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LASMEA - CNRS - Université Blaise Pascal/IFMA, 63175 Aubière, France

Email: {firstname.lastname}@lasmea.univ-bpclermont.fr
http://wwwlasmea.univ-bpclermont.fr/Control

Abstract— This paper is related to the vision-based control
of parallel robots. Indeed, a method is proposed to estimate the
reduced set of kinematic parameters appearing in such a control.
To do so, it extends a linear method, obtained for a perspective
camera, to the case of an omnidirectional camera, using an
existing unifying projection model. The proposed method remains
linear, once adequate information is extracted from the omnidi-
rectional images, and does not require any calibration pattern. It
works both with perspective and omnidirectional cameras, which
is underlined by the reported experiments.

I. INTRODUCTION

Controlling parallel robots is a hard task. Indeed, simple
joint control does not take into account the kinematic con-
straints due to the closed kinematic chains of such mecha-
nisms. Hence, it may yield high internal forces [1] and can
only achieve a good repeatability (relative positioning error).
The latter is generally higher than in the serial case [2] and is
due mainly to the mechanical constraints, while the achievable
accuracy (absolute positioning error) is usually in the same
order as serial robot accuracy [3]. The latter property comes
from an inaccurate conversion from desired Cartesian pose
to desired joint values, mainly due to the fact that the large
number of links and passive joints makes it very hard to
manufacture and assemble a physical parallel robot close to
its CAD model. Therefore, one has to use advanced control
techniques, that belong to two classes.

The first class of control is model-based Cartesian control
and is extensively described in the serial case. This class of
control requires an accurate model of the robot, since the
feedback signal is the estimated Cartesian pose of the end-
effector from the joint values through the forward kinematic
model.

The accuracy of the model is obtained by calibration, which,
in the case of parallel robots, can be achieved in several
manners. The first one uses the forward kinematic model,
which Daney [4] prevents us from. The second one uses
mechanical constraints, as in [5] for instance. A third manner
uses exteroceptive sensors and either the inverse kinematic
model or the implicit kinematic model [6]. Finally, a fourth
manner is to add extra sensors in the passive joints [7].
However, huge trouble arises in model-based control since one
has to solve the theoretically hard forward kinematic problem.
Indeed, this problem rarely has a unique solution [8], [9]. This
trouble can be overcome by designing robots with forward

Fig. 1. A Gough-Stewart platform observed by an omnidirectional camera.

kinematic model having a closed-form expression [10] or by
adding extra sensors in the passive joints [11].

The latter solution is at the edge of model-based control and
sensor-based control, which is the second class of efficient
control for parallel robots. In this class, the fundamental
assumption is that external sensing of the end-effector pose
in the feedback signal replaces advantageously the forward
kinematic model, since the perception models are simpler than
the kinematic models and contain less unmodelled physical
phenomena. Visual servoing [12] is a representative subclass
of sensor-based control but was seldom applied to parallel
robotics [13], [14], [15].

Sensor-based control relieves us from the forward kinematic
problem and partially from the calibration problem. Indeed,
if control is performed in the very sensor space (i.e. using
directly the signal delivered by the sensor), then it only makes
use of the model parameters in the so-called interaction matri-
ces [16]. Thus, only a coarse estimation of those parameters is
needed (coarse calibration) to ensure convergence. However,
the models that are used contain all the kinematic parameters,
and most often additional parameters representing the relative
pose of the sensor elements (for instance, a camera and a
visual pattern, or a laser tracker and a retroreflective cube)
with respect to the mechanism.

Alternately, a method was proposed in [17] for vision-based
control of a Gough-Stewart platform [18], [19] which has a
reduced set of kinematic parameters and does not require any
visual target. Indeed, it made use of the fact that the Gough-
Stewart platform has generally cylindrical legs. Thus, those
cylinders were observed to extract, directly from the image,
the leg directions and the latter were used as visual primitives
in the control. The advantage of this method, in terms of
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Fig. 2. A Gough-Stewart platform observed by a perspective camera.

calibration, is that it does not only reduce the parameter set
but also makes calibration a linear problem.

However, the observation of the legs by a single perspective
camera causes a self-occlusion problem since the legs in the
background of the image may be hidden by those in the
foreground (Fig. 2). Moreover, the perspective projection of
these legs appear nearly parallel in the image, which is a noise
sensitive configuration for the leg direction extraction. A way
to solve for the occlusion problem is to turn oneself to a multi-
camera perception system but one would then need to calibrate
the relative positions of the cameras.

