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Abstract

In automatic guidance of agriculture vehicles, lateral control is not the only requirement. Much research work has been focused on trajectory
tracking control which can provide high longitudinal-lateral control accuracy. Satisfactory results have been reported as soon as vehicles move
without sliding. But unfortunately pure rolling constraints are not always satisfied especially in agriculture applications where working conditions
are rough and not predictable. In this paper the problem of trajectory tracking control of autonomous farm vehicles in the presence of sliding is
addressed. To take sliding effects into account, three variables which characterize sliding effects are introduced into the kinematic model based
on geometric and velocity constraints. With a linearized approximation, a refined kinematic model is obtained in which sliding effects appear
as additive unknown parameters to the ideal kinematic model. By an integrating parameter adaptation technique with a backstepping method, a
stepwise procedure is proposed to design a robust adaptive controller in which time-invariant sliding is compensated for by parameter adaptation
and time-varying sliding is corrected by a Variable Structure Controller (VSC). It is theoretically proven that for farm vehicles subjected to sliding,
the longitudinal-lateral deviations can be stabilized near zero and the orientation errors converge into a neighborhood near the origin. To be more
realistic for agriculture applications, an adaptive controller with projection mapping is also proposed. Both simulation and experimental results
show that the proposed (robust) adaptive controllers can guarantee high trajectory tracking accuracy regardless of sliding.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Automatic guidance of farm vehicles develops with the
requirement of modern agriculture. High-precision agriculture
becomes a reality especially thanks to new localization
technologies such as GPS, laser range scans and sonar. In
agriculture fields it is quite common that several vehicles
(including cropping, threshing, cleaning, seeding and spraying
machines) compose a platoon for combined harvesting. In this
case driving safety requiring constant longitudinal distances
between the leading vehicle and following vehicles is an
additional requirement along with the effort of improving
lateral path-following performances. Therefore vehicle motions
are specified not only by a geometric path but also by a
time law with respect to the longitudinal direction. Since
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longitudinal-lateral control becomes more and more important,
many research teams have paid their attention to trajectory
tracking control, satisfactory results have been reported as soon
as vehicles satisfy pure rolling constraints [1–7].

However due to various factors such as slipping of tires,
deformability or flexibility of wheels, pure rolling constraints
are never strictly satisfied. Especially in agriculture applications
when farm vehicles are required to move on all-terrain grounds
including slippery slopes, sloppy grass grounds, sandy and
stony grounds, sliding inevitably occurs which deteriorates
automatic guidance performance and even system stability.

Until now there are very few papers dealing with sliding.
[8] prevents cars from skidding by robust decoupling of
car steering dynamics, but acceleration measurements are
necessary and the steering angle is assumed small. [10]
copes with the control of WMR (Wheeled Mobile Robot)
not satisfying the ideal kinematic constraints by using slow
manifold methods, but the parameters characterizing the sliding
effects are assumed to be exactly known. Therefore [8,10] are
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not realistic for agriculture applications. In [11] a controller is
designed based on the averaged model allowing the tracking
errors to converge to a limit cycle near the origin. In [15] a
general singular perturbation formulation is developed which
leads to robust results for linearizing feedback laws ensuring
trajectory tracking. But above two schemes only take into
account sufficiently small sliding effects and they are too
complicated for real-time practical implementation. In [12,
13] Variable Structure Control (VSC) is used to eliminate the
harmful sliding effects when the bounds of the sliding effects
have been known. The trajectory tracking problem of mobile
robots in the presence of sliding is solved in [14] by using
discrete-time sliding mode control. But the controllers [12–14]
counteract sliding effects only relying on high-gain controllers
which is not realistic because of limited bandwidth and low
level delay introduced by steering systems of farm vehicles. In
[16] sliding effects are rejected by re-scheming desired paths
adaptively based on steady control errors which are mainly
caused by modeled sliding effects. Moreover a robust adaptive
controller is designed in [17] which can compensate sliding
by parameter adaptation and VSC. But [16,17] only care about
lateral control.

In the references referred above most research works treated
sliding as disturbances, but alternatively sliding can be also
regarded specifically as time-varying parameters. On the other
hand backstepping methods which are used widely in controller
design have been proven powerful in controlling nonholonomic
systems with uncertain parameters [18,21]. With this idea in our
previous work [17] we have applied backstepping successfully
to design an anti-sliding lateral controller. The purpose of
this paper is to extend our lateral controller to a practical
longitudinal-lateral controller in presence of sliding.

The main idea of this paper is that sliding effects are
introduced as additive unknown parameters to the ideal
kinematic model, based on backstepping method a robust
adaptive controller is designed. Furthermore to be of benefit to
actual applications the robust adaptive controller is simplified
into an adaptive controller with projection mapping. This
paper is organized as follows, in Section 2 a kinematic model
considering sliding is constructed in the vehicle body frame.
In Section 3 for an ideal kinematic model a trajectory tracking
controller is designed. In Section 4 a robust adaptive controller
is designed in presence of sliding by using backstepping
methods. In Section 5 the robust adaptive controller is
simplified into an adaptive controller with projection mapping.
In Section 6, some comparative simulation and experimental
results are presented to validate the proposed control laws.

2. Kinematic model for trajectory tracking control

2.1. Notation and problem description

In this paper the vehicle is simplified by a bicycle model,
the kinematic model is expressed in the vehicle body frame
(o, x ′, y′) (see Fig. 1). Necessary variables appearing in the
kinematic model are denoted as follows:

Fig. 1. Notations of the kinematic model.

• o (or ) is the center of the (reference) vehicle virtual rear
wheel.

