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Abstract— In this paper, we show that visual feedback reduces
the complexity of parallel robot Cartesian control. Namely, 3D
pose visual servoing, where the end-effector pose is indirectly
measured and used for regulation, is shown to be well suited
to this task since it relieves the control from the difficult
forward kinematic problem. Moreover, this complexity reduction
is not coming with an increase of the implementation complexity
since off-the-shelf hardware and software are now available
for visual servoing. It is also shown that such a control gets
rid of joint sensors. All this makes 3D pose visual servoing
the most straightforward Cartesian control for parallel robots.
Experimental results are provided using an open source visual
servoing C++ library.

I. INTRODUCTION

Controlling parallel robots is a hard task since joint motions
are highly coupled due to the existence of closed kinematic
chains. In our opinion, there has not been given yet any
theoretically satisfying generic solution for their Cartesian
control. To support this assumption, let us have an overview
of the classical control schemes that are used in the literature.

First of all, it should be stated that this overview follows
the way people chronologically derive control schemes usually,
namely by following the increasing complexity order for serial
robots. At the end of this overview, we hope the reader will
be convinced that this order is not following the complexity
increase for parallel robots.

The easiest control law for Cartesian positioning in serial
robotics that can be ported to parallel robotics is joint control
with Cartesian reference (Figure 1). The main and only
advantage of this control both in serial and parallel robotics
is to be easily implemented: no model is needed during
control. However, even in the case of serial robots, it does
not ensure convergence to the desired Cartesian pose, since
the desired joint values are computed from the latter through
the numerical inversion of the forward kinematic model. The
final Cartesian error is thus very sensitive to the modeling and
numerical errors. A way to get rid of such errors is to learn
the joint values associated to the desired Cartesian pose. Now,
in the case of parallel robots, the inverse kinematic model
has usually a closed-form expression, which means that this
control is simpler than in the serial case. However, additional
drawbacks appear for parallel robots. The first one is that
joint control does not take at all into account the kinematic
closures. Hence, such a control may yield internal forces that
may damage the robot, and to the least, energy is wasted. A

Control
law

RobotIKM
q̇ qXd

qd
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Fig. 2. Effect of disturbances near a singularity in joint control for parallel
robots

second drawback is due to the duality of parallel mechanisms
with respect to serial robots: while a serial robot end-effector
pose is uniquely defined by its joint values and the forward
kinematic model, the parallel robot joints are uniquely defined
by its end-effector pose and the inverse kinematic model. This
means that there might exist several admissible parallel robot
configurations with the same joint values but different end-
effector poses [1]. These configurations are located in different
workspace regions that are separated by parallel singularities,
i.e. robot configurations where the end-effector can move even
though the joints are not moving. Consequently, if the robot
passes through such a configuration, the joint trajectory will
not be modified while the end-effector trajectory may be
strongly affected by a small perturbation, thus having the robot
switch from one region to another one. Finally, convergence
is ensured in the joint space but is not in the Cartesian space
(Figure 2). To overcome these drawbacks, one may perform
task planning in the Cartesian space to find a path from the
current pose to the desired one passing far away enough from
the singularities. Nevertheless, it is not satisfying either for
the mind. Indeed, what is “far away enough” with respect
to calibration errors in the inverse kinematic model and to
disturbances occurring during control ?

Alternately, and much preferably in serial robotics, control
can be performed in the Cartesian space (Figure 3). Doing so,
one frees oneself from much of the numerical errors coming
from the numerical inversion of the forward kinematic model.
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In fact, such a control follows exactly the same algorithm
as this numerical inversion, the difference being that the
update step on the joint values estimation is replaced by
joint motion. The consequence of this is that such a control
requires the estimation of the end-effector pose from the joint
values and the forward kinematic model. It remains thus very
sensitive to modeling errors. In the case of parallel robots
(Figure 4), this drawback is here again amplified. Indeed,
solving for the forward kinematic problem is an ill-posed
problem since it requires either non-linear optimization or
high-order polynomial solving [2], [3] and may have several
solutions (up to 40 [4] real solutions for the reference Gough-
Stewart platform [5], [6]). In the case of parallel robot identi-
fication, Daney proved [7] that inverting the inverse kinematic
model of a parallel robot in a non-linear iterative optimization
(which is what control essentially is !) may yield numerical
instabilities. Transposed to the control case, this result means
that convergence can not be guaranteed. However, one huge
advantage of such a control scheme for parallel robots is that
the joint velocities it generates are obtained as the output
of the differential inverse kinematic model, which filters out
any inadmissible joint motion with respect to the kinematic
constraints.

