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Abstract— This paper proposes a novel vision sensing method
to be used in vision-based dynamic identification and control of
parallel robots. Indeed, it is shown that in the latter problem
one requires to estimate (to the least) or measure (to the best)
the end-effector pose and its time derivatives. The sensor takes
advantage of the image deformations induced by rolling shutter
in CMOS image sensors. We derive a method compensating
for the rolling shutter deformations to deliver an accurate 3D
pose and exploiting them to also estimate the full 3D velocity
transforming the CMOS camera into an exteroceptive pose and
velocity sensor. We present control schemes which illustrate how
the developed visual sensor is particularly adapted for parallel
mechanisms dynamic control. Experimental results with real
data confirm the relevance of the approach and show the sensor
good practical measurement accuracy.

I. INTRODUCTION

This work spins off from parallel robot dynamic control.
Indeed, it has been reported that high-speed vision could be
used for dynamic control of serial robots [4]. Hence, we
initially wanted to study whether vision-based control can
also be applied to parallel manipulators. To do so, one first
requires to identify the parameters of the dynamical model
used for control [11]. Since vision has proven [19] an accu-
rate tool for identifying the kinematic parameters of parallel
robots, it may also be useful for dynamic identification.

However, using vision sensors in this framework requires
the ability to capture clear images of objects undergoing
high velocity motion without any distortion, blur nor smear.
To achieve this task, there is a need for image sensors
enabling very short exposure time of all the matrix pix-
els simultaneously. This functionality requires a particular
electronic design that is not included in all camera devices.
Indeed, Full Frame CCD sensors, without storage memory
areas, require mechanical obturator or stroboscopic light
source, introducing more complexity in the vision system.
Similarly, Frame Transfer CCD sensors may not reach the
desired frame rate or may be costly because of additional
sillicium in storage areas [23]. Alternately, Standard CMOS
Rolling Shutter sensors are considered as low cost and low
power sensors. They are becoming more frequently used
in cameras. They enable adequate exposure time without
reducing frame rate thanks to overlapping exposure and
readout. Their drawback is that they distort images of moving
objects because the pixels are not all exposed simultaneously
but row by row with a time delay defined by the sensor
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technology. This distortion may represent a major obstacle in
tasks such as localization, reconstruction or default detection
(the system may see an ellipse where in fact there is a
circular hole). Therefore, CMOS Rolling Shutter cameras
could offer a good compromise between cost and frame rate
performances if the problem of deformations is taken into
account.

Coming back to frame rate, the current affordable tech-
nology allows to reach very high frame rates by reducing
the sensor resolution (about 250×250 pixels). The latter
resolution reduces a lot the field of view of the camera
for a given accuracy of the end-effector pose estimation [3],
[12]. This is very restrictive since the workspace available
for identification, which should be as large as possible to
provide good excitation and high result accuracy [5], [21],
is consequently much reduced. If one tries to enlarge the
field of view, the frame rate falls down and the rolling
shutter phenomenon becomes more perceptible. Faced with
this huge drawback, we turned it into an advantage since
this mere effect acts as an analog time derivator. With
adequate modelling, we can thus propose a method where
both the full end-effector pose and the full Cartesian end-
effector velocity can be estimated simultaneously with a
single image. Consequently, this not only suppresses the
need for numerically inverting the inverse kinematic model
to estimate the end-effector pose from the joint values, but
also suppresses (or makes it more robust) the numerical time
derivation of the end-effector pose in the dynamical model.

One may argue that doing so, we reduced the frame rate
and thus impaired the dynamic identification which uses
high-frequency signals. Nevertheless, let us recall that these
signals are mainly used to be filtered and sub-sampled (down
to a 100Hz) in order to make the identification process robust
to high-frequency noise. If we can reach a 100Hz frame rate
with 1 Mpixel resolution and rolling shutter, the measured
end-effector poses and velocities should have an equivalent
signal-to-noise ratio.