• x ′ is the vector corresponding to the vehicle body centerline
• y′ is the vector vertical to x ′.
• (xr , yr ) are the coordinates of the reference point or with

respect to the inertia frame.
• (x, y) are the coordinates of the vehicle o with respect to the

inertia frame.
• (xe, ye) depict the vector −→oor in the vehicle body frame

(o, x ′, y′).
• c(s) is the curvature of the path, s is the curvilinear

coordinates (arc-length) of the point or along the reference
path from an initial position.

• θ (θr ) is the orientation of the (reference) vehicle centerline
with respect to the inertia frame.

• θe = θr − θ is the orientation error.
• l is the vehicle wheelbase.
• v (vr ) is the linear velocity of the (reference) vehicle with

respect to the inertia frame.
• vω is the rear wheel rotating velocity.
• vx is the longitudinal velocity of the vehicle in the direction

of ox ′ w.r.t the inertia frame.
• vy is the lateral velocity of the vehicle in the direction of oy′

w.r.t the inertia frame.
• δ is the steering angle of the virtual front wheel.
• δb is the steering angle bias due to sliding.

So the trajectory tracking errors can be described by
(xe, ye, θe). The driving velocity of the rear wheel vω and the
steering angle of the front wheel δ are two control inputs. The
aim of this paper is to design a controller (vω, δ) which can
guarantee the longitudinal-lateral errors xe, ye approach to zero
and the orientation error θe is bounded in presence of sliding.

2.2. Kinematic model

From Fig. 1, it is easy to obtain the following geometric
relationshipxe

ye
θe

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

xr − x
yr − y
θr − θ

 (1)
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and the velocity constraint{
ẋ = v cos θ

ẏ = v sin θ.
(2)

In this paper it is assumed that |θe| < π
2 . When vehicles move

without sliding (v is equivalent to vx ), the angular velocity can
be expressed by

θ̇ = ω =
v

l
tan δ. (3)

The angular velocity of the reference vehicle is

θ̇r =
vr
1

c(s)

. (4)

The ideal kinematic model with respect to (o, x ′, y′) can be
developed directly by differentiating (1) (see Appendix A for
details)

ẋe = −v + vr cos θe + ωye
ẏe = vr sin θe − ωxe

θ̇e = vr c(s) −
v

l
tan δ.

(5)

But when vehicles move on a steep slope or the ground
is slippery, sliding occurs inevitably. Moreover in actual
agriculture applications, the vehicles have horizontal reactions
(harvesting, tilling) from the end-effectors, which makes
longitudinal sliding serious. So (5) is no longer valid, the
violation of the pure rolling constraints is described by
introducing three sliding parameters, which are the longitudinal
sliding velocity vs

x , the lateral sliding velocity vs
y and bias of

the steering angle δb. Among them the measurement of vs
x can

be obtained relatively accurately under actual low S/N ratio
conditions by considering the difference between the wheel
rotating velocity and the vehicle moving speed. While vs

y and
δb cannot be measured precisely because in comparison with
their values, the GPS measurement noises and the external
disturbances become rather important. So in this paper we
treat vs

x as a known parameter, vs
y and δb are regarded as two

unknown variables which will be corrected by means of robust
adaptive controller design.

The longitudinal-lateral velocities in presence of sliding
satisfy the following constraints{

vx = vω + vs
x

vy = vs
y

(6)

and the vehicle angular velocity becomes

ω =
vx

l
tan(δ + δb) −

vy

l
. (7)

Therefore the velocity constraints (2) become{
ẋ = v cos(θ + ϕ)

ẏ = v sin(θ + ϕ)
(8)

where

v =

√
v2

x + v2
y (9)

and ϕ is the side sliding angle defined by

ϕ = arctan
(

vy

vx

)
. (10)

By using the similar method the kinematic model when
sliding is taken into account is obtained (see Appendix B for
details)

ẋe = −vx + vr cos θe + ωye
ẏe = −vy + vr sin θe − ωxe

θ̇e = vr c(s) −

(vx

l
tan(δ + δb) −

vy

l

)
.

(11)

Note that

vx = v cos ϕ (12)

is the longitudinal velocity. In the case when no sliding occurs,
it is obvious that vx = vω = v.

2.3. Kinematic model with linearization approximation

In actual agriculture applications, it is general that the
ground conditions (gradient, friction, curvature) do not change
abruptly and most trajectories to be tracked are straight lines
and circles. So when farm vehicles move smoothly without too
much acceleration, it is reasonable to assume that the sliding
parameters vary not too greatly with time, the sliding effects
can be described by

vs
y = v̄y + ε1

δb = δ̄b + ε′

2

(13)

where v̄y , δ̄b are time-invariant (other complicated working
conditions for example the vehicle traverses side slopes in both
directions are not considered, they will be addressed in future
works), ε1, ε′

2 are time-varying variables with zero mean value.
Furthermore since the steering bias δb is quite small (In our
experiments its value varies within the range of [0, 5] degree),
the orientation kinematic equation of (11) can be linearized
resulting in trivial errors. Therefore the kinematic model (11)
is rewritten as

ẋe = −(vω + vs
x ) + vr cos θe + ωye (14a)

ẏe = vr sin θe − ωxe − (v̄y + ε1) (14b)

θ̇e = c(s)vr +
v̄y + ε1

l
−

vω + vs
x

l
(tan δ + tan δ̄b + ε2) (14c)

where ε2 = tan ε′

2 + ε, ε is the error due to linearization
approximation.

Note that the wheel rotating velocity vω and the steering
angle of the front wheel δ are two control inputs to be designed.