To ease this difficult problem of controlling parallel robots,
a lot of research is going on either in innovative structural
synthesis [8] (where people try to design parallel mechanisms
with analytical or semi-analytical forward kinematic models)
or in intelligent solutions to the forward kinematic problem
(either numerical solutions [9] or novel solutions such as
the use of redundant metrology [10] which is mechanism
dependent). Notice that, as far as we know, parallel robot
and machine manufacturers seem to be desperately seeking
the solution in the old serial mechanism recipe consisting in
tightening manufacturing and assembly tolerances.

In our opinion, the generic solution for controlling any
parallel robot has to be found in really taking into account
the specific kinematic properties of parallel robots for control
rather than in applying patches to the classical serial robot
control. Consequently, our objective is here to show that there
exists a generic type of control well fitted to parallel robots.
It takes fully advantage of the main property of almost all
parallel robots: the state (in the full automatic control meaning
of this term) of a parallel robot is its end-effector pose with
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Fig. 5. Visual servoing for serial robots

respect to its base, not its joint values.
To make control robust with respect to modeling errors,

serial robotics invented visual servoing [11], [12]. Visual
servoing is essentially a control scheme where control is
performed in a sensor space (Figure 5), which should be
the image of the Cartesian space by a diffeomorphism (for
instance, the image of a rigid set of points attached to the
controlled Cartesian frame). Basically, visual servoing allows
to replace the forward kinematic model in the feedback by
a camera measuring, explicitly or not, the end-effector pose.
If control is performed directly in the image (image-based
visual servoing), one gets rid of almost all modeling errors
since the latter only appear in the robot differential kinematic
model and the so-called interaction matrix [13], which play
the role of Jacobian matrices (without being theoretically a
Jacobian matrices since the Cartesian space is not a vector
space). Since modeling errors do not appear any more in
the regulated error (end-effector pose is not estimated via a
model), only the transient phase might be affected by them
but not the convergence.

Consequently, the contributions of this paper are to show
how visual servoing methods, well known in the serial case,
extend to the parallel case and to show that visual servoing
is certainly the best choice for kinematic control of parallel
robots. Indeed, it is perfectly fitted to the Cartesian control
of any parallel robot (Figure 6) since it allows for higher
robustness, as stated above, simplifies the control and replaces
joint sensors. Moreover, we will show formally that among
the various visual servoing techniques, 3D pose visual ser-
voing [14] is, for parallel robots, the canonical one, which
is effectively the choice made in [15], [16], [17] for parallel
robots with a reduced number of DOF. To do so, we will recall
in Section II some basic concepts related to Cartesian control,
pointing out the differences between serial and parallel robots.
Then, Section III will show why 3D pose visual servoing is
unavoidable and replace properly this control scheme in the
framework of non-linear control theory. Finally, Section IV
will show experimental validation results and Section V will
end the paper on a discussion.

II. KINEMATICS

In this section, using the notation in Table I, we mainly
want to remind the differences between serial and parallel
mechanisms, then to point out the fundamental consequence
thereof concerning control.

The end-effector pose of a serial mechanism can be ex-
pressed in closed-form from the joint values using the so-
called forward kinematic model:

X = f(q) (1)



• boldface characters and capital boldface characters denote
respectively vectors and matrices.

• Fb, Fe, Fc, Fp denote respectively the base, end-effector,
camera and pattern reference frames.

