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Abstract— This paper presents a new hybrid decoupled vision-
based control scheme valid for the entire class of central cata-
dioptric sensors (including conventional perspective cameras).
First, we consider the structure from motion problem using
imaged 3D lines (conics). Polar lines of the principal point
with respect to the conic curves are exploited to estimate a
generic homography matrix from which a partial Euclidean
reconstruction is obtained. The polar lines and the information
extracted from the homography are then used to design a control
law which allow us to fully decouple rotational motions from
translational motions.

I. INTRODUCTION

Vision-based servoing schemes are flexible and effective
methods to control robot motion from camera observations.
They are generally classified into three groups, namely
position-based, image-based and hybrid-based control [13],
[16]. These three schemes make assumptions on the link
between the initial, current and desired images since they
require correspondences between the visual features extracted
from the initial image with those obtained from the desired
one. These features are then tracked during the camera (and/or
the object) motion. If these steps fail the visually based robotic
task can not be achieved [7]. Typical cases of failure arise
when matching joint image features is impossible (for example
when no joint feature belongs to initial and desired images) or
when some parts of the image features get out of the field of
view during the servoing. Some methods were investigated to
resolve this deficiency based on path planning [17], switching
control [8], zoom adjustment [20], geometrical and topological
considerations [9]. However, such strategies are sometimes
delicate to adapt to a generic setup. Conventional cameras suf-
fer thus from restricted field of view. There is thus significant
motivation for increasing the field of view of the cameras [5].
Many applications in vision-based robotics, such as mobile
robot localization [6] and navigation [22], can benefit from the
panoramic field of view provided by omnidirectional cameras.
In the literature, there have been several methods proposed
for increasing the field of view of cameras systems [5]. One
effective way is to combine mirrors with conventional imaging
system. The obtained sensors are referred to as catadioptric
imaging systems. The resulting imaging systems have been
termed central catadioptric when a single projection center
describes the world to image mapping. From a theoretical
and practical view point, a single center of projection is a
desirable property for an imaging system [2]. Baker and Nayar
in [2] derive the entire class of catadioptric systems with a

single viewpoint. Clearly, visual servoing applications can also
benefit from such sensors since the latter naturally overcome
the visibility constraint. Vision-based control of robotic arms,
single mobile robot or formation of mobile robots appear
thus in the literature with omnidirectional cameras (refer for
example to [4], [19], [21],[18]). Image-based visual servoing
with central catadioptric cameras using points was studied in
[4]. The use of straight lines has also been investigated in [18].
As it is well known, the catadioptric projection of a 3D line in
the image plane is a conic curve. In [18], the authors propose
to use directly the coordinates of the polar lines of the image
center with respect to the conic curves to define the input of
the vision-based control scheme.

This paper is concerned with homography-based visual
servo control techniques with central catadioptric cameras.
This framework, also called 2 1/2 D visual servoing [16]
in the case where the image features are points, exploits
a combination of reconstructed Euclidean information and
image features in the control design. The 3D information
is extracted from an homography matrix relating two views
of a reference plane. As a consequence, the 2 1/2 D visual
servoing scheme does not require any 3D model of the target.
Unfortunately, in such approach when conventional cameras
are used, the image of the target is not guaranteed to remain
in the camera field of view. To overcome this deficiency 2
1/2 D visual servoing has been extented to an entire class
of omnidirectional cameras in [12]. The resulting interaction
matrices are triangular with partial decoupling properties (refer
to [16], [12]).

In this paper a new approach for homography-based visual
servoing using 3D-lines imaged with any type of central
camera is presented. The structure from motion problem using
imaged 3D co-planar lines (conics) is first studied. Geometrical
relationship between polar lines and conic curves are exploited
to linearly estimate a generic homagraphy matrix from which
a partial Euclidean reconstruction is obtained. The polar lines
and the information extracted from the homography are then
used to design a control law which allow us to fully decouple
rotational motions from translational motions (i.e the resulting
interaction matrix is square block-diagonal).