Omnidirectional cameras overcome these problems since
they provide a 360 degrees field of view of the surround-
ings. Many applications in robotics, such as mobile robot
localization [20] and navigation [21], can benefit from such
a panoramic field of view. Visual servoing applications can
also benefit from the cameras with a wide field of view to
overcome the visibility constraint. Vision-based control of
robot arms [22], [23], single mobile robot [24] or formation of
mobile robots [25] appear thus in the literature with omnidi-
rectional cameras. In the literature, there have been several
methods proposed to increase the field of view of camera
systems [26]. One effective way is to combine mirrors with
conventional cameras. The obtained sensors are referred to as
catadioptric imaging systems. The resulting imaging systems
have been termed central catadioptric when a single projection
center describes the world-to-image mapping. The entire class
of catadioptric systems with a single view point was derived
in [27], while [28] introduced a unifying model for the all
central catadioptric imaging systems where the conventional
perspective camera appears as a particular case. This model
is used in [29] together with the geometry of the catadioptric
projection of lines in order to calibrate central catadioptric
cameras.

The contribution of this paper is to use this unifying model
to extend the calibration method proposed in [17] to the omni-
directional case without loosing the linear property. It allows
to reconstruct, directly from the images, the geometry of the
Gough-Stewart platform base, expressed in the camera frame.
If needed, this method could also be applied to determine the
geometry of the moving platform, but it will be shown that the
vision-based control does not need this information. Moreover,
it should be born in mind that this calibration procedure does
neither require any mechanical change of the robot nor any
calibration pattern, making it very easy to set-up.

The versatility of the method is shown through experimental
validation using either an omnidirectional camera observing
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Fig. 3. Projection of a cylinder onto conics in the image.

the legs placed in between them (Fig. 1) or a standard
perspective camera observing the legs from the outer side of
the mechanism (Fig. 2). In the perspective case, validation is
even pushed one step forward by analyzing the convergence
of vision-based control by observation of the legs.

Section II recalls the omnidirectional projection model and
the derived projection of a cylinder. Section III recalls the
vision-based framework for expressing the robot kinematics
and control. Then, the calibration method is presented in
Section IV and validated in Section V. Conclusions are to
be found in Section VI.

II. CATADIOPTRIC IMAGE PROJECTION OF A CYLINDER

In this section, we describe the 3D line representation and
then we present the catadioptric image formation of 3D lines
and cylinders.

A. Line representation

Let L be a 3D line. A point-independent representation of
this line are the Plücker coordinates (u,n) [30] (also known
as normalized Plücker coordinates since us u is a unit vector),
where u is the direction of the line and n encodes its position.

However, noticing that n is orthogonal to the so-called
interpretation plane defined by L and the origin, one can split
it into two parts: n, the unit vector defining the interpretation
plane and n, its norm which is the orthogonal distance of L
to the origin.

Doing so, [31] defined the so-called binormalized Plücker
coordinates (u,n, n), where only n is useful for catadioptric
image projection as we show it below.

B. Unified line projection

Let us recall the central catadioptric projection of 3D lines
using the unified model [29] adapted to the representation
above. Remind that this model is based on a perspective
camera observing the reflection of the scene in a spherical
mirror with unitary radius [28].

Let Fc and Fm be the frames attached to the camera and
to the mirror respectively. Without lost generality, it assumes
that these two frames are related by a simple translation by
ξ along the z-axis as shown in Fig. 3. In the remainder, the
reference frame will be denoted by a left upper-script.

Consider a 3D line L defined by its binormalized Plücker
coordinates expressed in the mirror frame (mu, mn, mn).
Hence, mn = (nx, ny, nz) is the unit vector expressed in



Fig. 4. Visual edges of a cylinder.
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the mirror frame and orthogonal to the so-called interpretation
plane defined by L and the center M of the sphere.

According to [23], [28], the projection of L in the normal-
ized image plane expressed in Fm is a conic curve defined by
the following bilinear form:

mΩ ∝
(

(1−ξ2)nx
2−nz

2ξ2 (1−ξ2)nxny nxnz

(1−ξ2)nxny (1−ξ2)ny
2−nz

2ξ2 nynz

nxnz nynz nz
2

)
(1)

where ∝ means proportional to and ξ is the intrinsic parameter
of the mirror. The expression of this form in pixel coordinates
is trivially given by:

pΩ = K−T mΩK−1 (2)

where K is the matrix of intrinsic parameters.
Note that the particular case of the conventional perspective

camera is obtained with ξ = 0 and Fc = Fm.