All pose recovery methods in the vision community litera-
ture ([13], [22], [3], [14], [24]) make the assumption that all
image sensor pixels are exposed simultaneously. The work
done by Wilburn et al. [26] concerned the correction of image
deformation due to rolling shutter by constructing a single
image using several images from a dense camera array. Using
the knowledge of the time delay due to rolling shutter and the
chronograms of release of the cameras, one complete image
is constructed by combining lines exposed at the same instant
in each image from the different cameras. In [16] Meingast
et al. modelled the projection in rolling shutter cameras with



some approximations producing equations which are similar
to those of Crossed-Slits cameras in the case of fronto-
parallel motion. In [1], we presented an exact projection
model for the perspective projection with rolling shutter and
an algorithm for pose and velocity computation from a single
view exploiting rolling shutter distortions.

In this paper we show how using a camera as an exte-
roceptive pose and velocity sensor is relevant for parallel
mechanism dynamic control (and identification). Indeed, the
approach may be used to avoid estimating the kinematic
between successive views reducing the amount of data and
the computational cost (one image is processed rather than
several ones). Furthermore, it supresses the numerical deriva-
tion (and consequently signal filtering) classicaly used in
velocity measurement. In section II, improvements expected
from using a cartesian exteroceptive pose and velocity sensor
for parallel mechanisms dynamic identification and control
are discussed. In section III the process of image acquisi-
tion using a CMOS Rolling Shutter imager and a model
for perspective projection of solid moving object are first
described. Then, the problem of computing pose and velocity
parameters is developed. Finally, experiments with real data
are presented and analyzed in section IV.

II. WHY VISION IS WORTH COUPLING WITH DYNAMIC
IDENTIFICATION AND COMPUTED TORQUE CONTROL IN

PARALLEL ROBOT CASE ?

+

−

+

+

PSfrag replacements

Path
Generation

IKM(q) PID IDM(q,q̇,̈q) ROBOT
Xd qd

q̇d

q̈d

ω
=

q̈

Γ q

I

Fig. 1. Computed Torque Control in joint space for serial robot [11]

Implementing vision sensor in classical Computed Torque
Control scheme could be a great improvement for parallel
robot. Joint-space CTC scheme predominates for serial robot.
It is presented in Figure 1, where inverse dynamic model is
a function of joint variables and their time derivatives:

IDM(q, q̇, q̈) = A(q)q̈ + h(q, q̇) (1)

Parallel robot control is generally based on this scheme
[8], [2]. This type of servoing seems to be unsuitable in this
case. Indeed, controlling each actuators separately can create
internal torques, because joint trajectory compatibility is not
ensured. It can cause damage on structure. Servoing joint
position instead of end-effector position does not ensure
obtaining the desired platform pose, as explained in Figures
2 and 3. Actually, one joint configuration leads to several
end-effector position [17], [9], so a pertubation can shift
platform pose without changing joint variable configuration.

Serial and parallel robot are dual. Namely, parallel mech-
anisms have models expressed as a function of end-effector
pose and its time derivatives instead of joint variable in serial

PSfrag replacements

IKM

IKM
Pertubation affects effector position

Xd

qd

X

Fig. 2. Joint-control can lead to loose desired cartesian trajectory tracking

PSfrag replacements
IKMIKM

Pertubation unaffects joint reference

Xd

qd

Fig. 3. Cartesian control ensure a good tracking

case. So used models in CTC (Figure 1) are expressed as
IKM(X) for inverse kinematic model and IDM(X, Ẋ, Ẍ)
[8], [10] where:

IDM(X, Ẋ, Ẍ) = A(X)Ẍ + h(X, Ẋ) (2)

We can rewrite them as function of joint-variable, using :

Ẋ = D−1
inv(X)q̇ (3)

and

Ẍ = D−1
inv(X)q̈ + Ḋ−1

inv(X, Ẋ)q̇ (4)

But, D−1
inv(X) has to be computed. So these numerical

transformations make classical methods based on joint
position unsuitable for identification and CTC.
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Fig. 4. Computed Torque Control in cartesian space for parallel robot
[11]

As said, serial robot and parallel robot are dual, so why not
using CTC in cartesian space (see Figure 4). This servoing
is not common for serial robot, because a transformation
between end-effector acceleration and joint-variable acceler-
ation is needed , asking heavy computation:

q̈ = D−1(q)(Ẍ − Ḋ(q)q̇) (5)

In parallel robot case, this transformation is useless since
inverse dynamic model is a function of effector acceleration.
So cartesian control seems to be more natural. As torques



are computed in regards with effector position error, joints
have only compatible moves and there are no internal
torques. In addition, tracking desired cartesian pose is
ensured in presence of perturbation (see Figure 3).