II. MODELISATION

A. Central catadioptric camera model

The catadioptric projection can be modeled by a central pro-
jection onto a virtual unitary sphere, followed by a perspective



Fig. 1. Central catadioptric image formation

projection onto an image plane. This virtual unitary sphere is
centered in the principal effective view point and the image
plane is attached to the perspective camera.

As shown in figure 1, Fc and Fm are the frames attached to
the conventional camera and to the mirror respectively. In the
sequel, we assume that Fc and Fm have the same orientation.
The origins C and M of Fc and Fm will be termed optical
center and principal projection center respectively. The optical
center C has coordinates [0 0 − ξ]T with respect to Fm and
the image plane Z = 1−ξ is orthogonal to the Z-axis where ξ
and ψ describe the type of sensor and the shape of the mirror,
and are function of mirror shape parameters (refer to [3]).

1) Projection of points: Let X be a 3D point with coordi-
nates X = [X Y Z]T with respect to Fm. The world point X
is imaged in the image plane into the point of homogeneous
coordinates x = [x y 1]T .

x = K
[

X

Z + ξ‖X‖
Y

Z + ξ‖X‖ 1
]T

(1)

The matrix K can be written as K = KcM where the
upper triangular matrix Kc contains the conventional camera
intrinsic parameters, and the diagonal matrix M contains the
mirror intrinsic parameters. Note that, setting ξ = 0, the
general projection model becomes the well known perspective
projection model.

2) Projection of lines: Let L be a 3D straight line in
space lying on the interpretation plane which contains the
principal projection center M (see Figure 1). The binormalized
Euclidean Plücker coordinates [1] of the 3D line are defined
as

[
ūT h̄T h

]T
. The unit vectors h̄ = (hx, hy, hz)T and

ū = (ux, uy, uz)T are respectively the orthogonal vector to the
interpretation plane and the orientation of the 3D line L and
are expressed in the mirror frame Fm. h is the orthogonal
distance from L to the origin of the definition frame. The unit
vectors h̄ and ū are orthogonal, thus verifie h̄T ū = 0. If the
3D line is imaged by a perspective camera then the unit vector
h̄ contains the coefficient of the 2D line l in the image plane
(expressed in pixels), i.e the homogeneous coordinates x of the

perspective projection of any world point lying on L verifies:

(K−T h̄)T x = lT x = 0 (2)

with l = K−T h̄. If the line is imaged with a central
catadioptric camera then the 3D points on the 3D line L are
mapped into points x lying on a conic curve in the catadioptric
image:

xT K−T ΩK−1x = xT Ωix = 0 (3)

where Ωi = K−T ΩK−1 and:

Ω ∝
h2

x − ξ2(1 − h2
y) hxhy(1 − ξ2) hxhz

hxhy(1 − ξ2) h2
y − ξ2(1 − h2

x) hyhz

hxhz hyhz h2
z


B. Polar lines

The quadratic equation (3) is defined by five coefficients
since Ωi is symmetric and defined up to scale factor. Neverthe-
less, the catadioptric image of a 3D line has only two degrees
of freedom those of the interpretation plane definition. In the
sequel, we show how we can get a minimal representation
using polar lines.

Let Φ, A be respectively a 2D conic curve, a point in the
definition plane of Φ. The polar line l of A with respect to
Φ is defined by l ∝ ΦA. Now, consider the principal point
Oi = [u0 v0 1]T = K[0 0 1]T and the polar line li of Oi

with respect to Ωi : li ∝ ΩiOi, then:

li ∝ K−T ΩK−1Oi = K−T ΩK−1K[0 0 1]T

∝ K−T h̄ (4)

Moreover, equation (4) yields:

h̄ =
K�li
‖K�li‖ (5)

It is thus clear that the polar line li contains the coordinates
of the projection of the 3D line L in an image plane of an
equivalent (virtual) perspective camera defined by the frame
Fv = Fm (see figure 2) with internal parameters chosen
equal to the internal parameters of the catadioptric camera (i.e
Kv = KcM). This result is fundamental since it allows us to
represent the physical projection of a 3D line in a catadioptric
camera by a simple (polar) line in a virtual perspective camera
rather than a conic. Knowing only the optical center Oi, it is
thus possible to use the linear pin-hole model for the projection
of a 3D line instead of the non linear central catadioptric
projection model.