• iTj =
(

iRj
itj

0 1

)
is the homogeneous matrix associated to

the rigid transformation from Fi to Fj .
• iv is vector v expressed in Fi.
• q is the joint vector.
• X ∈ SE(3) is the end-effector pose independently from its

representation.
• τ is the Cartesian velocity, iτj is the Cartesian velocity of the

origin of Fj expressed in Fi.
• x is the state vector of the state space representation.
• K is a negative scalar constant matrix.
• uc is the vector of inputs (or forcing function) of the state

space representation.
• [a]× is the skew symmetric matrix associated with vector a.
• M+ is the pseudo-inverse of M.

TABLE I

NOTATION USED THROUGHOUT THE PAPER.
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Fig. 6. Visual servoing for parallel robots

The expression of this relation may vary according to the
representation which is chosen for the end-effector pose X .

From this expression, one can obtain the differential forward
kinematic model, expressing the end-effector Cartesian veloc-
ity from the joint velocities, through formal time derivation:

τ = D(q)q̇ (2)

Thus, for serial mechanisms, the models depend only on the
joint values. Consequently, the state of a serial robot is the
joint value vector.

On the other hand, most parallel mechanisms own an
inverse kinematic model, giving a closed-form expression of
the relation from the end-effector pose to the joint values:

q = g(X) (3)

Time differentiating (3), one can similarly obtain the differ-
ential inverse kinematic model, expressing the joint velocities
from the end-effector Cartesian velocity:

q̇ = Dinv(X)τ (4)

Thus, for parallel mechanisms, the models depend on the end-
effector pose. Consequently, the state of a parallel robot is any
representation of the end-effector pose X .

Notice, once again, that the differential inverse kinematic
model, which is the heart of Cartesian control, has a closed-
form expression for parallel mechanisms while it has to be
numerically evaluated for serial mechanisms. Consequently,
it should be more natural to perform Cartesian control for
parallel mechanisms than for serial ones, provided that one
has a correct estimate or measure of the end-effector pose.

III. VISUAL SERVOING

A. A short reminder on visual servoing

Visual servoing is based on the so-called interaction matrix
Ls which relates the instantaneous relative Cartesian motion τ
between the camera and the scene, to the time derivative of the
vector s of all the visual primitives that are used through [18]:

ṡ = Lsτ (5)

where τ can be expressed at any convenient point and in any
convenient reference frame.

Then, one achieves exponential decay of an error e(s, s∗)
between the current primitive vector s and the desired one s∗

using a proportional linearizing and decoupling control scheme
of the form:

τ = −λL̂+
s e(s, s∗) (6)

where τ is used as a pseudo-control variable and is usually
converted through the differential inverse kinematic model of
the robot into joint velocity inputs.

According to the nature of visual primitive, there exist
many visual servoing techniques ranging from position-based
visual servoing (PBVS) [19] to image-based visual servoing
(IBVS) [12], most of them based on point features but one
also find other visual primitives such as lines [20] or image
moments [21]. To simplify the discussion in [22], PBVS
schemes yield straight trajectories in the non-linear Cartesian
space but can not guarantee the visibility constraint because
the trajectories in the linear image space are curved, while
IBVS has the opposite behavior and namely yield smaller
rotational motion. Additionally IBVS is usually considered as
not requiring any end-effector pose estimation since only depth
distribution of the observed points is needed. Nevertheless,
IBVS is not robust to errors on this distribution [23].

To try to take advantage of both schemes, hybrid-based
visual servoing schemes (HBVS) were proposed such as [24],
which only requires to extract the relative orientation and
relative depth in the Cartesian space of the servoed object
from the homography between the current and desired image.
In some way, one can consider that they allow for a relative
end-effector pose, up to a scale factor, without knowing the
object 3D structure.

Remind also that PBVS exists under two main forms: 3D
points PBVS [19] where the reconstructed 3D coordinates of
points on the observed pattern are used as visual primitives and
3D pose PBVS [14], [25] (or 3D pose visual servoing) where a
minimal representation of the camera-to-pattern pose is used.
Note that 3D pose PBVS is the form which requires the highest
amount of 3D reconstruction from images. Therefore, every
visual servoing scheme can be applied once the requirements
for 3D pose PBVS are met: every visual servoing interaction
matrix can be fully computed from the 3D pose.