C. Unified cylinder projection

As shown in [17] and illustrated in Fig. 4, one can compute
the interpretation planes (mn1 and mn2) of the two edges of
a cylinder from the binormalized Plücker coordinates of the
cylinder axis (mu, mn, mn):{

mn1 = cos θ mn − sin θ mu × mn
mn2 = − cos θ mn − sin θ mu × mn (3)

where cos θ = mz/mn, sin θ = R/mn, mz =
√

mn2 − R2

and R is the cylinder radius.
Therefore, using the previous subsection, the projection of

a cylinder in a central catadioptric image is made of two
conic curves pΩ1 and pΩ2 respectively associated to the two
interpretation planes mn1 and mn2.

III. KINEMATIC MODELLING

A. Vision-based kinematics

The mechanism to calibrate is a Gough-Stewart platform
(Fig. 1), i.e. a closed-loop mechanism in which the end-
effector is connected to the base by 6 legs of varying length
qj , j ∈ 1..6. Each leg (Fig. 5) is attached to the base by a
spherical joint located in point Aj and to the moving platform
(end-effector) by a universal or spherical joint located in point
Bj . The inverse kinematic model of such an hexapod is given
by [2]

∀j ∈ 1..6, q2
j =

−−−→
AjBj

T−−−→AjBj (4)

expressing that qj is the length of vector
−−−→
AjBj . This model

can be expressed in any Euclidean reference frame. Hence, it
can be expressed in the mirror frame Rm.

Denoting muj the unit vector pointing from mAj to mBj ,
one can replace (4) by

qj
muj = mRe

eBj + mte − mAj (5)

Thus, according to [17], one obtains the differential inverse
kinematic model of the hexapod, relating the Cartesian veloc-
ity mτm of the mirror frame, considered as attached to the base
frame and seen from the end-effector, to the joint velocities
by:

q̇ = mDinv
m

mτm (6)

with

mDinv
m =


muT

1 (mA1 × mu1)
T

...
...

muT
6 (mA6 × mu6)

T

 (7)

where the mAj are constant calibration parameters.

B. Parameters necessary to vision-based control

The position and orientation in space of the legs are entirely
defined by the joint locations on the base (Aj , j = 1..6) and
the leg directions (uj , j = 1..6) and entirely define the end-
effector pose with respect to the base frame. Hence, vision-
based control can be derived which depends only on the latter
locations and directions and their time derivatives, for instance
by servoing the leg directions as in [17].

In the case of a fixed camera with respect to the base, this
only requires to use the interaction matrix associated to a leg
direction given in [17] and expressed here in the mirror frame:

mu̇j = LT
uj

mτm (8)

with

LT
uj

=
(I3 − muj

muT
j )

qj

(
I3 −[mAj + qj

muj ]×
)

(9)

Consequently, the control law depends only on the attach-
ment points of the legs onto the base expressed in the mirror
frame (mAj), the joint offsets (qj0) and the edges extracted
from the image. However, considering the order of magnitude
of mAj and qj , one can neglect small errors on the joint
offsets, that can hence be manually measured. Therefore, the
kinematic parameters to be calibrated are reduced to mAj .



IV. CALIBRATION METHOD

Now, the problem is to find mAj from the omnidirectional
images. To do so, one first needs to extract adequate infor-
mation from images and then to use this information in the
calibration equations.

A. Visual information extraction

Once a conic curve pΩ is fitted onto the image points, one
can easily estimate the associated interpretation plane mn.
Indeed, inverting (2) gives an estimate mΩ̂ of mΩ.

With the notation mΩ = (mω1,
mω2,

mω3), one trivially
gets from (1),

mn =
mω3

‖mω3‖ (10)

Applying this procedure to the conic curves pΩ1
j and pΩ2

j ,
projection of the jth leg in the omnidirectional image, we
obtain the associated estimated interpretation planes n̂1

j and
n̂2

j .
Then, having the estimates (mn̂1 and mn̂2) of the two

cylinder edges, one can then reconstruct the cylinder direction
by:

mu =
mn̂1 × mn̂2

‖ mn̂1 × mn̂2 ‖ (11)

to feed the control law.

B. Calibration process

The control model depends on the attached points of the
legs onto the base expressed in the camera frame mAj as
kinematics parameters. Assuming that this attachment point is
lying on the revolution axis of the leg with radius R (Fig. 4),
one can easily show, for any leg j and robot configuration k,

(mn̂1
j,k)T mAj = −R (12)

(mn̂2
j,k)T mAj = −R (13)

Consequently, for N robot configurations, we can build
the following linear system for each leg j from the image
information:

(mn̂1
j,1)T

(mn̂2
j,1)T

...
(mn̂1

j,N )T

(mn̂2
j,N )T

mAj =


−R
−R

...
−R
−R

 (14)

This system has a unique least-square solution if there are
at least two configurations with different leg directions. To
improve its numerical efficiency, one uses robot configurations
with the larger angles between each leg direction.