In the sequel, we show how the homography related to a
reference plane can be computed using polar lines and how it
can be exploited to design a new vision-based control scheme
which allows to fully decouple rotational and translational
motions.

III. SCALED EUCLIDEAN RECONSTRUCTION USING

HOMOGRAPHY

The Euclidean reconstruction from two views is a non-
linear problem. Several methods were proposed to solve this
problem [10]. They are generally based on the estimation of



Fig. 2. Motion and structure parameters

the fundamental matrix [15] in pixel space or on the estimation
of the essential matrix [14] in normalized space. However, for
control purposes, the methods based on the essential matrix are
not well suited since degenerate configurations (such as pure
rotational motion) can induce unstable behavior of the con-
trol scheme. Homography matrix and Essential matrix based
approaches do not share the same degenerate configurations,
for example pure rotational motion is not a degenerate con-
figuration when using homography-based method. To design
a control scheme based on partial Euclidean reconstruction, it
is thus preferable to use Homography-based approaches.

The epipolar geometry of central catadioptric system has
been more recently investigated (refer for example [11]).
The central catadioptric fundamental and essential matrices
share similar degenerate configurations that those observed
with conventional perspective cameras. In [12], geometrical
relationships between two calibrated omnidirectional views
of co-planar points have been derived from the non-linear
central catadioptric projection model. In the sequel, we show
how we can compute homographic relationships between
two uncalibrated central catadioptric views knowing only the
principal point and using polar lines.

Let R and t be the rotation matrix and the translation
vector between two positions Fm and F∗

m of the central
catadioptric camera (see Figure 2). Note that the associate
virtual cameras are related by the same motion (R, t). Let
L be a 3D straight line with binormalized Euclidean Plücker
coordinates [ū� h̄� h]� with respect to Fm and with co-
ordinates [ū∗�

h̄∗�
h∗]� with respect to F∗

m. Consider that
the 3D line L lies in a 3D reference plane (π) defined by
π∗ = [n̄∗� − d∗], where n̄∗ is its unitary normal in F∗

m and
d∗ is the distance from (π) to the origin of F∗

m. Note that
any world point X ∈ π with coordinates X = [X Y Z]T

with respect to Fm and with coordinates X∗ = [X∗ Y ∗ Z∗]T

with respect to F∗
m is projected on the unitary sphere onto

the points Xm = X/‖X‖ and X∗
m = X∗/‖X∗‖ for the two

camera positions. The relation between the two projections on
the unitary sphere is given by [12]:

Xm ∝ HX∗
m (6)

where H is a 3 × 3 homography matrix.
Let X1 and X2 be two points in the 3-D space lying on

the line L. The central catadioptric projection of the 3-D line
L is fully defined by the normal vector to the interpretation
plane h̄. The vector h̄ can be defined by two points in
the 3-D line as h̄ = X1×X2

‖X1×X2‖ . Noticing that [HX∗
1]× =

det(H)H−�[X∗
1]×H−1 ([HX∗

1]× being the skew-symetric
matrix associated to the vector HX∗

1) and according to (6), h̄
can be written as:

h̄ ∝ det(H)
‖X∗

1 × X∗
2‖

H−�(X1
∗ × X2

∗)

since h̄∗ = X∗
1×X∗

2

‖X∗
1×X∗

2‖ is the normal vector to the interpretation
plane expressed in the frame F∗

m. The relationship beetwen
two views of the 3D line can be written by:

h̄ ∝ H−�h̄∗ (7)