But there is still a default: the measure of end-effector
pose. For parallel robots, end-effector pose is computed from
joint variable measures, with the forward kinematic model,
contrary to serial robot whose FKM is analytically defined.
Obtained by a non-linear optimization, this numerical model
leads to multiple solutions (40 for a Gough-Stewart platform
[9]) and is influenced by singularities. This issue results in
a lack of accuracy and a decrease in servoing speed. To get
rid with this, special achitectures with analytical forward
kinematic model have been developped (Orthoglide [25],
T3R1 [7]). In general case, pose measurement can be done
using redundant informations obtained with exteroceptive
measurement means [15]. An other point is the end-effector
velocity determination, by derivation of computed poses or
by mean of forward jacobian, which is numerical is parallel
robot case. This measures decrease time perfomance and
accuracy.

The proposed vision sensing method could resolve these
problems by allowing a measure of end-effector pose and
velocity, with more precision and easier implementation
than other exteroceptive sensors, for instance an expensive
laser tracker. Consequently, it seems to be perfectly relevent
for dynamic identification with high accuracy than classical
methods [6], [18], [20]. If a high sampling rate can be ob-
tained (1 kHz), computed torque control could be archieved
with proposed control scheme in Figure 5, high performances
and accuracy could be expected. In this conditions, sensors
on actuators would be useless.
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Fig. 5. Computed Torque Control with proposed vision sensor

III. POSE AND VELOCITY COMPUTATION USING A
SINGLE ROLLING SHUTTER IMAGE

A. Definition of rolling shutter image acquisition mode

In digital cameras, an image is captured by converting
the light from an object into an electronic signal at the
photosensitive area (photodiode) of a solid state CCD or
CMOS image sensor. The amount of signal generated by the
image sensor depends on the amount of light that falls on the
imager, in terms of both intensity and duration. Therefore,
an on-chip electronic shutter is required to control exposure.
The pixels are allowed to accumulate charge during the
integration time. With a CMOS image sensor with rolling
shutter, the rows of pixels in the image are reset in sequence

Fig. 6. Reset and reading chronograms in rolling shutter sensor (SILICON
IMAGING documentation).

starting at the top and proceeding row by row to the bottom.
The readout process proceeds in exactly the same fashion
and the same speed with a time delay after the reset (Fig.6).
In this case, if the object is moving during the integration
time, some artifacts may appear.

B. Projecting a point with a rolling shutter camera

Let us consider a classical camera with a pinhole projec-
tion model defined by its intrinsic parameter matrix [24]. Let
~P = [X,Y, Z]

T be a 3D point and ~R, ~T the rotation matrix
and the translation vector between the object and the camera
frames. The homogeneous perspective projection of ~P on the
image is s ~̃m = ~K

[

~R ~T
]

~̃P , where s is an arbitrary scale
factor.

Assume now that an object of a known geometry modelled
by a set of n points ~Pi = [Xi, Yi, Zi]

T, undergoing a
motion with instantaneous angular velocity Ω around an
instantaneous axis of unit vector ~a = [ax, ay, az]

T, and
instantaneous linear velocity ~V = [Vx, Vy, Vz]

T, is snapped
with a rolling shutter camera at an instant t0. Thus, the
light from the point ~Pi will be collected with a delay
τi proportional to the image line number on which ~Pi is
projected. Therefore, to obtain the projection ~mi = [ui, vi]