3. Backstepping-based control design for ideal kinematic
model

3.1. Application of backstepping-based control to nonholo-
nomic systems

It is well known that nonholonomic systems cannot be
stabilized by smooth static state feedback laws [22]. Presently
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the widely used control methods are such classical means that
control nonholonomic systems in cascaded forms. Among them
chained system theories [9] and backstepping schemes [2,4]
are the most important nonlinear control skills with numerous
applications.

Here we turn to [5] to illustrate general knowledge
about backstepping control schemes and its applications
to nonholonomic systems by means of a simple example
considering the special case of integrator backstepping. For a
more detailed explanation the reader is referred to [19,20].

Consider the second order system

ẋ = cos x − x3
+ ξ (15a)

ξ̇ = u (15b)

where [x, ξ ]
T

∈ R2 is the state and u is the input. We want
to design a state-feedback controller to render the equilibrium
point [x, ξ ]

T
= [0, −1]

T globally asymptotically stable.
If ξ were the input, then (15a) can easily be stabilized by

means of ξ = − cos x − c1x . A Lyapunov function would be
V (x) =

1
2 x2.

Unfortunately ξ is not the control input but a state variable.
Nevertheless, we could prescribe its desired value by

ξd = − cos x − c1x . (16)

Next we define z to be the difference between ξ and its desired
value:

z = ξ − ξd = ξ + cos x + c1x . (17)

We can now write the system (15) in the new co-ordinates (x; z)

ẋ = −c1x − x3
+ z

ż = u + (c1 − sin x)(−c1x − x3
+ z).

(18)

To obtain a Lyapunov function candidate we simply augment
the Lyapunov function with a quadratic term in z:

Va(x, ξ) = V (x) +
1
2

z2
=

1
2

x2
+

1
2
(ξ + cos x + c1x)2. (19)

The derivative of Va along the solutions of (18) becomes

V̇a = −c1x2
− x4

+ z(x + u + (c1 − sin x)(−c1x − x3
+ z)). (20)

The simplest way to arrive at a negative definite V̇a is to choose

u = −c2z − x − (c1 − sin x)(−c1x − x3
+ z) (21)

which in the original co-ordinates [x; ξ ]
T becomes

u = −(c1 + c2)ξ − (1 + c1c2)x − (c1 + c2) cos x

+ c1x3
− x3 sin x + ξ sin x + sin x cos x . (22)

Usually ξ is called a virtual control.
One of the advantages of backstepping is that it provides a

constructive systematic method to arrive at globally stabilizing
control laws. Unfortunately, one usually obtains complex
expressions (in the original co-ordinates) for the control law,
as already can be seen from (22).

3.2. Trajectory tracking control for ideal kinematic model

First the ideal kinematic model without sliding is consid-
ered. Notice that (5) is a 2–3 nonholonomic system in which ye
is not directly controlled. To overcome this problem the idea of
backstepping is used. Using backstepping we propose a step-
wise design procedure for this 3-order nonholonomic system.
Due to limited space, we present the design scheme briefly.
Step 1: Considering the ideal kinematic model (5) where v =

vx = vω, we choose the Lyapunov function candidate for the
first step as

V1 =
1
2

x2
e +

1
2

y2
e . (23)

The derivative of V1 along (5) is

V̇1 = xe(−vω + vr cos θe) + yevr sin θe (24)

where two terms of ωxe and ωye have disappeared because
of algebraic simplification. Regard u1 = sin θe as the virtual
control input of the first step. If choose u1 as

u1d =
−ky ye

vr
(25)

and

vω = vr cos θe + kx xe (26)

then we have

V̇1 = −kx x2
e − ky y2

e . (27)

So u1d of (25) is the desired value of the virtual control input u1
for the first step. If u1 tracks (25) precisely, then the longitudinal
and lateral deviations will converge to zero asymptotically.

Indeed in the closed loop system u1 is not the actual control
input, tracking u1d with some errors, therefore ũ1 is defined as

ũ1 = u1 − u1d . (28)

Computing the time derivative of ũ1 yields

˙̃u1 = cos θe(c(s)vr − ω) +
ky

vr
(vr sin θe − ωxe). (29)

Step 2: Consider the Lyapunov function as

V2 = V1 +
1
2

ũ2
1. (30)

Then the time derivative of V2 along (24) and (29) is

V̇2 = xe(−vω + vr cos θe) + yevr u1

+ ũ1

(
cos θevr c(s) −

(
cos θe +

ky xe

vr

)
ω + ky sin θe

)
.

(31)

After substituting (25), (26) and (28) into (31), the following
equation can be deduced

V̇2 = −kx x2
e − ky y2

e + ũ1

(
yevr + cos θevr c(s)

−

(
cos θe +

ky xe

vr

)
ω + ky sin θe

)
. (32)
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In (32) if ω is chosen as

ω =
yevr + cos θevr c(s) + ky sin θe + ku ũ1

cos θe +
ky xe
vr

(33)

where

ũ1 = sin θe +
ky ye

vr
. (34)

Then we can obtain

V̇2 = −kx x2
e − ky y2

e − ku ũ2
1. (35)

So for the ideal kinematic model without sliding the resulting
control laws are

vω = vr cos θe + kx xe (36)

δ = arctan
(

lω

vω

)

= arctan

 l

vω

yevr + cos θevr c(s) + ky sin θe + ku ũ1

cos θe +
ky xe
vr

 (37)

where (kx , ky, ku) ∈ R+3. We refer interested readers to [26]
for details.