The expression of the homography matrix in the pixel space
can be derived hence using the polar lines. As depicted below,
each conic, corresponding to the projection of a 3D line in
the omnidirectional image, can be explored through its polar
line. Let li and l∗i be the polar lines of the image center
Oi with respect to the conics Ωi and Ω∗

i respectively in the
two positions Fm and F∗

m of the catadioptric camera. From
equation (4), the relationship given in equation (7) can be
rewritten as:

li ∝ G−�l∗i (8)

where G = KHK−1. Since the polar lines are the perspec-
tive projections of the 3D lines in the virtual camera, the
homography matrix G can be decomposed into a rotation
matrix and a rank 1 matrix as G = K(R + t

d∗ n∗T )K−1.
From (8), it is trivial to see that the homography matrix
G related to (π) can be linearly estimated knowing at least
four couples of coordinates ((lik, li∗k), k = 1 . . . 4). From the
estimated homography matrix, the camera motion parameters
R, t∗d = t

d∗ and the structure of the observed scene (for
example the vector n∗) can be determined (refer to [10], [23]).
It can also be shown that the ratio h

h∗ (ratio of the lines depth)
can be computed as follow:

r =
h

h∗ = r′
‖n∗ × K�l∗i ‖
‖Rn∗ × K�li‖ (9)

where r′ = d
d∗ = 1 + t∗d

�R�n∗.
These parameters are important since they are used in the

design of our control scheme. In the next section, we pro-
pose a vision control scheme which allows to fully decouple
rotational motions from translational motions.



IV. CONTROL SCHEME

In order to design an hybrid visual servoing scheme, the
features used as input of the control law combine 2D and
3D information. We propose to derive this information from
the polar lines and the homography matrix computed and
decomposed as depicted in the last section. Let us first define
the input of the proposed hybrid control scheme as follow :

s = [s�υ s�ω ]� (10)

whith sυ = [log(h1) log(h2) log(h3)]� where h1, h2 and
h3 are the depth of three co-planar lines. As we will see in
the sequel, by choosing such a feature, the resulting control
law allow us to decouple rotational motions from translational
motions. The vector sω is chosen as sω = θu� where u and θ
are respectively the axis and the rotation angle extracted from
R (i.e the rotation matrix between the mirror frame when
the camera is in the current and desired positions). The task
function e to regulate to 0 is then given by:

e = [s − s∗] = [γ1 γ2 γ3 θu�]� (11)

where s∗ = [s∗υ
� 01×3]� is the desired value of s and γk =

log(hk/h∗
k), for k = 1 . . . 3. Note that the task function can

be directely computed from the estimated homography matrix
(γk is computed using equation (9) and the rotational part
is estimated using partial Euclidean reconstruction from the
homography matrix derived in Section III). The exponential
convergence of e can be obtained by imposing ė = −λe, the
corresponding control law being:

τ = −λL−1(s − s∗) (12)

where τ = [v� ω�]� is the central catadioptric camera
velocity (v and ω denote respectively the linear and angular
velocities). λ tunes the convergence rate and L is the interac-
tion matrix which links the variation of feature vector s to the
camera velocity (ṡ = Lτ ) which we derive now.