T

of ~Pi, the pose parameters are corrected by integrating the
motion during the time delay τi. Since all the lines have
the same exposure and integration time, we have τi = τvi

where τ is the time delay between two successive image
line exposure. Thus τ = fp

vmax
where fp is the frame period

and vmax is the image height. Assuming that τi is short
enough to consider uniform motion during this interval, the
object rotation during this interval is obtained thanks to the
Rodrigues formula:

δ ~Ri = ~a~aT (1 − cos (τviΩ)) + ~Icos (τviΩ) + ~̂asin (τviΩ)

where ~I is the 3×3 identity matrix and ~̂a the antisymetric
matrix of ~a. The translation during the same interval is:

δ ~Ti = τvi
~V

Thus, the projection equation is rewritten as follows:

s ~̃ im = ~K
[

~Rδ ~Ri
~T + δ ~Ti

]

~̃Pi (6)



Fig. 7. Perspective projection of a moving 3D object: due to the time
delay, points ~P0 and ~P1 are not projected from the same object pose.

where ~R and ~T represent now the instantaneous object
pose at t0. Equation 6 is the expression of the projection of
a 3D point from a moving solid object using a rolling shutter
camera with respect to object pose, object velocity and the
parameter τ .

C. Computing the instantaneous pose and velocity of a
moving object

In this section, we assume that a set of rigidly linked
3D points ~Pi on a moving object are matched with their
respective projections ~mi measured on an image taken with
a rolling shutter camera. We want to use this list of 3D-
2D correspondences to compute the instantaneous pose and
velocity of the object at instant t0. The scale factor of
equation 6 can be removed as follows:

ui = αu

~R(1)
i

~Pi+T (x)

~R(3)
i

~Pi+T (z)
+ u0 = ξ

(u)
i

(

~R, ~T ,Ω,~a, ~V
)

vi = αv

~R(2)
i

~Pi+T (y)

~R(3)
i

~Pi+T (z)
+ v0 = ξ

(v)
i

(

~R, ~T ,Ω,~a, ~V
) (7)

where ~R(j) and T (x,y,z) are respectively the jth row of
~Ri = δ ~Ri

~R and the components of ~Ti = ~T +δ ~Ti. Subsiding
the right term from the left term and substituting ui and vi

by image measurements, equation 7 can be seen as an error
function with respect to pose and velocity (and possibly τ )
parameters:

ui − ξ
(u)
i

(

~R, ~T ,Ω,~a, ~V
)

= ε
(u)
i

vi − ξ
(v)
i

(

~R, ~T ,Ω,~a, ~V
)

= ε
(v)
i

We want to find ~R, ~T , Ω, ~a and ~V that minimize the
following error function:

ε =

n
∑

i=1

[

ui−ξ
(u)
i

(

~R,~T ,Ω,~a,~V
)]2

+
[

vi−ξ
(v)
i

(

~R,~T ,Ω,~a,~V
)]2

This problem with 12 independent unknowns can be
solved using a non-linear least square optimization if at least
6 correspondences are available. This can be seen as a bundle
adjustment with a calibrated camera.

Fig. 8. Image samples of pure translational motion.

IV. EXPERIMENTS

The aim of this experimental evaluation is first to illustrate
our pose recovery algorithm accuracy in comparison with
classical algorithms under the same acquisition conditions,
and second, to show its performances as a velocity sensor.
The algorithm was tested on real image data. A reference 3D
object with white spots was used. Sequences of the moving
object at high velocity were captured with the Silicon Imag-
ing CMOS Rolling Shutter camera SI1280M-CL, calibrated
using the method described in [12]. Acquisition was done
with a 1280×1024 resolution and at a rate of 30 frames per
second so that τ = 7.15 × 10−5 s. The pose and velocity
parameters were computed for each image using first our
algorithm, and compared with results obtained using the
classical pose recovery algorithm described in [12] where an
initial guess is first computed by the algorithm of Dementhon
[3] and then the pose parameters are accurately estimated
using a bundle adjustment technique.