3.3. Stability analysis

(35) indicates the stability of the closed-loop system. The
direct application of LaSalle invariance principle yields that all
the solutions converge to the set Ω with

Ω = {(xe, ye, ũ1) : xe = 0, ye = 0, ũ1 = 0}. (38)

In Ω one gets −ky ye
vr

= sin θe. Moreover when the
lateral deviation converges to zero, simultaneously the steady
orientation error θe converges to zero also. Therefore when
vehicles move without sliding, the proposed controller can
stabilize the closed-loop system to zero.

4. Backstepping-based trajectory tracking control in pres-
ence of sliding

4.1. Robust adaptive control for kinematic model with sliding

Consider the kinematic model (14). It is a 2–3 nonholonomic
system with unknown constant parameters v̄y , δ̄b and time-
varying disturbances εi . In this paper it is assumed that εi is
bounded by

|εi | < ρi . (39)

So we are in the position to design a controller which not only
can estimate and compensate unknown parameters but also is
robust to εi .

Step 1: Consider the sub-kinematic equations (14a) and (14b).
The Lyapunov function candidate is chosen as

V1 =
1
2

x2
e +

1
2

y2
e +

1
2
( ˆ̄vy − v̄y)

T Γ−1( ˆ̄vy − v̄y) (40)

where Γ is positive definite, ˆ̄vy indicates the estimation of v̄y .
The time derivative of V1 along the kinematic model is

V̇1 = xe(−vω − vs
x + vr cos θe) + ye(vr sin θe

− ˆ̄vy − ε1) + ( ˆ̄vy − v̄y)
T Γ−1(

˙̂
v̄y + Γ ye) (41)

where two terms of ωxe and ωye have disappeared after
algebraic simplification. Regard u1 = sin θe as the virtual
control input of the first step. If we choose u1 as a variable
structure controller

u1d =
−ky ye + ˆ̄vy − ρ1sign(ye)

vr
(42)

and let

vω = vr cos θe + kx xe − vs
x (43)

˙̂
v̄y = −Γ ye (44)

then we have

V̇1 < −kx x2
e − ky y2

e − (ρ1 − |ε1|)|ye|. (45)

So u1d of (42) is the desired value of the virtual control input u1
for the first step. If u1 tracks (42) precisely, then the longitudinal
and lateral deviations will converge to zero asymptotically.

Indeed in the closed loop system u1 is not the actual control
input, tracking u1d with some errors, therefore ũ1 is defined as

ũ1 = u1 − u1d . (46)

In backstepping procedures the time differential of control
laws is required, therefore backstepping schemes can be
applied only to continuous kinematic control laws. In this
backstepping schemes the derivative of u1d must appear
in the following steps, but sign() included in (42) is not
differentiable. Furthermore the sign() function may cause too
much oscillations (chattering) when the response time delay
is considered. So in the following parts of this paper, sign()

is replaced by tanh() which is continuously differentiable.
Therefore u1d becomes

u1d =
−ky ye + ˆ̄vy − ρ1 tanh(

ye
σ1

)

vr
(47)

where σ1 > 0.
In (41) letting sin θe equal (47) instead of (42) and

considering (43), (44), we have

V̇1 < −kx x2
e − ky y2

e − (ρ1 − |ε1|)|ye| + ζ1 (48)

where ζ1 is a trivial variation due to the replacement of sign()

by tanh() in (42).
Substituting (47) into (46) and computing the time derivative

yields (see Appendix C for details)

˙̃u1 = cos θe

(
c(s)vr +

v̄y + ε1

l
−

vω + vs
x

l
(tan δ + η + ε2)

)
+

1
vr

($ ẏe −
˙̂
v̄y) (49)
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where

η = tan δ̄b (50)

$ = ky +

(
1 − tanh2

(
ye

σ1

))
ρ1

σ1
. (51)

Remark. For simplicity it is assumed that vr is constant,
in case vr is time-varying, only variation is adding
v̇r
v2

r

(
−ky ye + ˆ̄vy − ρ1 tanh ye

σ1

)
in (49).

Step 2: consider the Lyapunov function as

V2 = V1 +
1
2

ũ2
1 +

1
2
(η̂ − η)T γ −1(η̂ − η) (52)

where γ is positive definite, η̂ indicates the estimation of η. The
time derivative of V2 along (41) is

V̇2 = xe(−vω − vs
x + vr cos θe) + ye(vr u1 − ˆ̄vy − ε1)

+ ( ˆ̄vy − v̄y)
T Γ−1(

˙̂
v̄y + Γ ye) + ũ1 ˙̃u1 + (η̂ − η)T γ −1 ˙̂η.

(53)

Substituting (43), (47) and (49) into (53), we have the following
equation

V̇2 ≤ −kx x2
e − ky y2

e − (ρ1 − |ε1|)|ye| + yevr ũ1

+ ( ˆ̄vy − v̄y)
T Γ−1(

˙̂
v̄y + Γ ye)

+ ũ1

(
cos θe

(
c(s)vr +

v̄y + ε1

l

−
vω + vs

x

l
(tan δ + η + ε2)

)
+

1
vr

($ ẏe −
˙̂
v̄y)

)
+(η̂ − η)T γ −1 ˙̂η + ζ1. (54)

In this equation regard u2 = tan δ as the virtual control input
of the second step. From (54) the following equation can be
obtained by algebraic transformation (see Appendix D or [26]
for details)

V̇2 ≤ −kx x2
e − ky y2

e − (ρ1 − |ε1|)|ye|

+ ũ1

(
λ − βu2 + α −

$ε1

vr
− βη̂ + τε1 − βε2

)
+ ( ˆ̄vy − v̄y)