Finally, there are two visual servoing configurations. In
the eye-in-hand configuration, the camera (defined by its
reference frame Fc) is rigidly fixed onto the end-effector and
is observing a pattern (defined in the reference frame Fp)
attached to the world frame. On the opposite, the eye-to-hand



Fig. 7. Generic configuration for parallel robot visual servoing

configuration is such that the camera is attached to the world
frame and the pattern is mounted onto the end-effector. In
both case, a mobile reference frame Fm is attached to the
end-effector frame Fe and a fixed one (Ff ) is attached with
respect to the base frame Fb.

B. The state space notation for control

Consider now (Figure 7) a parallel mechanism equipped
with a camera and a pattern in any configuration (eye-in-hand
or eye-to-hand). Under this configuration, it is trivial to see that
the rigid transformation from the fixed frame to the mobile
frame (which can be estimated easily [26] and with high
accuracy [27] by vision) is similar to the base to end-effector
transformation, up to two constant changes of frames. Hence,
the camera-to-pattern pose is an adequate representation of
the end-effector pose X . Consequently, the end-effector pose
appears both in 3D pose visual servoing and in the robot
kinematics. As stated above, any visual servoing scheme can
then be applied. Nevertheless, let us show that 3D pose PBVS
is the easiest and most straightforward choice for control.

In this control scheme and the generic configuration in
Figure 7, the visual primitive s should be chosen as [14]:

s =
(

t
uθ

)
(7)

where t = mtm∗ is the position error or translation between
the current (Fm) and desired (F∗

m) mobile frame, while uθ is
the orientation error, decomposed as the axis u and angle θ
of the rotation mRm∗ between these two frames. Notice that
s is not a vector, contrary to most statements in the literature.

Associated to this error, the interaction matrix in (5) be-
comes square [24], [14]:

Ls =
( −I3 03

03 Lw

)
(8)

with

Lw = I3 − θ

2
[u]× +

(
1 − sinc(θ)

sinc2( θ
2 )

)
[u]2× (9)

and can be analytically inverted [24].
Notice that, the vision-based task e, needs be servoed to

0, which is coherent with the state feedback control. Hence,
noting x = e the state of the parallel robot, y = e the output
of the control law and uc = τm the pseudo-control vector,
we can reformulate the 3D pose visual servoing problem as a
proper non-linear state feedback control scheme:

ẋ = Ax + Buc (10)

y = Cx + Duc (11)

where A = 03, B = Ls, C = I3 and D = 03.
Notice that this state space representation is non-linear since

B = B(x).

C. Control Law

According to classical non-linear control, we can choose
either a linear state feedback to control the system (tangent
linearization):

uc = B−1(0)Kx (12)

or a non-linear state feedback (exact linearization):

uc = B̂−1(x)Kx (13)

Notice that in the tangent case, the interaction matrix
B(0) = Ls(s = 0) simplifies into B(0) =

(−I3 03
03 I3

)
.

Projecting the control law into the end-effector frame yields
the generic 3D pose PBVS control law, valid for any robot
(serial or parallel):

eτe =
(

eRm [etm]×eRm

0 eRm

)
mτm (14)

where mτm is given either by (12) or (13) expressed in the
mobile frame.

Specifying this results for a generic parallel robot yields the
actual joint velocity control signal

q̇ = eDinv
e (X)eτe (15)

where X is represented by bTe, which can be computed along
two possibilities depending on the configuration.

a) Eye-to-hand system: Here, Fm = Fp and Ff = Fc

and hence
bTe = bTc

cTp
pTe (16)

where bTc and pTe are known by calibration and cTp is
measured by vision.

b) Eye-in-hand system: Now, Ff = Fp and Fm = Fc

and hence
bTe = bTp

cT−1
p

cTe (17)

where bTp and cTe are known by calibration and cTp
−1 is

measured by vision.
Consequently, the proposed control is extremely simple and

has a fundamental property: joint values do not appear in the
control equations (12)-(17). Thus, the mechanical design of
parallel robot can be simplified.



Fig. 8. A Gough-Stewart platform observed by a camera.