The calibration procedure is hence reduced to a strict
minimum. However, to deal with noisy estimates due to
image noise, it is preferable to solve for (14) using robust
linear regression (such as iterative weighted least squares, M-
estimators, or median least squares) rather than using bare
linear algebra.

Let us finally remark that this method estimates each
attachment point independently from the others and does not
make use of any knowledge on the base geometry. There
are two ways to handle the latter. The first one consists in
solving simultaneously (14) together with constraints link-
ing the attachment points, but then one looses the linear
property. Alternately, we prefer to estimate independently the
attachment points and then to fit the best rigid transformation
between the robot base and the mirror from the estimated
attachment points in the mirror frame and their CAD values:

m̂Tb = arg min
mTb

1
2

6∑
j=1

‖m̂Aj − mTb
bACAD

j ‖2 (15)

Notice that a scale factor error on R yields the same scale
factor error on the solution of (14). Such an error can be
compensated for a posteriori using a global scale factor such
as the mean ratio r between the inter-point distances computed
from the joint location estimates and their CAD values:

r = mean
j �=k

‖m̂Aj − m̂Ak‖
‖bACAD

j − bACAD
k ‖ (16)

V. EXPERIMENTAL RESULTS

A. Joint center estimation

In a first experiment, we applied the calibration method to a
catadioptric camera placed between the legs, with the 640x480
pixel retina parallel to the base plane (Fig. 1, using 60 robot
configurations located on the workspace limits. A qualitative
evaluation of the results is to reproject the estimated joint
locations m̂Aj onto the image plane. Fig. 6 superimposes
them (yellow circles) onto the image. This shows that the
estimation is very correct in the horizontal plane, even though
no calibration pattern was used for calibration but only the
appearance of the robot itself.

A slightly more quantitative way to evaluate the accuracy
is to plot (see Fig. 7) the estimated joint locations (red) and
their CAD value (blue) in a common reference frame, i.e.
after solving (15). This shows that the estimation errors are
mainly along the vertical which is coherent with the image
reprojection in Fig. 6, but are nevertheless smaller than 1 cm.

Finally, the square root of the median square error between
the CAD geometry and the reconstructed one is 1.2 cm. This
result is highly satisfying with regard to the omnidirectional
camera poor resolution and the fact that no specific visual
pattern was used.

In a second experiment, the robot is observed by a 1024x780
pixel perspective camera placed horizontally in front of it
(Fig. 2). Since this case is a particular case of the unifying
model with Fm = Fc, the left upperscript c is used rather
than m to distinguish from an actual omnidirectional camera.

Since the perspective case is physically simpler, we could
also estimate at hand, yet carefully, the estimation of the
transformation matrix cTb between the base frame and the
camera frame. This allows to build manually estimated joint
locations from the CAD model cAhand

j .



Fig. 6. Reprojection of the estimated joint locations m̂Aj when using an
omnidirectional camera.
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Fig. 7. Estimated geometry (in meters) in the omnidirectional case (red) and
perspective case (magenta) compared to the CAD geometry (blue): lateral
view (top) and top view (bottom).

Note that this manual estimation is troublesome since the
perspective camera frame can not be accurately materialized.
It is almost unrealistic in the omnidirectional case, since one
would have to find the mirror frame which is attached to an
immaterial unit sphere.

Fig. 8 shows the reprojection of the joint locations ĉAj in
the image estimated through the proposed calibration method
(circles) as well as the manually estimated ones cAhand

j

(crosses). Hence, the proposed method yields an accuracy
increase, compared to manual estimation.

The reconstructed geometry is also plotted (magenta) in
Fig. 7. It has a better estimation in the vertical direction than
in the omnidirectional case, since the perspective image plane
is vertical. The deformation in the horizontal plane is slightly
smaller than in the omnidirectional case, probably because the
resolution of the perspective camera is twice the one of the
omnidirectional camera.

Quantitatively, the square root of the median square error
between the CAD geometry and the reconstructed one is now

Fig. 8. Reprojection of the estimated joint locations ĉAj (circles) when using
a perspective camera and of the manually estimated ones cAhand

j (crosses).

Fig. 9. Initial (left) and desired (right) robot configurations.