T Γ−1
(

˙̂
v̄y + Γ ye − Γ ũ1τ + Γ

$

vr
ũ1

)
+ (η̂ − η)T γ −1( ˙̂η + γ ũ1β) + ζ1 (55)

where

α =
$(vr sin θe − ˆ̄vy) −

˙̂
v̄y

vr
(56)

τ =
1
l

(
cos θe +

$ xe

vr

)
(57)

β = (vω + vs
x )τ (58)

λ = yevr + cos θec(s)vr + τ ˆ̄vy . (59)

In (55) let

˙̂η = −γ ũ1β

˙̂
v̄y = −Γ ye + Γ ũ1τ − Γ

$

vr
ũ1

(60)

and choose u2 as

u2 =
1
β

(
ku ũ1 + λ + α − βη̂

+ ρ1

(
cos θe

l
+

$

vr

∣∣∣∣ xe − l

l

∣∣∣∣) tanh
(

ũ1

σ2

)

+ |β|ρ2 tanh
(

ũ1

σ3

))
(61)

where σi > 0, then we get

V̇2 ≤ −kx x2
e − ky y2

e − ku ũ2
1 − (ρ1 − |ε1|)|ye|

− (ρ2 − |ε2|)|β||ũ1|

− (ρ1 − |ε1|)

(
cos θe

l
+

$

vr

∣∣∣∣ xe − l

l

∣∣∣∣) |ũ1| + ζ (62)

where ζ = ζ1+ζ2, ζ2 is another trivial variation due to the usage
of tanh() instead of sign() in the variable structure controller
(61). Note that |θe| < π

2 and $ > 0, (62) implies that the
closed-loop system is uniformly bounded.

4.2. Stability analysis

From (62) it is known that the longitudinal deviation xe,
lateral deviation ye and ũ1 are all bounded. Indeed all of
them converge into a neighborhood of zero. The range of the
neighborhood is determined by ζ which is linked to σi . The
smaller σi is, the smaller the range of the neighborhood is,
yielding higher accuracy.

When ye and ũ1 vary around zero, from (46) and (47) one
gets that the orientation error θe converges into a neighborhood
of

θe = arcsin

(
ˆ̄vy

vr

)
. (63)

5. Simplified adaptive controller with projection mapping

The robust adaptive controller (61) with VSC can guarantee
high tracking accuracy from the academic point of view.
However it needs a large amount of on-board computation and
high-order derivatives of sign-like functions may make control
inputs too oscillating.

To be of more advantage in actual applications, the robust
adaptive controller is simplified by setting ρi to zero, then we
get $ = ky and the controller (61) is reduced into an ordinary
adaptive controller without VSC components.

u2 =
1
β

(ku ũ1 + λ + α − βη̂). (64)
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By using the similar Lyapunov’s direct method, it is proven that
the adaptive controller (64) leads to the following result

V̇2 = kx x2
e − ky y2

e − ku ũ2
1 + ε1

(
ũ1 cos θe

l
−

ũ1ky

vr
− ye

)
− ũ1 cos θe

vx

l
ε2 (65)

(65) implies the closed-loop system can be uniformly bounded
by choosing (kx , ky, ku). But comparing with (62) in which
only ζ is a negligible disturbance, (65) is subjected to
all the unmodeled sliding effects, leading to worse control
performances than the robust adaptive controller (62).

To improve the control performances, projection mapping
is used for the parameter adaptation procedure which makes
the adaptive controller (64) robust to the unmodelled sliding
effects. The projection mapping Projξ (•) is defined by [23,24]

Projξ (•) =

0 if ξ̂ = ξmax and • > 0
0 if ξ̂ = ξmin and • < 0
• otherwise.

(66)

By using projection mapping Projξ (•), the robust adaptive laws
become

˙̂
v̄y = Projv̄y

(
−Γ ye + Γ ũ1τ − Γ

$

vr
ũ1

)
(67)

˙̂η = Projη (−γ ũ1β) . (68)

The prior information on the bounds of the sliding effects
v̄y, η can be obtained off-line after performing large number
of absolute coordinates measurements under different typical
working conditions.

6. Simulation and experimental results

6.1. Simulation results

A classical “U” path with a perfect circular arc (path #1)
is applied as the reference trajectory to test the proposed
controllers. In the simulations, the gains used in (43) and (61)
are set as kx = 0.6, ky = 0.15, ku = 1.14. The gains of
the adaptive laws (60) are set as Γ = 0.2, γ = 0.05. In
actual implementations these gains should be tuned gradually to
make an optimal compromise between transient characteristic
and limited bandwidth of the steering system. The reference
velocity is set as vr = 8.4 km/h which is the normal velocity
of the agriculture vehicles in agriculture applications.

In the simulation the constant sliding is introduced with
vy = −0.1, δb = −0.048. The low-level delay of the
steering system is considered. The control law (36), (37)
without considering sliding is applied also with the same
controller gains. The simulation results of the longitudinal,
lateral and orientation errors are shown by Figs. 2–4. Since
the vehicle velocity is initialized to zero, obvious longitudinal
errors are noticed at the beginning of the simulations. The initial
orientation errors are also nonzero. Those initial errors quite fit
in with the real working conditions. From the simulations it is
clear that all the controllers can make the longitudinal-lateral

Fig. 2. Longitudinal deviation of path #1.

Fig. 3. Lateral deviation of path #1.