Figure 8 shows image samples from a sequence where
the reference object was moved following a straight rail
forcing its motion to be a pure translation. In the first and
last images of the sequence the object was static. Pose
parameters corresponding to these two views were com-
puted accurately using the classical algorithm. The reference
object trajectory was then assumed to be the 3D straight
line relating the two extremities. Pose recovery results are
shown in figure 9. The left-hand side of this figure shows
3D translational pose parameters obtained by our algorithm
and by the classical algorithm (respectively represented by
square and *-symbols). Results show that the two algorithms
give appreciably the same results with static object views
(first and last measurements). When the velocity increases,
a drift appears in the classical algorithm results while our
algorithm remains accurate (the 3D straight line is accurately
reconstructed by pose samples) as it is illustrated on Table
I where are represented distances between computed poses
with each algorithm and the reference trajectory. Table II
presents computed rotational pose parameters. Results show
the deviation of computed rotational pose parameters from
the reference orientation. Since the motion was a pure
translation, orientation is expected to remain constant. As
one can see, a drift appears on classical algorithm results
while our algorithm results show a very small deviation due
only to noise on data.

Another result analysis concerns the velocity parameters.
Figure 9 shows that the translational velocity vector is clearly
parallel to translational axis (up to noise influence). Table III
represents magnitude of computed velocity vectors in com-
parison with measured reference values. Results show that
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Fig. 9. Pose and velocity results: reconstructed trajectory (top image),
translational velocity vectors (bottom image).

TABLE I
DISTANCES FROM COMPUTED POSES TO REFERENCE TRAJECTORY (CM).

Image number 1 2 3 4 5 6 7

Classical algorithm 0.00 0.19 0.15 1.38 3.00 4.54 0.00
Our algorithm 0.18 0.24 0.26 0.22 0.32 0.11 0.07

the algorithm recovers correctly acceleration, deceleration
and static phases. Note that computed rotational velocities
are small and only due to noise.

The algorithm was also tested with coupled rotational and
translational motions (Figure 10). Equivalent results were
observed. The manifold of instantaneous rotation axis vectors
was correctly oriented. The mean value of the angles between
the computed rotation axis and ~N was 0.50 degrees. Results
in table IV shows a comparison of the computed rotational
velocity magnitudes and the measured values.

Fig. 10. Image samples of coupled rotational and translational motions.

V. CONCLUSION AND PERSPECTIVES

An original method for computing pose and instantaneous
velocity of rigid objects using a single view from a rolling
shutter camera was presented. The approach was evaluated
on real data showing its feasibility. The method is not less
accurate than similar classical algorithms in case of static
objects, and improves pose accuracy in case of fast moving
objects. In addition, the method gives the instantaneous
velocity parameters using a single view. For instance, the
approach can enable us to avoid numerical derivation for
velocity estimation from several poses. In addition, its im-
plementation offers more flexibility to measure the full 3D
pose and velocity parameters. These properties make it an
original tool for many fields of research in robotics. We
discussed improvements expected from using this method as
a cartesian exteroceptive pose and velocity sensor for parallel
mechanisms dynamic identification and control.

Our future work, will concern the implementation of the
presented method on a real parallel robot.

TABLE II
ANGULAR DEVIATION OF COMPUTED POSES FROM REFERENCE

ORIENTATION (DEG.).

Image number 1 2 3 4 5 6 7

Dementhon’s algo. 0.00 2.05 4.52 6.93 6.69 3.39 0.30
our algorithm 0.07 0.13 0.15 0.24 0.90 0.91 0.40

TABLE III
COMPUTED TRANSLATIONAL VELOCITY MAGNITUDE IN COMPARISON

WITH MEASURED VELOCITY VALUES (M/S)

Image number 1 2 3 4 5 6 7

Measured values 0.00 1.22 2.02 2.32 1.55 0.49 0.00
Computed values 0.06 1.10 1.92 2.23 1.54 0.50 0.02

TABLE IV
COMPUTED AND MEASURED ROTATIONAL VELOCITY MAGNITUDES

(RAD/S)

Image number 1 2 3 4 5

Measured values 0.00 1.50 9.00 11.20 10.50
Computed values 0.06 1.20 8.55 10.38 10.32

6 7 8 9 10

10.20 10.10 10.00 10.00 7.50
10.30 9.80 9.90 9.73 8.01
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