The time derivative of uθ can be expressed as a function
of the camera velocity as:

d(uθ)
dt

= [03 Lω] τ

Lω is given in [16] by:

Lω(u, θ) = I3 − θ

2
[u]× +

(
1 − sinc(θ)

sinc2( θ
2 )

)
[u]2× (13)

where sinc(θ) = sin(θ)
θ and [u]× being the skew-symmetric

matrix associated to the rotation axis u.
The 3 translational degrees of freedom are controled using

the visual observations sυ . From the time derivative of the line
depth hk expressed as a function of the camera velocity [1]
given by ḣk = (ūk × h̄k)�v, it can be shown that:

d(log(hk))
dt

=
[

1
hk

(ūk × h̄k)� 01×3

]
τ (14)

From equation (9), it can be shown that hk = rkh∗
k and

according to (5) and (14), the time derivative of the vector sυ

is thus given by:
ṡυ = [Lυ 03] τ

where:

Lυ =

[
‖K�li1‖r1h∗

1 0 0

0 ‖K�li2‖r2h∗
2 0

0 0 ‖K�li3‖r3h∗
3

]−1 [
(ū1×K�li1)

�

(ū2×K�li2)
�

(ū3×K�li3)
�

]
(15)

Once again, note that the time derivative of sυ does not
depend of the camera angular velocity. It is also clear that Lυ

is singular only if the principal point M of the mirror frame
lies in the 3D reference plane (π). The task function e can
thus be regulated to zero using the control law (12) with the
following square block-diagonal interaction matrix:

L =
[
Lυ 03

03 Lω

]
(16)

As can be seen on equation (15), the unknown depth h∗
i and the

unitary orientations ui with respect to the catadioptric camera
frame have to be introduced in the interaction matrix. Noticing
that ūi = (h̄i × Rh̄∗

i )/‖h̄i × Rh̄∗
i ‖ and using equation (4),

the orientation can be estimated as follow:

ū =
K�li × RK�l∗i

‖K�li × RK�l∗i ‖
Furthermore, if the camera is calibrated and ĥ∗

i is chosen to
approximate h∗

i , then it is clear that L̂−1
υ Lυ is a diagonal

matrix with ĥ∗
i /h∗

i for i = 1, 2, 3 as entries. The only point
of equilibrium is thus s∗ and the control law is asymptotically
stable in the neighborhood of s∗ if ĥ∗

i is chosen positive.
In practice, an approximated matrix L̂∗ −1 at the desired
position is used to compute the camera velocity vector and
the rotational part can be set to L−1

ω θu = θu [16]. Finally,
The control law is thus given by:

τ = −λ

[
L̂∗

υ
−1 0

0 I3

] [
sυ − s∗υ

θu

]
(17)

V. RESULTS

A. Computing Homographies with polar lines

1) Catadioptric camera displacement accuracy: In this
simulation, we show the effect of the image noise when
estimating the rotation and the direction of the translation
from polar lines. Two types of catadioptric cameras have
been used: a para-catadioptric camera (combining a parabolic
mirror and an orthographic lens) and an hyper-catadioptric
camera (combining an hyperbolic mirror with a perspective
camera). Only results obtained using the para-catadioptric
are presented in this paper since similar results are obtained
with the hyper-catadioptric camera. The catadioptric camera
observes a grid as presented in Figure 5. The real conics
corresponding to the projection of 3D lines are first sampled
with a step of 10 pixels. Then, a uniform distribution random
noise is added to the sampled points in the direction of the
normal vector to the real conic curve. The corrupted points



are fitted to get the coefficients of the conic curve and the
principal point is estimated using the intersection of the two
lines defined by the intersection of three conics [3]. These
coefficients are exploited to compute the polar lines with
respect to the estimated principal point. Finally, the polar lines
are used to linearly compute the homography matrix and the
motion parameters. To improve the quality of the estimated
homography, it is also possible to use the linear algorithm to
initialize a non-linear one. Since our goal is to provide at video
rate the input of a vision-based control scheme, we focused on
the linear algorithm. We vary the variance of the random noise
to assess the quality of the linear estimator. The rotational error
is defined by the distance between the real rotation R and the
estimated one R̂. This distance is defined by the rotational