Fig. 4. Orientation errors of path #1.
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Fig. 5. Evolution of sliding parameters.

errors approach to zero before sliding occurs. But when sliding
appears, because the control law (36), (37) does not take sliding
effects into account, the longitudinal-lateral deviations (dashed
line) become significant. While the robust adaptive controller
(61) can compensate sliding effects through estimating them
on line and counteract modeling inaccuracy (for example
linearization inaccuracy) by VSC, so the longitudinal-lateral
deviations can converge to zero with a good transient response
(solid line). Finally the adaptive controller (64) is simulated
also. (64) can compensate time-invariant sliding, hence its
longitudinal-lateral deviations (dotted line) converge to zero
with small offsets (due to linearization approximation in (14c)).
The remarkable overshoots at the beginning and end of the
curve are caused by sudden change of the sliding effects and
low level delay. The bounded orientation errors are shown by
Fig. 4. As analyzed by Section 4.2 the proposed controllers
cannot make the orientation errors converge to zero, indeed
they are bounded around (63). It is normal when sliding
occurs known as “crab sliding”. The evolution of the sliding
parameters ˆ̄vy (solid line), η̂ (dashed line) is displayed by
Fig. 5. At the beginning and end of the circle, ˆ̄vy varies greatly
which explains the overshoots of the lateral deviation, but as the
vehicle follows the circle, ˆ̄vy and η̂ evolve smoothly close to the
real values.

6.2. Experimental results

The guidance system has been implemented and succesfully
tested on a CLAAS Dominator combine-harvester. The farm
vehicle is depicted by Fig. 6. The GPS is Dassault-Sercel, dual
frequency GPS 5002 system. This realtime kinematic carrier-
phase differential GPS provides position and velocity measure-
ments with a 2 cm accuracy, at a 10 Hz sampling frequency.
The rotating velocity of the rear wheel was measured by opti-
cal rotary encoders. The actual front wheel angle was measured
by means of absolute encoders and compared with its desired
value. A PD algorithm implemented on a micro-processor con-
trolled a electro-hydraulic valve. During all the experiments, the
state vectors were constructed from the GPS data.

Fig. 6. Farm vehicle used in the experiment.

Fig. 7. Longitudinal deviation of experimental results.

Note that the control law is mostly related to the vehicle
heading θ , unfortunately due to measurement noises and
jounce of the GPS antenna mounted on the vehicle cabin
ceiling, the computed orientation angle θ is very noisy.
From an experimental point of view, this leads to very
noisy and vibrating control signals. The low level system
including the valves, are strongly actuated. Thanks to the
Kalman reconstructor, in real experiments the heading was
estimated. The same non-linear control law was still used. The
reconstructed orientation angle is far smoother which leads to a
comfortable behavior of the vehicle.

The control laws has been implemented in high level
language (C++) on a Pentium based computer. A “U” path was
followed. Each trial started with different initial conditions. The
farm vehicle underwent sliding effects when it entered into a
curve on a wet grass land. The longitudinal-lateral deviations
are shown by Figs. 7 and 8. The actual deviations appear
quite similar to those obtained in simulation. It can just be
noticed that lateral deviation overshoots, at the beginning and
at the end of the curve, are larger than those in simulation.
It is because the presence of a filter introduces some delays.
Moreover, delays introduced by low level actuators amplify
also these overshoots. Nevertheless, it must be pointed out that
the (robust) adaptive controllers can bring the vehicle back to
the reference trajectory, they yield small lateral deviations with
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Fig. 8. Lateral deviation of experimental results.

Fig. 9. Steering angle of the front wheel.

zero mean value during the curve. While the lateral deviation
of the controller (37) is significant and has obvious bias. The
longitudinal errors of the (robust) adaptive controllers are also
less than that of (36). It is because when the lateral sliding
and steering bias are compensated by the (robust) adaptive
controllers, the negative influences of ye and θe (due to sliding)
on the longitudinal tracking accuracy are moderated.

The control inputs δ and vω of each controller are shown
by Figs. 9 and 10. The robust adaptive controller with VSC
yields good transient performances at the expense of strong
control signals (solid line) and non-smooth movements. While
the adaptive controller (64) with projection mapping yields a
tracking movement with moderate control signals (dotted line),
but its bias is larger than VSC’s. So in case when sliding is
dominant, the robust adaptive controller with VSC is favorable.
But for the vehicles whose bandwidth is very limited, the
adaptive controller with projection mapping is preferred.

7. Conclusion

The problem of trajectory tracking control of autonomous
agricultural vehicles in the presence of sliding is investigated
in this paper. A kinematic model which integrates the sliding
effects as additive unknown parameters is constructed. From

Fig. 10. Driving velocity of the rear wheel.

this model, a robust adaptive controller is designed based on
backstepping methods which can stabilize the longitudinal-
lateral derivations into a neighborhood of zero and guarantees
the orientation error converge into a neighborhood near
the origin. In addition a reduced adaptive controller with
projection mapping is proposed for the purpose of smooth
vehicle movements. Experimental comparative results show the
effectiveness of the proposed control laws. The advantages of
this scheme are that

• When no sliding occurs, the proposed controller can
guarantee longitudinal-lateral deviations and orientation
errors converge to zero.

• Integrating parameter adaptation with backstepping schemes
yields a practical trajectory tracking controller for agricul-
ture vehicles. The undertaking of sliding correction is shared
between parameter adaptation and VSC. Also it is applicable
for platoon control.

• Backstepping procedures can be extended easily to high-
order nonholonomic systems, for example trailer control.

The prospective works include extending backstepping
methods to platoon control and using predictive control to
decrease overshoots of lateral deviations [25].