IV. EXPERIMENTAL VALIDATION

In the previous derivation, we did not make any assumption
on which parallel robot was to be controlled, i.e. on the
expression of the inverse kinematic model. In this section,
the approach is experimentally validated on a Gough-Stewart
platform in eye-to-hand configuration (Figure 8).

A. Inverse kinematic model

It has 6 legs of varying length qi, i ∈ 1..6, attached to
the base by spherical joints located in points Ai and to the
moving platform (end-effector) by spherical joints located in
points Bi. The inverse kinematic model of such an hexapod
expressed in the end-effector frame is given by [1]

∀i ∈ 1..6, q2
i =

−−−−−→eAi
eBi

T−−−−−→eAi
eBi (18)

expressing that qi is the length of vector
−−−→
AiBi. Introducing

eui the unit vector pointing from Ai to Bi, we can rewrite
(18) as

qi
eui = eBi − eRb

bAi − etb (19)

from which one obtains the differential inverse kinematic
model

q̇ = eJinv
e

eτe (20)

with

eJinv
e =




euT
1

eB1 × euT
1

...
...

euT
6

eB6 × euT
6


 (21)

where the bAi and the eBi are constant calibration parameters.

B. Experimental results

The proposed approach was implemented using an open
source visual servoing library [28] on a tailored commercial
DeltaLab platform. It has to be noticed that this library
simplified much of the development since everything but the
integration of the platform (15)-(21) was already implemented.
Hence, off-the-shelf software comes in support to the assess-
ment claimed in the title.

Fig. 9. Initial (left) and desired (right) position of the end-effector, seen
from the camera.
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Fig. 10. Evolution of the Cartesian error.

In the reported experiment, the robot is asked to reach
the desired position from the initial configuration that are
displayed in Figure 9. Thus, the robot covers a large amount
of its workspace.

Figure 10 shows that the errors converges to 0 as expected,
from an initial error to a final one displayed in Table II. Notice
that the error curves are not exponentials since an adaptive gain
strategy was used to compensate for Coulomb friction near
convergence without generating high image velocities at the
beginning. Figure 11 shows that convergence is also normally
reached in the joint space.
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Position error (cm) Orientation error (deg)
Initial Errors 8.23 16.157
Final Errors 0.141 0.342

TABLE II

INITIAL AND FINAL ERRORS

V. DISCUSSION

Using 3D pose visual servoing was demonstrated in this
paper a straightforward approach for controlling the end-
effector pose of a parallel robot. It is straightforward since
it is fully coherent with the need for estimating the end-
effector pose to feed the parallel robot models, but also since
it can be easily implemented with off-the-shelf hardware and
software. Indeed, one can now easily find camera to pattern
pose estimation libraries (for instance, OpenCV for a free one)
that deliver a rigid transformation which is similar to the robot
end-effector pose with respect to its base frame up to two rigid
transformations. Moreover, there even exist libraries for visual
servoing that implement everything from frame grabbing and
visual tracking to control, where one only has to plug in the
robot inverse kinematic model and joint control.

Now, as soon as the compulsory camera to pattern pose
is estimated, one has more than needed to perform one’s
preferred visual servoing control scheme, such as image-
based or hybrid-based visual servoing, to impose one’s desired
behavior to the end-effector.

One should notice also the proposed method does not
require any non-linear optimization problem to solve and even
better does not need either any numerical matrix inversion
since the differential inverse kinematic model and the interac-
tion matrix inverse have analytical expressions.

Moreover, nowhere in the proposed approach, joint values
were needed. This means that a camera is the only sensor
needed for controlling a parallel robot and hence that one may
simplify in the future the mechatronics design, manufacturing
and assembly of parallel robots by suppressing joint encoders.
Nevertheless, this is, in the present state of technology, limited
to robots that have compatible velocity and accuracy with
vision (about 100 Hz control loop frequency and accuracy
within 1/100000 of the field of view): large scale telescopes,
car assembly robots, for instance. However, if one can afford it,
laser tracker [29] also delivers a sensor-to-target pose (equiv-
alent to the camera-to-pattern one) with higher performances
which fits into the proposed framework.
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