0.8 cm, which is also satisfying.
Recall that the attachement points of the robot legs onto the

base are only appearing in the interaction matrix in edge-based
control, but not in the servoed error. Therefore, the accuracy
obtained above is enough to ensure the control stability.

B. The effects of the kinematics parameters on the control law

We achieved the visual servoing of an hexapod using
a perspective camera (Fig. 9). Therefore, we can evaluate
the calibration results in view of their use at control time,
which is actually the final goal. However, we restrict this
validation to the perspective case, since the control using the
omnidirectional camera is not achieved yet.

In the reported experience, the perspective camera is fixed
with respect to the base in the same position of calibration
process (Fig. 2). Fig. 10 presents the norm of the regulated
error when using manually estimated joint locations cAhand

j

(error curve E3) and when using the joint locations ĉAj

estimated with the proposed robust linear method (error curve
E2). Additionally, a third run of the control was performed
using the CAD geometry and the estimated camera-to-base
transformation (15) (error curve E1), i.e. cAj ≈ ĉTb

bACAD
j .

In both cases, control converges to 0. This is normal since
the calibration parameters (and the associated errors) do not
appear in the error signal.

In both cases also, exponential convergence is obtained in
the strict theoretical meaning: the error curves are bounded by
an exponential decaying curve. However, when the attachment
points are estimated at hand, an overshoot appears which is
drastically reduced when they are calibrated.

Moreover, one can not clearly distinguish between the
calibrated results, with or without taking into account the
CAD model. Therefore, the robust linear fitting is enough for
control, and no additional computational cost is needed.
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VI. CONCLUSION

In this paper, a method for calibrating a Gough-Stewart
parallel robot in view of its vision-based control was proposed.
It estimates the attachment points of the robot legs onto the
base, that are the only kinematic parameters the control really
depends on. To do so, rather than placing a calibration pattern
onto the mechanism, we used the direct observation of the
legs.

This method works in the case where an omnidirectional
camera is used as well as in the case where a single per-
spective camera is used. However, using an omnidirectional
camera overcomes the self-occlusion problem arising in the
perspective case.

Experimental validation of the method was presented in both
cases, yielding an approximate 1 cm median error. This accu-
racy was demonstrated sufficient for perspective vision-based
control. We believe it will also be sufficient for omnidirectional
vision-based control, which will be implemented in the near
future.

ACKNOWLEDGMENT

The authors would like to acknowledge the use of ViSP [32]
in the perspective case. This study was jointly funded by
CPER Auvergne 2003-2005 program and by the EU-IP project
NEXT: NMP2-CT-2005-011815.

REFERENCES

[1] B. Dasgupta and T.S. Mruthyunjaya. Force redundancy in parallel
manipulators: theoretical and practical issues. Mech. Mach. Theory,
33(6):727–742, 1998.

[2] J.P. Merlet. Parallel robots. Kluwer Academic Publishers, 2000.
[3] J. Wang and O. Masory. On the accuracy of a Stewart platform - Part

I : The effect of manufacturing tolerances. In Proc. ICRA93, pages
114–120, 1993.

[4] D. Daney. Self calibration of Gough platform using leg mobility
constraints. In Proceedings of the 10th world congress on the theory
of machine and mechanisms, pages 104–109, Oulu, Finland, 1999.

[5] W. Khalil et S. Besnard. Self calibration of stewart-gough parallel robots
without extra sensors. IEEE Transactions on Robotics and Automation,
15:1116–1121, 1999.

[6] C.W. Wampler, J.M. Hollerbach, and T. Arai. An implicit loop method
for kinematic calibration and its application to closed-chain mechanisms.
IEEE Transactions on Robotics and Automation, 11(5):710–724, 1995.

[7] L. Tencredi, M. Teillaud, and J.P. Merlet. Forward kinematics of
a parallel manipulator with additional rotary sensors measuring the
position of platform joints. Computational Kinematics, J.P. Merlet and
B. Ravani, Eds., Dordrecht, pages 261–270, December 1995.

[8] M. Husty. An algorithm for solving the direct kinematics of general
Gough-Stewart platforms. Mech. Mach. Theory, 31(4):365–380, 1996.

[9] P. Dietmaier. The stewart-gough platform of general geometry can have
40 real postures. Advances in Robot Kinematics: Analysis and Control,
J. Lenarcic and M.L. Husty, Editors. Kluwer, pages 1–10, 1998.

[10] G. Gogu. Fully-isotropic T3R1-type parallel manipulator. In J. Lenarčič
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