Appendix A

From (1) the following equation holds{
xe = (xr − x) cos θ + sin θ(yr − y)

ye = −(xr − x) sin θ + cos θ(yr − y).
(A.1)

Differentiating this equation we obtain that
ẋe = (ẋr − ẋ) cos θ − (xr − x) sin θω

+ (ẏr − ẏ) sin θ + (yr − y) cos θω

ẏe = −(ẋr − ẋ) sin θ − (xr − x) cos θω

+ (ẏr − ẏ) cos θ − (yr − y) sin θω.

(A.2)

Under the pure rolling conditions, we have the following
velocity constraints{

ẋr = vr cos θr
ẏr = vr sin θr

(A.3)
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ẋ = v cos θ

ẏ = v sin θ.
(A.4)

Substituting (A.3) and (A.4) into (A.2), we get
ẋe = (vr cos θr − v cos θ) cos θ − (xr − x) sin θω

+ (vr sin θr − v sin θ) sin θ + (yr − y) cos θω

ẏe = −(vr cos θr − v cos θ) sin θ − (xr − x) cos θω

+ (vr sin θr − v sin θ) cos θ − (yr − y) sin θω.

(A.5)

After applying simple triangle transformation and considering
(A.1) we obtain{

ẋe = −v + vr cos θe + ωye
ẏe = vr sin θe − ωxe.

(A.6)

Appendix B

When sliding occurs, (A.1)–(A.3) still make sense, but the
constraint (A.4) has to be refined by{

ẋ = v cos(θ + ϕ)

ẏ = v sin(θ + ϕ)
(B.1)

where ϕ is the side sliding angle. Then introducing (A.3) and
(B.1) into (A.2) we obtain

ẋe = (vr cos θr − v cos(θ + ϕ)) cos θ − (xr − x) sin θω

+ (vr sin θr − v sin(θ + ϕ)) sin θ + (yr − y) cos θω

ẏe = −(vr cos θr − v cos(θ + ϕ)) sin θ − (xr − x) cos θω

+ (vr sin θr − v sin(θ + ϕ)) cos θ − (yr − y) sin θω.

(B.2)

After performing simple algebra deduction we obtain{
ẋe = −v cos ϕ + vr cos θe + ωye
ẏe = −v sin ϕ + vr sin θe − ωxe.

(B.3)

Due to the definition of (9) and (10), it is obvious that{
ẋe = −vx + vr cos θe + ωye
ẏe = −vy + vr sin θe − ωxe.

(B.4)

Appendix C

The time derivative of (46) is

˙̃u1 = u̇1 − u̇1d

= cos θeθ̇e −

−ky ẏe +
˙̂
v̄y −

d
dt ρ1 tanh

(
ye
σ1

)
vr

. (C.1)

Consider the kinematic model of θ̇e with linearization
approximation (14c), it is obtained that

˙̃u1 = cos θe

(
c(s)vr +

v̄y + ε1

l
−

vω + vs
x

l
(tan δ + tan δ̄b

+ ε2)

)
−

−ky ẏe +
˙̂
v̄y −

ρ1
σ1

(1 − tanh2(
ye
σ1

))ẏe

vr
. (C.2)

Define

$ = ky +

(
1 − tanh2

(
ye

σ1

))
ρ1

σ1
(C.3)

then we get

˙̃u1 = cos θe

(
c(s)vr +

v̄y + ε1

l
−

vω + vs
x

l
(tan δ + tan δ̄b

+ ε2)

)
+

$ ẏe −
˙̂
v̄y

vr
. (C.4)

Appendix D

In Step 2 consider the Lyapunov function as

V2 = V1 +
1
2

ũ2
1 +

1
2
(η̂ − η)T γ −1(η̂ − η). (D.1)

The time derivative of V2 along (41) is

V̇2 = xe(−vω − vs
x + vr cos θe) + ye(vr u1 − ˆ̄vy − ε1)

+ ( ˆ̄vy − v̄y)
T Γ−1(

˙̂
v̄y + Γ ye) + ũ1 ˙̃u1 + (η̂ − η)T γ −1 ˙̂η.

(D.2)

Here based on the backstepping schemes u1 is replaced by
u1 = u1d + ũ1, then we obtain that

V̇2 = xe(−vω − vs
x + vr cos θe) + ye(vr u1d − ˆ̄vy − ε1)

+ yevr ũ1 + ( ˆ̄vy − v̄y)
T Γ−1(

˙̂
v̄y + Γ ye)

+ ũ1 ˙̃u1 + (η̂ − η)T γ −1 ˙̂η. (D.3)

Substituting (43), (47) and (49) into (D.3) and considering (48),
we have the following equation

V̇2 ≤ −kx x2
e − ky y2

e − (ρ1 − |ε1|)|ye| + yevr ũ1

+ ( ˆ̄vy − v̄y)
T Γ−1(

˙̂
v̄y + Γ ye)

+ ũ1

[
cos θe

(
c(s)vr +

v̄y + ε1

l

−
vω + vs

x

l
(tan δ + η + ε2)

)
+

1
vr

($ ẏe −
˙̂
v̄y)

]
+ (η̂ − η)T γ −1 ˙̂η + ζ1. (D.4)

Introducing expression of ẏe of (14b) into (D.4), we have

V̇2 ≤ −kx x2
e − ky y2

e − (ρ1 − |ε1|)|ye|

+ ( ˆ̄vy − v̄y)
T Γ−1(

˙̂
v̄y + Γ ye)

+ ũ1 yevr + ũ1 cos θe

[
c(s)vr +

v̄y + ε1

l

−
vω + vs

x

l
(tan δ + η + ε2)

]
+ ũ1

$(vr sin θe − (v̄y + ε1)) −
˙̂
v̄y

vr
− ũ1$

ωxe

vr

+ (η̂ − η)T γ −1 ˙̂η + ζ1. (D.5)
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In (D.5), the angular velocity ω is substituted by the linearized
kinematic model (14c). δ which is the steering angle of the front
wheel is one of the control inputs, so we regard u2 = tan δ as
the virtual control input of the Step 2.