angle αr of the matrix RR̂
�

. The translational error is defined
by the angle αt between the normalized translation vectors
t/‖t‖ and t̂/‖t̂‖. Figures 3(a) and 3(b) show respectively the
evolution of the error angles αr and αt with respect to the
variance of the image noise (in pixel). The square and diamond
plots represent respectively the errors of the estimations when
using four and seven 3D lines. As depicted in Figures 3(a)
and 3(b), the angle errors αr and αt are less than 0.03rad (2
degrees) for a variance of 2 pixels. These results confirm that
the catadioptric camera displacement can be estimated with a
good accuracy when observing coplanar 3D lines, and show
that only four 3D lines can be used to estimate the camera
displacement. In the next section, results obtained with real
data confirm this point.
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Fig. 3. Euclidean reconstruction error: (a) error αr , (b) error αt

2) Camera displacement from real data: In this experiment,
a calibrated para-catadioptric camera is used. The catadioptric
camera observes a checkerboard. The conics, corresponding to
the 3D lines projection, are extracted using a robust 3D least-
square fitting. The camera displacement, from position 1 to
position 2, has been set to θu = [−0.95 0.12 0.53]� radian
and t = [210 − 730 490]� millimeters. Figures 4(a) and
4(b) show respectively the images at positions 1 and 2 and
the extracted conics. The associate polar lines with respect
to the estimated principal point (yellow cross) are computed
and used to estimate the homography matrix and the camera
displacement. The rotational and translational angle errors
αr = 0.025 rad and αt = 0.02 rad (as defined above) are
very satisfactory since our goal is not to obtain an extremely
accurate partial reconstruction but to provide the input of a
closed-loop control scheme.

x

y

(a) (b)

Fig. 4. Euclidean reconstruction error: (a) image at position 1, (b) image at
position 2
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Fig. 5. 3D configuration and camera trajectory of the visual servoing with
para-catadioptric camera

B. Visual Servoing

We present now results concerning a positioning task of
a six degrees of freedom robotic arm using the previously
described control scheme. From an initial position, the cata-
dioptric camera has to reach the desired position. This means
that the task function (11), computed from the homography
matrix between the current and desired images, converges
to zero. To be close to a real setup the observation vector
s is estimated as explained in the previous subsections (the
variance of the uniform distribution random noise has been
set to 2 pixels). Figure 5 shows the spatial configuration of
the 3D lines as well as the 3D trajectory of the central cata-
dioptric camera. The interaction matrix L is computed using
erroneous intrinsic camera parameters (estimated image center
and ±10% on the focal length). The value of the interaction
matrix L at the desired position is used to compute the control
law (17). The images corresponding to the initial and desired
positions are shown by figures 6(c) and 6(d). These figures
show the projected 3D lines (conics) and the associated polar
lines. The trajectories of the conics and of the corresponding
polar lines in the image plane are given in Figures 6(a) and
6(b) respectively. These trajectories confirm that the initial
images (conics and polar lines) reach the desired images.
Figures 6(e) and 6(f) show respectively the translational and
rotational velocities of the catadioptric camera. As shown in
Figures 6(g) and 6(h), the error vector e between the current
and desired observation vectors are well regulated to zeros,
and thus the positioning task is correctly realized.
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Fig. 6. Visual servoing with para-catadioptric camera: (a) trajectory of the
conics in the image plane, (b) trajectory of the polar lines, (c) initial image, (d)
desired image, (e) translation velocities [m/s], (f) rotational velocities [rad/s],
(g) θu errors, (h) (sυ − s∗υ) vector errors

VI. CONCLUSION

In this paper a new hybrid decoupled vision-based control
scheme valid for the entire class of central cameras was
presented. Geometrical relationship between polar lines and
conic curves was exploited to estimate a generic homography
matrix from which partial Euclidean reconstruction can be
obtained. Results with simulated and real data confirmed the
relevance and accuracy of the approach. The information
extracted from the homography matrix were then used to
design a hybrid control law which allowed us to fully decouple
rotational motion from translational motions. In future work,
the robustness and stability analysis with respect to calibration
errors must be studied.
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