angle equivalent to 81 degrees which is
current in fields which boundaries are not orthogonal between them. The error after optimization and
the optimal parameters for the outward path are represented by Figure (5). In this case, the absolute
value of the error is slightly superior to the one mentioned above but is all the same inferior to 0.5%.
Because of the narrowing occuring on the left of the outward path, we can notice a little increase in
the mass flow rate while the other variables seem not to be affected by this geometrical singularity.
This result suggests then that the direction shift is not large enough to cause a medium radius and
angle adjustment.
The results shown in Figure 4(b) and 5(b) respecting the mechanical constraints of the machine, the set
of computed parameters should be stored in the embedded computer and used as reference variables
for a future control of the spreader. Therefore, the speeds of discs and granulars dropping points
values could be continuously adjusted during spreading process as recommended in (Olieslagerset
coll., 1997) and maintain a correct distribution.

(a) Error in % (b) Optimal parameters for the outward path

Figure 4: Error and optimal parameters for parallel tramlines, CPU=100h.



(a) Error in % (b) Optimal parameters for the outward path

Figure 5: Error and optimal parameters for non parallel tramlines, CPU=26h.

V. CONCLUSION
Because of environmental and economic pressures, an optimization method has been developed for
minimizing application errors due to centrifugal spreading. Considering the great size of problem, we
have divided the global spatial domain into subdomains with rectangular geometry to deal with each
trajectory individually and to reduce the number of decision variables. Faced with a problem subject
to inequality constraints, an augmented lagrangian algorithm combined with a l-bfgs technique has
been implemented. The solutions have been computed for parallel and non parallel tramlines and
permit to obtain an error inferior to 1% in either case. From these results, we could deduce the values
of the disc speeds and fertilizers dropping points during time and consequently carry out the control
of the applicator. This work suggests a study is needed about spreading on the boundaries in order
to improve application accuracy in the whole arable land. This future study should enable to limit
distributed amounts outside the field and reduce waste of fertilizers.
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