V̇2 ≤ −kx x2
e − ky y2

e − (ρ1 − |ε1|)|ye|

+ ( ˆ̄vy − v̄y)
T Γ−1(

˙̂
v̄y + Γ ye)

+ ũ1 yevr + ũ1 cos θe

[
c(s)vr +

v̄y + ε1

l

−
vω + vs

x

l
(u2 + η + ε2)

]
+ ũ1

$(vr sin θe − (v̄y + ε1)) −
˙̂
v̄y

vr

−
ũ1$ xe

vr

[
vω + vs

x

l
(u2 + η + ε2) −

v̄y + ε1

l

]
+ (η̂ − η)T γ −1 ˙̂η + ζ1. (D.6)

(D.6) is equivalent to the following equation in which ˆ̄vy (the
estimation of v̄y) and η̂ (the estimation of η) are introduced.

V̇2 ≤ −kx x2
e − ky y2

e − (ρ1 − |ε1|)|ye|

+ ( ˆ̄vy − v̄y)
T Γ−1(

˙̂
v̄y + Γ ye)

+ ũ1 yevr + ũ1 cos θe

[
c(s)vr +

v̄y + ˆ̄vy − ˆ̄vy + ε1

l

−
vω + vs

x

l
(u2 + η + η̂ − η̂ + ε2)

]

+ ũ1
$(vr sin θe − (v̄y + ˆ̄vy − ˆ̄vy + ε1)) −

˙̂
v̄y

vr

−
ũ1$ xe

vr

[
vω + vs

x

l
(u2 + η + η̂ − η̂ + ε2)

−
v̄y + ˆ̄vy − ˆ̄vy + ε1

l

]
+ (η̂ − η)T γ −1 ˙̂η + ζ1. (D.7)

Then (D.7) can be transformed into the following equation

V̇2 ≤ −kx x2
e − ky y2

e − (ρ1 − |ε1|)|ye|

+ ( ˆ̄vy − v̄y)
T Γ−1(

˙̂
v̄y + Γ ye)

+ ũ1

[
yevr + cos θec(s)vr −

(
$ xe

vr
+ cos θe

)
×

vω + vs
x

l
u2

]
+ ũ1

(
cos θe +

$ xe

vr

)
ˆ̄vy + ε1

l

+ ũ1
$(vr sin θe − ˆ̄vy) −

˙̂
v̄y − $ε1

vr

+ ũ1

(
cos θe +

$ xe

vr

)
v̄y − ˆ̄vy

l

− ũ1

(
cos θe +

$ xe

vr

)
vω + vs

x

l
(η̂ + ε2)

− ũ1

(
cos θe +

$ xe

vr

)
vω + vs

x

l
(η − η̂)

−(v̄y − ˆ̄vy)
$ ũ1

vr
+ (η̂ − η)T γ −1 ˙̂η + ζ1. (D.8)

By defining the following variables

α =
$(vr sin θe − ˆ̄vy) −

˙̂
v̄y

vr
(D.9)

τ =
1
l

(
cos θe +

$ xe

vr

)
(D.10)

β = (vω + vs
x )τ (D.11)

λ = yevr + cos θec(s)vr + τ ˆ̄vy (D.12)

we can obtain the following simplified form

V̇2 ≤ −kx x2
e − ky y2

e − (ρ1 − |ε1|)|ye|

+ ũ1

[
λ − βu2 + α −

$ε1

vr
− βη̂ + τε1 − βε2

]
+ ( ˆ̄vy − v̄y)

T Γ−1
(

˙̂
v̄y + Γ ye − Γ ũ1τ + Γ

$ ũ1

vr

)
+ (η̂ − η)T γ −1( ˙̂η + γ ũ1β) + ζ1. (D.13)

In (D.13) let

˙̂η = −γ ũ1β

˙̂
v̄y = −Γ ye + Γ ũ1τ − Γ

$

vr
ũ1.

(D.14)

Then we can obtain

V̇2 ≤ −kx x2
e − ky y2

e − (ρ1 − |ε1|)|ye| + ζ1

+ ũ1

[
λ − βu2 + α − βη̂ +

(
cos θe

l

+
$

vr

xe − l

l

)
ε1 − βε2

]
.

(D.15)

Because it has been assumed that εi is bounded by ρi , it is
straightforward to design u2 as a variable structure controller

u2 =
1
β

(
ku ũ1 + λ + α − βη̂

+ ρ1

(
cos θe

l
+

$

vr

∣∣∣∣ xe − l

l

∣∣∣∣) tanh
(

ũ1

σ2

)
+ |β|ρ2 tanh

(
ũ1

σ3

))
. (D.16)

In the controller (D.16), the variable structure term |β|ρ2
tanh(

ũ1
σ3

) is used to counteract the negative effects of βε2.

Moreover another variable structure term ρ1

(
cos θe

l +
$
vr

|
xe−l

l |

)
tanh(

ũ1
σ2

) is designed to counteract the negative effects of

( cos θe
l +

$
vr

xe−l
l )ε1. So we finally achieve the Lyapunov result

of (62).
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